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We use a plane-wave expansion to calculate the photonic band structures of anisotropic dielectric
composites. The composites consist of a periodic array of anisotropic dielectric spheres embedded in air.
Calculations are carried out for spheres that are optically uniaxial or biaxial, Faraday active, or natural-
ly optically active. Anisotropy in the sphere dielectric function is found to split degenerate bands and to
narrow or even close band gaps, analogous to Stark or Zeeman splitting in conventional band structures.
At long wavelengths, the lowest bands are well described by effective indices of refraction, which are in
fairly good agreement with an anisotropic Maxwell-Garnett approximation.

I. INTRODUCTION

It has recently been discovered! !° that periodic
binary composites can exhibit photonic band gaps, that
is, frequency regimes in which an electromagnetic wave
cannot propagate, even though the individual constitu-
ents allow propagation at these frequencies. These gaps
are thus the result of interference effects in a periodic lat-
tice. The dispersion curves for electromagnetic waves
can be obtained by band-structure calculations. These re-
veal that band gaps are most likely when the incident
wavelength, the scatterer size, and the composite lattice
constant are comparable.>!! A typical geometry involves
macroscopic grains with dielectric constant €;, periodi-
cally distributed, and embedded in a material with a
different dielectric constant, €,. These scatterers can be
considered as photonic “atoms,” and the composite as a
photonic “crystal.”

Scattering from periodic arrays of dielectric objects has
been studied for many years.!> Numerous groups'? have
calculated long-wavelength optical properties of periodic
arrays. The concept of a photonic band structure is a rel-
atively recent and convenient idea. Such band structures
are relevant at wavelengths comparable to the scatterer
size, a regime which is otherwise difficult to treat. The
possibility of photonic band gaps opens up the possibility
of new devices, such as extremely efficient semiconductor
lasers">”%1% and filters that span previously inaccessible
frequency ranges. !>

In this paper we report calculations of photonic band
structures for composites with anisotropic dielectric con-
stants. Our starting point is a diamond lattice of close-
packed dielectric spheres embedded in air. In the isotro-
pic case, it is believed that this lattice exhibits a finite
gap.>1% Our goal is to investigate how the gap changes
when the spheres have anisotropic dielectric constants.
We consider uniaxial, biaxial, Faraday active, and natu-
rally optically active spheres. In each case, the dielectric
constant of the sphere is no longer a scalar but a second
rank tensor €. (For uniaxial and biaxial materials, &, is
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diagonal with unequal diagonal elements. Optically ac-
tive and Faraday-active materials have a nondiagonal but
Hermitian €;. In all cases we assume frequency-
independent elements €; and no absorption, i.e., Hermi-
tian!” 2, with positive diagonal elements.)

We find that anisotropy in €, generally tends to reduce
the band gap of photonic crystals by breaking the degen-
eracies of bands with different polarizations. Sufficient
anisotropy can close the gap altogether. By varying the
anisotropy one can tune the width of the gap along vari-
ous directions in k space. Using this gap tunability, one
may thus be able to build structures which differentially
filter out waves of different polarizations.

This paper is divided into sections as follows. Section
IT describes the anisotropies and model composites to be
considered. In Sec. III we discuss the details of our
band-structure calculations. We present the results for
uniaxial and biaxial spheres in Sec. IV, and for Faraday-
active and naturally optically active materials in Sec. V.
Finally, we discuss our conclusions in Sec. VI.

II. MODEL

A material may exhibit optical anisotropy either be-
cause its structure is anisotropic or because an appropri-
ate symmetry-breaking field is applied.!” Materials with
anisotropic structures may be uniaxial or biaxial, depend-
ing on whether their dielectric tensors have two or three
distinct principal values. An isotropic material may also
become uniaxial under application of a dc electric field
(Kerr or Pockels effect). Faraday-active materials can be
structurally isotropic, but in the presence of an external
magnetic field they rotate the plane of polarization of
linearly polarized light. Naturally optically active ma-
terials behave similarly, but in the absence of an applied
field. Such materials can be structurally isotropic but
lack inversion symmetry, because, for example, they con-
tain unequal numbers of left- and right-handed mole-
cules.

