
'-:YS::CA . .4-.V::=.W
CONDENSED MATTER

THIRD SERIES, VOLUME 48, NUMBER 8 15 AUGUST 1993-II
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We study the one-loop contribution of the spin and charge fluctuation to the boson hopping factor in
the slave-boson representation of the Hubbard model introduced by Kotliar and Ruckenstein. Whether
one uses a low-lying cuto6 or sums over the whole bosonic spectrum, the noninteracting limit for the
Auctuation correction of the mass enhancement is not recovered for vanishing Coulomb interaction. We
argue that one should be cautious when attempting to extend the loop-expansion calculation, in the
functional-integral scheme of Kotliar and Ruckenstein, to the observables in which the high-energy exci-
tations may play an important role.

I. INTRODUCTION

The Gutzwiller approach' to the Hubbard model is an
appealing method for studying strongly correlated Fermi
systems. It has been extensively studied for years, '

especially since the discovery of high-T, superconduc-
tors and Anderson's seminal paper. Recently,
significant progress was made by Kotliar and Rucken-
stein (KR). Their functional-integral slave-boson formu-
lation of the Hubbard model has the Gutzwiller approxi-
mation (GA) (Refs. l and 3) as a static paramagnetic sad-
dle point.

In principle KR's approach can be pursued beyond the
mean-field level. Within KR's scheme, several extensions
of the CxA can be considered. One may transform the
variational scheme into a standard perturbative treat-
ment through a loop expansion. Also one may extend to
finite temperature the GA, and approximate variational
approach which by itself is valid only for the ground
state, thus zero temperature. One may even consider the
effects coming from rather high-energy excitations. This
is in contrast to the restriction to low-lying excitations
around the Fermi level, a crucial assumption of Landau's
Fermi-liquid theory (LFLT). Finally, one may apply
KR's approach to study more complicated magnetic
phases of the Hubbard model, for example, the antiferro-
magnetic phase, the incommensurate phase, as well as the
spiral phase, etc., which may all appear in strongly corre-
lated two-dimensional (2D) fermion systems. There then
follows immediate questions: Can any of these extensions
be successfully realized, and if so, how far can those ex-
tensions be pursued?

Within the paramagnetic metallic phase that will be

dealt with in this paper, the hope is that the loop-
expansion corrections to the saddle-point solution may
improve the GA and may be capable of accounting for
new effects which have not been included in the mean-
field theory. The effects of thermal fluctuations have
been studied recently in the KR slave-boson (SB) ap-
proach to one-loop order. Among a few recent investi-
gations let us mention the T lnT contribution to the
low-temperature specific heat and the superfluid transi-
tion temperature of He in addition to the conductivity of
transition metals. Also, all of the two-point dynamical
correlation functions have been derived and calculat-
ed, ' and then their by-products, the structure factors,
have been compared with the Monte Carlo results"
for the j.D and 2D Hubbard lattices and reasonable
agreement has been obtained. However, in these calcula-
tions of fluctuations, the contribution of the correction to
the mass enhancement, beyond the mean-field level, has
not been involved. Also it is worthwhile to note that in
those successfully calculated observables, only the low-
lying excitations or sum rules are involved. The calcula-
tion of the dynamical correlation functions is an excep-
tion, but in which the high-frequency aspect has not been
seriously tested yet, given the lack of either the exact
solution or reliable numerical work as a standard for
comparison. We have proved that the noninteracting
limit is recovered for all those dynamical correlation
functions which are beyond the mean-field level.

From those calculations one could see that it is non-
trivial to keep track of the contributions from spin and
charge fluctuations and put them on an equal footing, '
especially when the repulsive Hubbard interaction U is
close to U„ the critical interaction for the Brinkman-
Rice (BR) transition. This transition occurs only at
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half-filling according to the GA, but when U is larger
than U„ then a strong spin (charge) fiuctuation is expect-
ed for the repulsive (attractive) U both at half-filling and
at light doping. In these cases the Auctuation contribu-
tion to the mass enhancement may be important even for
the ground state due to the strong zero-point fluctuation.