The most general relation between D and E in a linear
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medium is

3
D=3 €,E; ,

(1)

ji=1

where €;; is a component of the dielectric tensor €. In an
isotropic medium, €;; is a multiple of the unit tensor,
€;;=€5;;. In a uniaxial or biaxial material, €;; is typically
a symmetric matrix with two or three distinct eigenval-
ues. In an isotropic Faraday-active material, D and E
are related by

D=¢E+iBEXH , )

where H is a unit vector in the direction of the applied
magnetic field H, and B« H. A material with natural op-
tical activity (such as quartz, dextrose, cocaine, and
strychnine)'® has a dielectric function which is a real-
space operator of the form (for isotropic materials)

6,»]-(1'):6(0)8,-1- +7’€‘-j1"éa— . (3)
T

Here all indices refer to Cartesian components from 1 to
3, e;; is the totally antisymmetric unit tensor of rank 3
(Levi-Civita symbol), and a sum over repeated indices is
implied. Equation (3) is valid in the limit nk << 1, where
k is the wave vector of a propagating electromagnetic
wave.

An ordered composite can exhibit a photonic band gap
only if the dielectric contrast is large ( >4, according to
Ho, Chan, and Soukoulis’). In what follows, we will de-
scribe model calculations for anisotropic composites in
which this condition is satisfied. Although the calcula-
tions are not directed at specific materials, these condi-
tions can be satisfied in practice, as will be discussed fur-
ther below.

II1. FORMALISM

We consider a periodic composite whose constituents
have dielectric tensors €,, and €, and seek solutions to
Maxwell’s equations which have the form imposed by
Bloch’s theorem.!” The relevant Maxwell equations take
the form (in the absence of free current density)

vxa=19¢cE), @)
c ot
where the position-dependent dielectric  tensor
€=¢(r)=¢,, or & depending on whether point r is in
medium m or s, and

_10B

XE=
v ¢ ot

(5)
Combining these, taking the magnetic permeability p=1,
and assuming that all fields have an e ~'“' time depen-
dence yields

w2

VX[ Hr)(VXH)]=—H, (6)
c
where & !(r) denotes the inverse of the (position-
dependent) dielectric tensor &(r). In component form
this may be written as

2

d — a
eijkelmna—rj {‘é l(r)}klé;m‘ n(r) c Hi' (7)

Because the composite is periodic, H must be a Bloch
function. Hence, it can be expressed as a linear combina-
tion of plane waves:

Hk(r)=2 Hk+Gei(k+G)-r . (8)
G

The matrix € ~!(r) is also periodic and can be expanded
as

e r)=3e " 1G"e9". 9)
<

Here G and G’ are reciprocal-lattice vectors, and k is a
Bloch vector. Note that € ~(G’) is the Fourier trans-
form of € ~!(r), and is not equivalent to [€(G')] .

For a two-component composite, €(r) takes the form

&(r)=¢, +O(r)(g —¢,), (10)
where

1 if r is inside medium s,

O(r)= 0 otherwise ,

(11)

is a function introduced by Bergman.?’ If we assume a
geometry in which spheres of dielectric tensor €; and ra-
dius R are embedded in a host of dielectric tensor €,,,
then

O(r)=3 O,(R—|r—r1.]), (12)
L
where r; is the position of the Lth sphere and

1, x>0,

=lo, x<o0. (13)

O,(x)

Note that form (10) implies that the optical axes of all the
spheres are aligned in the same directions.
For this geometry, the inverse of €(r) takes the form

z Un)=¢,'+O(r)e '—E, 1) . (14)

With the use of the property ©2=89, it is readily verified
that

&re Nr)=1 (15)

as required, where 71 is the unit matrix.

Substituting Eqgs. (8) and (9) into Eq. (7), and Fourier
transforming, we find a linear system of equations (taking
c=1):

> €ijklimn (k+Q);[E “MQ—G)u(k+G),,[Hy g,
G

:wz[Hk+Q]i . (1e)
The Fourier transform of € ~!(r) is
e Mg =82, +(& ', )f(q), (17)

where, for a diamond lattice of spheres,
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flg)=S(q) v 4R

(18)

Here v, is the fcc primitive cell volume, and j, is a spher-
J
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ical Bessel function of order 1. S(g)=33_,e T s the
structure factor for the diamond lattice, the d; being the
positions of the basis “atoms” in the diamond structure.

Equations (16) can be expressed in the matrix form,
zj,GMij(Hk+G)j =@2(Hk+Q)n where

[M(Q,G)];=epeim(k+Q),(k+G),{8q 6%, I+ (& Ny—(&, )y 1f(1Q—GD} . (19)

The w(k) dispersion relation is then found by diagonaliz-
ing the matrix M. For N reciprocal-lattice vectors G,
this requires diagonalizing a 3N X 3N matrix.

For materials with natural optical activity, € ~!(r)
must be construed as an operator. To first order in 7k, it
can be approximated as

_ a
[t 0], = si,»——e—f&eiﬂa—,l (20)

1
6(0)

To verify this, one can let the product €€ ~1act on a vec-

tor plane wave Ve 'k
_ . ie;mk,
1 ikt — (0) il
€i€im Vme' " "=¢€ 8;+ 0
X 1 5. — M V. eikr
o) [Tim € m
=8 Vine'®r . (21)

The inverse dielectric tensor of the composite takes the
form

ad

S..— e..— | —98.:;
(V) ijl or, ij

[e ~}(r)], =8, +6,(r) [gla

(22)

where it has been assumed that the spheres are embedded
in air. The analog of Eq. (16) for naturally optically ac-
tive spheres is then

—2 epqiejmn[g _I(Q—G)]ij(k+G)q(k+G)m(HIH-G)n
G

=0’ (Hy1q), , (23)

where

_ 1
[ 7(Q—G)];=8;8¢,6+/(Q—G)J; [e(o) -1 }
ek +G)
__f(Q_G)le’m(—O)l . (24)
€

In performing our calculations, we have generally used
N =169 plane waves. According to Sozier, Haus, and
Inguva'®?! many more plane waves may be needed to
achieve good convergence. Ho, Chan, and Soukoulis,’ in
their original study of the close-packed diamond struc-
ture (sphere filling fraction f=0.34, isotropic spheres of
€,=12.96 in air), found a gap-to-midgap ratio Aw/w, of
about 0.15 (Aw is the frequency range with zero photonic

[

density of states, and w, is the midgap frequency). They
use about 375 plane waves, and in addition to calculating
€(r) on a discrete grid of points, they make the approxi-
mation € Y(q)=[2(q)]"!. According to Soziier, Haus,
and Inguva, this approximation leads to further conver-
gence problems. For the same structure, without making
this assumption, they find limy_, ,Aw/w,=0.035. Cal-
culating € “!(q) directly and using N=169, we find
Aw/w,=0.0696 for this composite.

Although our results for isotropic spheres would un-
doubtedly reduce to those of Ref. 21 in the limit N — o,
we use N=169 in the interest of using a reasonable
amount of computer time while still seeing qualitative
effects of anisotropic dielectric constants. For moderate-
ly anisotropic spheres, we find that the gaps converge
with increasing N at a rate similar to or slightly slower
than the isotropic case. For uniaxial spheres with
€,, =€,,=12.96 and €,, =9, a photonic gap persists up to
N =941, the largest number of plane waves we have con-
sidered.

Figure 1 shows the well-known Brillouin zone of the
fce lattice (the Bravais lattice for the diamond structure),
with important symmetry directions indicated. The in-
troduction of anisotropy reduces the crystal symmetry so
that many previously equivalent directions in k space be-
come inequivalent. For instance, the bands along I'X
differ, in general, for X in the (100), (010), and (001) direc-
tions. Because of this we will present band structures
along the directions of Fig. 1, but sometimes with several
choices for the optical axes of the inclusions.

For N plane waves, we always find 2N nonzero bands,
and N identically zero bands. The 2N bands correspond
to the two transverse modes which propagate for each
wave vector in a homogeneous dielectric while the N zero
modes correspond to the longitudinal modes.

{

FIG. 1. fcc Brillouin zone. The labeled symmetry points
are I'=(0,0,0), X=(2m/a)(0,0,1), W=(2w/a)({,0,1), K
=(2n/a)(},0,3), L=Qw/a)},4,1), U=Q@n/a),4,1),
where a is the lattice constant.

<
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wa/c

X U L r X W K

FIG. 2. Photonic band structure for a close-packed diamond
lattice of isotropic dielectric spheres in air. The sphere dielec-
tric constant is €, =12.96.