The GA, an approximation used for evaluating the ex-
pectation value in the Gutzwiller wave function
(GWF), ' has indicated an instability at half-filling at a
finite value of U, which was later interpreted as BR's
metal-insulator, or localization, ' transition. This is a
remarkable success for the GA. It has been shown re-
cently that the solution to the GWF without the GA can
be obtained in two extreme cases, the 1D and the
infinite-dimension Hubbard lattice. ' Also, it was shown
that the GA becomes asymptotically exact in the limit of
infinite spatial dimension d = ~.' However, these re-
sults show the absence' of an instability, or transition, at
finite U. Furthermore, there are reasons to argue that
there is no transition at finite U for any finite dimension'
in an exact evaluation of the expectation value for the
GWF. Thus the GA faces a dificult challenge: Its suc-
cess in explaining the BR, or metal-insulator transition,
comes from the approximation itself. However, one may
argue, by adopting KR's functional-integral scheme, that
the BR transition is retained at the mean-field level only.
Then follows the question of the effect of Auctuations
within this scheme. On the one hand, as expected, the
zero-point fluctuations in the ground state are very
strong when U is close to U, at half-filling, or U even
beyond U, at light doping. On the other hand, the enor-
mously enhanced mass in these cases will suppress the
zero-point Auctuations. The final state should stay in
some balance between these two opposite effects and one
expects that the BR transition should be retained even at
some finite doping.

Very recently, the ambiguity in KR's approach was
finally clarified by Jolicoeur and Le Guillou (JG) the
correct gauge symmetry in KR formalism is U(1) in-
stead of U(1) . Also they presented an interesting
study of the mass enhancement within the KR approach
using the U(1) gauge symmetry, instead of the previ-
ously used U ( 1 ) symmetry. ' A similar approach has
also been used by Fresard and WolAe. ' The reason for
that replacement is that there are only three constraints.
Since there are four slave bosons one of them remains a
complex number. Thus one may consider the U(1)
approach as an additional approximation, in which one
of the integration variables, the extra phase, has been
dropped. However, previous experiences have shown
that the U(1)~ approach has worked quite well when
compared with the experiments. Also some interesting
and transparent analytical results have been obtained via
U ( 1 ) (Refs. 7 and 9) due to its simplicity. The main
merit of the U(1) is its simplicity in contrast to the
complexity' of U(1) . A clear exposition of the true
nature of the U(1) approximation would be very in-
teresting. For the time being we know little about it. We
will return to this question subsequently.

In the work of JG, the mass enhancement is directly
extracted from the calculated low-temperature specific

heat at half-filling. JG have shown that the noninteract-
ing limit is not recovered for vanishing on-site repulsive
interaction. Also an unphysical result of m /m = —

—,
' is

obtained. Hence JG claim that the bosonic Hamiltonian
must be adjusted order by order in the loop expansion.
We think that this problem is not necessarily related to
whether one uses a U ( 1 )

~ or U ( 1 ) formalism. The
problem may directly come from the expression for the
bosonic hopping factor, proposed by KR on the mean-
field level. As JG mentioned, in the low-frequency limit
one can drop the kinetic term coming from the bosonic
phase left after the U(l)~ gauge transformation, and
thus the T lnT part of the specific heat is recovered.
However, both the T lnT and the linear T behaviors are,
strictly speaking, restricted to low temperature and thus
both of them come from the low-energy excitation contri-
bution around the Fermi level. Thus for both terms, the
frequency dependence mainly comes from the Fermi bub-
bles. In fact, both behaviors of the low-temperature
specific heat have been successfully predicted by LFLT.
From the beginning the domain of the validity of the
Landau theory has been clearly restricted to phenomena
which involve excitations very close to the Fermi surface.
If there is a difference between these two terms, it is that
the former one comes purely from low-frequency Auctua-
tions while the contribution to the mass enhancement
may come from high-energy excitations also. Since the
effective mass is directly related to derivatives of the self-
energy, a rigorous formula, there is no reason, in princi-
ple, to exclude the contribution coming from high-energy
excitations. So one should be cautious whenever the con-
tribution from high-energy excitations becomes impor-
tant for the observables. A possibly more profound
reason for the success of the T lnT calculation and the
failure of the m'/m calculation will be described subse-
quently. Also the U ( 1) calculation [JG's Eqs.
(13)—(15)] is too complex to show transparently this
drawback in the loop expansion. One hopes to find out a
simple and clear method to explore this possible draw-
back in KR's scheme.

However, as we have discussed above, it is nontrivial to
examine the low-lying excitation contribution to the mass
enhancement even under the U(l)~" formulation where
the co/kv& «1 limit is consistent with the fact that one
needs to include the frequency dependence of the Auctua-
tion matrix of the fermionic bubbles only. JG have
shown the failure of the procedure which extracts the
mass enhancement from the formula C, =C,om */m. In-
stead of using C„=C,om*/I, we calculate directly the
Auctuation contribution to the bosonic factor which is re-
sponsible for the mass enhancement in the KR scheme.
Our result explicitly shows that the contributions to the
mass enhancement may be disentangled into three terms:
a quasiparticle excitation term, and a spin- and a charge-
Auctuation term. The quasiparticle term leads to the
correct noninteracting limit for vanishing on-site
Coulomb interaction U, whereas the spin- and the
charge-fluctuation terms do not lead to the correct nonin-
teracting limit. This problem is interesting for the 2D
Hubbard model especially since the discovery of the
high-T, superconductors. It is believed that the correct
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renormalized hopping factor may be closely related to ei-
ther the quasiparticle weight of the Luttinger liquid ' or
that of the "marginal" Fermi liquid. In fact, some nu-
merical work has been done in the calculation of the dy-
namic properties of the renormalization factor.

This paper is organized as follows. In Sec. II we first
calculate the modified bosonic hopping factor by using,
with the U(1) formalism, a low-lying cutoff procedure
which has been often used in the one-loop expansion for
quantum liquid He. As mentioned in the above para-
graph, the co/kU&(&1 limit is consistent with the fact
that one needs to include the frequency dependence of
the fluctuation matrix of the fermionic bubbles only, thus
the U ( 1 ) approximation is valued in this calculation.
Then, instead of the cutoff procedure, we use a sum rule
covering the whole bosonic spectrum to calculate the
mass enhancement. The latter is a clear-cut calculation
since only the properties of the projection operators are
needed. A brief summary and discussions are given in
Sec. III.

II. FLUCTUATIONS CONTRIBUTION
TO THE BOSONIC FACTOR

In this paper we directly expand the mass enhancement
renormalization factor, the bosonic hopping factor, to
second order and calculate the Gaussian fluctuation con-
tribution. %'e avoid the use of the C, =C,om /m formu-
la. In the KR bosonization, the Hubbard model can be
expressed in terms of fermion operators f, and four SB
operators e;,p;,p;, d;, keeping track of empty, singly oc-

cupied and doubly occupied sites:

H= gt f zz f +Ugdtd, ,

where the bosonic hopping factor z, is defined by

z,.=[1—d,td, p,
t

p, ] '"(—e,tp,.+p,t .d, )

X[1—e,te, —p,
t

p, ]

The boson operators are subject to the following con-
straints:

where

4
+ —,

' g g z „5y (i, r)5yii(i, ~)
o. uP= 1

=zo+z1+z~,

Za, lp 5Za /~V a~SPV Za, lp Ip
~ a /5 Pa~PP~SPV

with o. denoting spin and SPY denoting the saddle-point
value. zo is the mean-field value. According to (6) the
values of the four boson fields are

5y, (i, ~)=5e(i, r), 5y~(i, r) =5d(i, r),
5y3(i, r) =5p t (i, r), 5p4(i, r) =5pi(i, r),

S &(k)=S& ( —k). The constraints (3) and (4) are en-

forced through the introduction of three Lagrangian mul-
tiplies 5@&, 5P&, and 5a, in addition to the original four
bosons describing the fermion states. We have intro-
duced a 4D kinetic momentum notation k =(k, co„),
where co„=2mnT are the bosonic Matsubara frequencies,
and thus gz=(PL) 'gi,g, with L the number of the
lattice sites and P= 1/k~ T. The elements of the Quctua-
tion matrix are obtained ' by expanding the effective ac-
tion,

Jdr L,s =Jdr(L, ir+L, s )

in which L,z and L,z are, respectively, the effective Fer-
mi and Bose part of the Lagrangian L,&. By performing
a gauge transformation, thus changing the variables, and
invoking the periodicity of the Bose fields as well as in-
tegrating out the Grassman variables, one obtains a 7 X 7
fluctuation matrix S(k). In this paper, for the purpose of
our concern only the one-loop order Bose propagators
are considered in the half-filled case. There is no
difficulty in extending the calculation to the doped case.
We consider first the low-lying excitation limit.