IV. BAND STRUCTURES FOR UNIAXIAL
AND BIAXIAL SPHERES

Figure 2 shows the calculated photonic band structure
of a close-packed diamond structure of isotropic spheres
(€,=12.96) in air (¢, =1.0). The frequencies @ are given
in units of c¢/a, where a is the lattice constant. The
lowest four nonzero bands are twofold degenerate along
'L, T'X, and XW. We have calculated the corresponding
band structures for uniaxial spheres with €,, =¢,, =12.96
and 6.0=<¢,, =12.0. Figures 3 and 4 show the resulting
band structures for €,, =9.0 and 6.0. The corresponding
gap-to-midgap ratio Aw/w, is plotted in Fig. 5. With
sufficient anisotropy (Ae=e,,—€,, >7) the full gap
closes, but gaps remain along some directions in k space,
producing a band structure analogous to that of a semi-
metal. The curve of Fig. 5 (for Ae<7 and N=169) can
be fit to a parabola: Aw/w,=0.691—(5.72X107*)Ae
—(8.69X 107 *)(Ae)%.

The gap is narrowed because several degenerate bands

wa/c

X U L r X W K

FIG. 3. Asin Fig. 2 but for a close-packed diamond structure
lattice of uniaxial dielectric spheres €,, =9.0, €,, =€,, = 12.96.

—~—
5
4
8]
e 3
]
3
2
1
0
X U L r X W K

FIG. 4. Same as Fig. 3, but €,, =6.0, €,, =€,, = 12.96.

(e.g., the lowest two in Figs. 3 and 4) are split by anisotro-
py. This is analogous to the splitting of electronic states
by an external field (Stark or Zeeman effect). The anisot-
ropy also eliminates many level crossings. Typically, un-
der this perturbation, two nearby levels repel each other.
This is analogous to the well-known effect of perturba-
tions in quantum calculations. Note that in our calcula-

- tions, the bands along XW do not split. The reason is

that along XW, k is parallel to X, the direction of the op-
tical axis. Any wave propagating with k off the optical
axis, however, can have two different frequencies.

At long wavelengths (w—0) we can determine the
group velocities of the propagating modes from the
slopes dw /dk of the “valence” bands along I'X and I'L.
Table I lists the effective “indices of refraction
n,=lim,  o[c(dw/dk)™ '] for composites with uniaxial
spheres, along I'X and 'L. In each direction there are
two different indices of refraction, n,, and n,,; n,; (but
not n,,) is independent of direction. These waves are
analogous to ordinary and extraordinary rays in a homo-

o.os(t”.(,.‘.ﬁf,”.,.,.\
oos © y
. @) i
o L i
$ oosf © .
< I o ]
0.02 |- o ]
N - NP
0 2 4 6 8
Ag,
FIG. 5. Gap-to-midgap ratio Aw/w, vs anisotropy

Ae=¢,, —¢,,, with €,, =€,, = 12.96, for uniaxial spheres in air.
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TABLE 1. Long-wavelength refractive indices for composites with optically uniaxial spheres.
Ae=¢,, —€,, is a measure of the anisotropy. n,., and n,, correspond to the first and second nonzero
bands. [n.9]lmg and [ng ]y are the corresponding Maxwell-Garnett indices [Egs. (25)—(27)]. Note that

[no]mc is direction independent.

I'’X[k||(001)] IL{k||(111)]

Ae Mgy ey [n.0)lmc N1 2y [ne0]lma [n0]ma
0.0 1.533 1.533 1.456 1.533 1.533 1.456 1.456
0.96 1.531 1.519 1.447 1.531 1.522 1.450 1.456
1.96 1.529 1.503 1.437 1.529 1.511 1.443 1.456
2.96 1.527 1.485 1.424 1.527 1.498 1.434 1.456
3.96 1.525 1.464 1.409 1.525 1.483 1.424 1.456
4.96 1.523 1.440 1.392 1.523 1.466 1.412 1.456
5.96 1.520 1.412 1.371 1.520 1.445 1.397 1.456
6.96 1.517 1.378 1.345 1.517 1.420 1.379 1.456

geneous, uniaxial dielectric, which also have two indices
of refraction, one direction independent (“ordinary”’) and
one direction independent (“‘extraordinary”).!’