We directly expand the hopping factor z, Eq. (2), to
second order,

4

z(i, )=rzo+g gz ~ 5y (i, ~)

e,"e, +d,td, + gp, tp, =1 (3) with the notations i for local site and ~ for imaginary
time. The mass enhancement is

q& (k) = [5e,5d, 5pt, 5pi, 5Pt, 5Pi, 5a](k) . (6)

S(k) is the fluctuation matrix with elements

flafla d; dl +plap&a .

The partition function can be written within the
functional-integral formalism as follows:

Z =ZMPZ~, =ZMP jDP (k)DP(k)

X exp[ —Xtp (k)s(k)q)(k) J

in which ZMF is the mean-field partition function, while
the fluctuation vector of Bose fields away from their
mean-field values is defined as

m */m = (z')
To second order, one has

4

(z )=z +y y (z „z +zz )
o. a,P= 1

Xg (5(p ( —k)5yg(k) )

—:zo+(z', )+zo(z, ) . (10)

(5q ( k)5qp(k)) =S &'(k—)/2 .

The correlation functions of the Auctuation fields are ob-
tained by using
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For the half-filled case, one has the saddle-point values

e=d =(1—U/U, )/4, p =q =
—,
' —e

f(E*(p))—f(E*(p+&))
p ico+E*(p)—E"(p+k)

a= U, q (1+4e ), Po= U, (1—4e )/2,
(12) is the renormalized Lindhard function, in which f is the

Fermi distribution

where U, = 16~+i,ti, ~, with tk the fermion band energy.
Hence, at half-filling one has

z.,=4eq,

Bz /Be =Bz /Bd =2q(1+4e ),
Bz /Bp =Bz /Bp =2e (3 —4e 2),

B z /Be =B z /Bd = 16eq(1+3e ),
B z /BeBp =B z /BdBp =4(1+2e —4e ),
B z /BeBp =B z /BdBp =2(1+12e —24e ),
B z /BeBp =B z /BdBp =8eq(5 —6e ),
B z /Bp Bp =8eq(5 —6e ),
B z /Bp Bp = 16eq(1 —e ),
B z /BeBd=16eq(1/2+e ),

(13)

in which the SB saddle-point-value expressions (12) have
been used.

Considering the particle-hole symmetry and the spin-
up and -down symmetry, only five components of the in-
verse fiuctuation matrix S &'(k) are needed. They are

1+S (hS/e —N)
S„-„'(k)=

2N(e +S„,bS)

1+S (b,S/e +N)
S;, '(k) =

2N(e +S AS)

f(E)= 1/( 1+exp PE—) .

The fermion spectrum is

Eq =z tk —p+Po,

(16)

(17)

G (p) = 1/( i~„—Ei, ) (18)

with co„=(2n + 1 )7rT.
Considering the low-lying excitations, we obtain the

mass enhancement for the half-filled case,

(z ) =zo+ g((1—4e )/2U, e q
Pr

+32[e Foyo(k)/[1+Foyo(k)]
—

q Foyo(k)/[1+Foyo(k)] I IU,

X(1—4e )) (19)

where the Landau parameters are

with Po defined as Po=(5P&+5P&)/v'2, a Bose field com-
ing from the Lagrangian multiplier enforcing the con-
straint (4). At half-filling one has p=/3o=U/2, hence,
for a liquid, E*(k)=(1/2m *)(k —k~ ) with m simply re-
placed by m*. In the static case go reduces to the
effective density of states at the Fermi level,
N*(0) =N (0)/z . Henceforth, we omit for simplicity the
superscript for the renormalized Lindhard function. The
single f-particle Green function, at the mean-field level, is
expressed as

S, '
( k) = 1 /(2Neq ), (14)

1+S „(b,T/q+ N)

2N(q +S, b T)

1+S (AT/q N)—
2N(q +S,b, T)

S;,' (k) =

S;„' (k)=

where

N =(S +S )/q +(Sd, +S„d)/e 4S,~ /e—q,

Fo = —p (1—4e )(3—4e ) /4( 1 —2e ~)

Fo =p (1—4e )(1+4e )/e

The dimensionless parameter p =N(0)gk&k tz is band-

structure dependent and is always close to unity. For the
spherical Fermi surface, in the long-wavelength and low-
momentum-transfer limit as well as v=co/kuF* ((1,with

v~ the effective Fermi velocity, one has the well-known
asymptotic expression

Aq =Sd, —Sdd, 6T =S —S y(k, co) = 1 ——v+ v +O(v )
N*(0) m. z

4 2
(21)

S„=go(k)/2,
and

Combining Eqs. (19)—(21), we finally obtain the low-lying
excitation contribution to the mass enhancement:

(z ) =zo+ (1—4e ) +80x q Ao+9AO
3

[1—(1+m. /4)AO+m. Ao /4] (1—4e )

3

—80e q . Ao+9AO [1—(1++ /4)AD+sr Ao /4] . (1—4e )
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where 3 0 and 3 0 are the main symmetric and antisym-
metric isotropic components of the quasiparticle scatter-
ing amplitude defined by

g s, a ~s, a /( 1+~s,a
)0 0 0

and cu, and k, are the cutoff values of the transfer fre-
quency and kinetic momentum, respectively. This cutoff
procedure has often been used, e.g. , for He, in the litera-
ture. The mass enhancement includes four terms in Eq.
(22). The first term is the mean-field result. The second
term, the quasiparticle and quasihole excitation contribu-
tion term, vanishes in the free-particle limit, but remains
finite as U approaches U, . The third and the fourth
terms are related to spin and charge fIuctuations. These
two terms do not vanish in the free-particle limit. Thus,
by using a direct expansion, the low-lying excitation con-
tribution to the mass enhancement does not reproduce
the noninteracting limit for vanishing U.

It is also worthwhile to note that, at half-filling when
U- -- U„one has

«0 » =(PL) ' y f dr&0(E, r) &, (24)

with & & the quantum-mechanical expectation value. To
second order, one has

«".»=.:+y y ..,«5&.5~,»,
o. a,P= 1

where

a &=(Bz /Bq Bz /Bq»+zoB z /Bq Bp&)=a&

(25)

(26)

We calculate these coefFicients a & first, then the correla-
tion functions between the qs's. Inserting (13) and substi-
tuting the free-particle (U =0) values for those boson
fields,

here a simpler and more transparent way to obtain the
one-loop fluctuation correction to the GA's mass
enhancement.

Starting from the expansion (8), for notational simplici-
ty, we define the double bracket as

d=e =0,
and thus

15 c

4'7T

A 0
—-- —3, z0

— -. 0, z0=1, e=d =q =
—,',

one has

a =a =a =a =1111 22 33 44

so that the mass enhancement will not diverge, implying
the disappearance of the BR transition when the one-loop
contribution is taken into account. This is in accordance
with the conclusion from an exact GWF calculation. ' It
should be noted that this result stands for any dimension.
However, it is not a well-established fact even for the
one-loop calculation, since Eq. (23) is incorrect at U =0.
It is worthwhile to note that d =0 and the BR transition
need not be coincident. The coincidence happens only at
the mean-field GA (Ref. 2) level. The coincidence be-
tween d =0 and BR transitions is lifted here, in the one-
loop expansion. This should be considered an interesting
result which goes in the right direction.

The following question then arises: Why does the
T lnT calculation succeed whereas the mass enhance-
ment one seems to fail even though both problems are
treated similarly? One is working in the same KR's SB
framework and using the same low-lying excitation cutoff
technique. This is not completely understood so far by
the author. One possible explanation for the difference is
that when making the correction to the mass enhance-
ment of the GA, the contribution coming from the high-
energy excitations also has to be taken into account. In
fact, in the U(1) scheme, used by JG, the high-
frequency part is included. However, in that calculation
not only is the noninteracting limit not recovered at
U =0, but also an unphysical result m*/m = —

—,
' is ob-

tained. They have treated the fermion bubbles and the
kinetic-energy terms in a different way due to the com-
plexity of the mathematics. For the former one, a
qo =1—( U/U, ) expansion has been used while for the
latter one a standard SB procedure is used. Also their re-
sult, their Eqs. (13)—(15), is too complex to explore the
origin of the drawback of the KR's scheme. We present

(27)

+36( « 5q, 5q, » + « 5q,5q, » ) . (29)

We have shown that the original correlation functions
defined via Fermi operators may be expressed as the
correlation functions of slave-boson fields, if the following
replacement are used:

E(i,r):—[1—8't (i, r) ][1—& ~(i, r) ] e (i, r)e(i, r),
D(i, r)= [h t(i, r)&)(i, r) ] d(i, r)d(—i, r),
P (i, r)=R' (i, r)[1—8 (i, r)] —.p (i, r)p (i, r) .