We can estimate n,; and n,, from the well-known
Maxwell-Garnett approximation (MGA), suitably extend-
ed to uniaxially anisotropic spherical inclusions in an iso-
tropic host.?? If the spheres have principal dielectric con-
stants €, and €, perpendicular and parallel to the optic
axis, then the principal components of the MGA are

e (1+2f)+2(1—f)
ely“(l—f)_*_fﬁ*'z ’

[El,“ MG (25)

where f is the volume fraction of spheres. These would
produce ordinary and extraordinary waves with indices
of refraction

[n0lmc=V (€1)mg » (26)
sin’6 cos20 |7
n, = , (27)
[ O]MG (6” )MG (EJ.)MG

where 6 is the angle between the wave vector k and the
optic axis (the x axis).

Table I lists the indices of refraction [ng]yg and
[n.0lmg for waves propagating in the T'X direction
(6=0) and T'L direction (6=0.9553 rad), as calculated
from Egs. (25)-(27). For both waves, and along both
directions, the Maxwell-Garnett predictions agree with
the band-structure calculations to within about 5%. The
agreement might improve even further if more plane
waves were included in Egs. (8) and (9). Perfect agree-
ment is not expected, however, since the MGA applies
best to composites with isolated spheres, whereas in the
present model, each sphere touches four others.

Figure 6 shows the band structure for a diamond lat-
tice of HgS (cinnabar) spheres (€, =8.145, ¢,= 10.25)% in
air. The three plots correspond to the optical axis of the
HgS spheres parallel to the x, y, and z directions (the
point X is always along the [001] direction as above). In
each case, some of the degeneracies seen in the isotropic
case remain unsplit in the composite. For example, in
Fig. 6(b), the bands along I'X do not split because this is
the direction of the optical axis. All band structures re-
veal a gap throughout the Brillouin zone, but the gap

width depends on the direction of k relative to the direc-
tion of the optical axis. The “forbidden gap” is, of
course, no larger than the smallest of these
(Aw/w,=0.044). The corresponding indices of refrac-
tion for the lowest two bands are shown in Table II.
Again, they agree well with the Maxwell-Garnett predic-
tions.

The eigenvectors in Eq. (16) describe the wave polar-
izations. In uniaxial composites, we find H, , g|[|(k+G)
for the N zero-frequency bands. The other 2N nonzero
modes satisfy (k+G)-H,,5=0. Hence, they are trans-
verse in the sense that V-H=0. The Fourier components
are also real and orthogonal; that is, for two bands m and
n¥gHyig), (Hyig)y, =h9,,, where h is real. The
reality of H, , g implies that the magnetic field is linearly
polarized. Since each band has a different polarization
vector, the band splitting by anisotropy implies different
gaps for waves of different polarizations, a property
which might prove useful for filtering applications.

Figure 7 shows the band structure for a diamond struc-
ture of close-packed biaxial spheres in air. For the prin-
cipal components of €, we use €, =10.20, €,=18.52, and
€3;=19.89, corresponding to (aligned) spheres of stib-
nite.”> We have calculated the photonic band structure
along the directions shown in Fig. 1 for the six different
permutations of the sphere axes. Figure 7 shows two of
these band structures: (a) €,,=18.52, €,,=19.89,
€,,=10.2, and (b) €,,=10.2, €,,=18.52, €,,=19.89.
Both figures reveal the usual band splittings.

To determine if this band structure has a full photonic
gap, we have computed the photonic density of states.
We use a mesh of 877 k points uniformly distributed in
the first Brillouin zone. The results are shown in Fig. 8.
The density of states is low but nonzero near wa /c ~3.3
[where a gap seems to exist in Fig. 7(a)]. There is a full
gap, however, only near wa /c ~4.7 (between the eighth
and ninth bands). The seemingly zero density of states
for very low frequencies (wa /¢ < 1) is an artifact of hav-
ing an insufficiently fine grid of k points. The density of
states is obviously nonzero at such frequencies, as can be
seen from the band structures of Fig. 7.

The long-wavelength indices of refraction (not shown)
differ from the uniaxial case in that both n,, and n,, (the
indices of the lowest two bands) depend on k direction.
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As in the uniaxial case, we find that the magnetic fields
for biaxial composites are transverse and linearly polar-
ized.

V. BAND STRUCTURES FOR FARADAY-ACTIVE
AND NATURALLY OPTICALLY ACTIVE MATERIALS

Next, we consider a diamond-structure composite
(f=0.34), containing isotropic, Faraday-active spheres

wa/c

>
a
[l
-
<
=
=

wa/c

wal/c

X U L r X W K

FIG. 6. As in Fig. 2 but for HgS (uniaxial) spheres in air,
with (a) €., =10.246, €, =¢€,,=8.145; (b) €,,=¢,, =8.145,
€,,=10.246; and (¢) €,, =€,, =8.145, €,, = 10.246.
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TABLE II. Long-wavelength indices of refraction for a com-
posite of HgS spheres in air. The three cases correspond to
different orientations of the optical axis. n,, and n,, correspond
to the lowest two nonzero bands.

rX[k|/(001)] T'L[k|/(111)]
€xx 6y_v €, L ey L Ney
10.246 8.145 8.145 1474 1.435 1.460 1.434
8.145 10.246 8.145 1474 1.435 1.460 1.434
8.145 8.145 10.246 1.434 1.434 1.460 1.434

in the presence of a magnetic field H=H?Z. The spheres
are assumed to have dielectric function

(B )ex =(%,),, = (&), =€, .

s /xx ( s )yy ( s )zz (28)

(&)yy=—(&)=iB .

We arbitrarily choose €®=12.96, and vary B. Our
choice of €'?’ is on the order of that of Ge below the band
gap. The values of B are arbitrary and chosen simply to
illustrate the effect of applying a stronger external field
(B<H). As [ increases the photonic gap converges more
slowly with N, but the B dependence of the band struc-

6
4...
(&)
~
©
3
2
(a)
0
X U L r X W K
il—-
4
)
=
©
3
2
(b)
0
X U L r X W K

FIG. 7. As in Fig. 2 but for stibnite (biaxial) spheres in air,
with (a) €., =18.52, €,,=19.89, €,,=10.2; and (b) €,,=10.2,
€,, =18.52, €,, =19.89.
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FIG. 8. Density of states per primitive cell for the composite
of Fig. 7, calculated using a uniform mesh of 877 k points in the
first Brillouin zone.

wal/c

wal/c

(b)

¥ K

X U L r X

FIG. 9. As in Fig. 2, but for Faraday-active spheres in air,
with €®=12.96 and (a) 8=3.0, (b) =9.0.
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TABLE III. Gap-to-midgap ratio and long-wavelength in-
dices of refraction for a composite of Faraday-active spheres in
air. € and B are defined in Egs. (28). n,, and n,, correspond to
the lowest two nonzero bands.

CX[k||(001)] CL[k||(111)]

E(O) B Am/mg Ney Neo N,y e
1296 3.0 0.043 1.561 1.488 1.547 1.504
1296 6.0 0.001 1.576 1.415 1.552 1.454
1296 9.0 no gap 1.577 1.288 1.545 1.357

ture should be qualitatively correct even for N =169.

Figures 9(a) and 9(b) show band structures for =3.0
and 9.0. As expected, increasing f3 increases the field-
induced band splitting. For $=9.0, the photonic gap is
closed. These effects are all qualitatively similar to those
seen in uniaxial and biaxial spheres. In this case, howev-
er, the composite itself is isotropic and the anisotropy is
provided by an external magnetic field.

Table III lists the long-wavelength refractive indices
for the lowest two bands. In contrast to the uniaxial case,
both indices are direction dependent. This is consistent
with the behavior expected in homogeneous Faraday-
active media.

The band eigenvectors for Faraday-active composites
are transverse in the sense that (k+G)-H, 5=0. The
individual components H, ., are complex, indicating
that electromagnetic waves propagating through these
composites are elliptically polarized in general.

Finally, we have computed the photonic band struc-
ture for a composite with naturally optically active
spheres. We use €?=12.96 and 7=0.01 [cf. Eq. (3)].
The band structure is shown in Fig. 10. Since nk+G/| is
small for most G, the band structure closely resembles
the isotropic case with [€,];=(12.96)3;,. The long-
wavelength refractive indices also prove to be the same as
in the isotropic case, to within numerical accuracy, al-
though at higher frequencies the optically active band
structure shows some band splitting not evident in the

5
4
%]
\3
]
3
2
1
0
X U L r X W K

FIG. 10. As in Fig. 2 but for naturally optically active
spheres in air, with € =12.96 and »=0.01.
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isotropic case (cf. Figs. 2 and 10). The Fourier com-
ponents H, | 5 are complex, implying that electromagnet-
ic waves in the composite are elliptically polarized.

VI. SUMMARY

We have shown that a plane-wave expansion method
can be used to calculate the photonic band structure of
an ordered composite, even if the constituents are opti-
cally anisotropic. We have applied this method to ma-
terials which are optically uniaxial, biaxial, Faraday-
active, or naturally optically active. In all cases, anisot-
ropy splits degenerate bands, and narrows any photonic
band gap. With sufficient anisotropy, gaps may close up
altogether.

Some of the geometries discussed may appear arbitrary
and unphysical—e.g., a lattice of aligned uniaxial
spheres. We expect, however, similar effects in other
geometries which may be easier to achieve experimental-
ly, such as the inverse situation, where spheres (or non-
spherical regions) are carved out of a matrix of anisotrop-
ic material. In addition, anisotropy could be achieved by
applying a static electric or magnetic field to a composite
with isotropic components. If the spheres exhibit a
sufficiently large Kerr, Pockels, or Faraday effect, sub-
stantial optical anisotropy could be achieved.

We can easily estimate the field strength required to
observe the effects of anisotropy in a photonic crystal.
Ge may be a useful material for this purpose; it has a
sufficiently large index of refraction that a photonic crys-
tal of Ge and air will have a band gap. N-type Ge has a
room-temperature microwave Faraday effect. At a field
of 0.83 T and a frequency of 24.9 GHz, for instance, it
has a specific rotation of about 0.28 rad/mm.>* If an
external field is applied along the (001) direction of a
Ge/air photonic crystal, and if this direction is also the
Ge(001) direction, then the composite is effectively isotro-
pic, and the specific rotation ¢ /I can be expressed as in
Eq. 2):"7

$_ 0B (29)

I 2cny’

where n; is the index of refraction of the inclusions ( ~4
for Ge). Substitution of these parameters into Eq. (29)
gives $=4.3, a value which gives observable magnetic-
field-induced band splitting according to the calculations
of Sec. V. When B is not parallel to one of the crystal
(001) directions, Ge has an anisotropic Faraday effect,

and the effective splitting cannot be calculated so simply.
Nevertheless, our estimate for the isotropic case indicates
that the effects of anisotropy on the photonic band struc-
ture should be observable in external magnetic fields of
about 1 T. Since photonic gaps tend to occur at wave-
lengths comparable to the scatterer size, this effect should
be observable for scatterers of radius =1 cm, correspond-
ing to the wavelength of 24.9 GHz radiation.

Achieving anisotropy through the Kerr or Pockels
effect may require an extremely large electric field. For
example, BaTiO;, which has large Pockels coefficients at
visible wavelengths (r,,=1.64X10"° m/V, r,=1.08
X 1071% m/V),?® would require fields of ~107, 10® V/cm
in order for the anisotropic term in the dielectric con-
stant, #;;E;, to be of order unity. Thus Ge in an external
magnetic field may be the most promising system for ob-
serving the effects of dielectric anisotropy.

At low frequencies we find that uniaxial composites
propagate waves which are analogous to ordinary and ex-
traordinary waves. The group velocities of these waves
are well described by the Maxwell-Garnett approxima-
tion. A similar approximation describes long-wavelength
propagation in biaxial composites. We also find that, for
both uniaxial and biaxial composites, the Bloch waves are
linearly polarized, while for Faraday-active or naturally
optically active composites, the waves are polarized ellip-
tically.

A number of possible calculations suggest themselves
for future work. Obviously, it would be useful to deter-
mine more accurate band gaps for real materials, perhaps
by increasing the size of the plane-wave basis. It would
also be of interest to consider randomly oriented uniaxial
spheres, in which the orientational disorder could pro-
duce damping of the Bloch waves. Experimental
verification of the predicted effects would also be of great
interest.
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