(30)

Considering that the above Fermi operators are projec-
tors, one has

« 5q, 5q, » = « 5E5D » /4ed,

« 5q, 5q, » = « 5P, 5P, » /4q',

«5q, 5q, »=«5X'5P, &/4eq,

where 50 —=0(i, r) —« 0 ». Therefore, one has

(31)

a =a =a =a =913 14 23 24

Considering the exchange symmetry and the spin-up and
spin-down symmetry in the paramagnetic phase,

«5q.5q ii» = « 5q gq. », « 5q )5q 3 » = « 5q, 5q, »,
(28)

«5q25q 3» = «5q.5q. »

one obtains

'» =1+11(«5q,5q, »+ «5q, 5q, »+2«5q, 5q »)
+14( « 5q, 5q, »+ « 5q, 5q, » )
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« ')) =1+11(«&&&E »+ «&&&& ))

+ y « t'P. nP. )& j

+7(« 5Pt5P) )) + «&&&& )) )

+ iS(«SZ|'P. &)+ «»~P. && l (32)

By using the projector properties,

E=E D =D P =P (33a)

as well as the completeness,

E+D+ gP =1 (33b)

and the fact that all cross products are zero, one Anally
obtains

« z )) = 1+11[« 1))—2(e +q ) ]

+14(—«1))/4+e +q )

+36( —« 1))/4+2e q )=3%1 .

Thus

m*/m(U=0) = «z')) -'=-,',

(34)

(35)

which improves JG's unphysical result, but still does not
reproduce the noninteracting limit at U =0. Note that in
the above calculation the whole k and co-dependent bo-
sonic spectrum has been involved due to the summation
over sites and the integration over imaginary time.

III. DISCUSSION

Since the high-energy excitations have been included in
a complete one-loop expansion using U(1) gauge sym-
metry and the noninteracting limit is not recovered, JG
have the reasons to claim that the renormalization factor
proposed by KR, a key step in KR's scheme, must be ad-
justed order by order in the loop-expansion calculation to
guarantee the correct vanishing U limit. For this purpose
JG even proposed a scheme, which is intractable so far.
In the author's opinion, the problem is not only techni-
cal. There exists, probably, a more profound difficulty.
Indeed, the saddle-point results of GA have the inherent
nature of the Landau Fermi liquid, as has been pointed
out by Vollhardt. Then the problem arises: How far can
the KR scheme be pushed with the loop expansion? The
GA, as a starting point in the loop-expansion theory, is
confined to describe the ground state and the low-lying
excitation behavior, an essential requirement in the
LFLT. Hence one has to be cautious when attempting to
pursue KR's formulation to depict properties in which
the high-energy excitations are involved, such as is the
case with the loop expansion for the mass enhancement.
Even if one had a tractable technique to handle the 1oop
expansion for KR's scheme, e.g., to adjust the renormal-

ization hopping factor to the U=O limit, its validity
would still not be clear-cut. In fact, a test against Monte
Carlo (MC) calculations, of the correlation functions ob-
tained through the KR SB scheme, has explicitly shown
that the temperature can only be raised above zero in a
limited regime. In others words, KR s theory is basically
a low-temperature theory. Also, it has been shown that
the classical limit of the temperature dependence of the
specific heat cannot be recovered in the high-temperature
limit. Taking into account previous successful calcula-
tions ' one may conclude that KR's scheme works well
when it is applied to describe properties in which the
low-lying excitations are dominant. This is not in conAict
with the point raised by JG that the bosonic hopping fac-
tor proposed by KR has the correct noninteracting limit
only at the global level, the GA level. However, KR's
formulation has been extended for either the temperature
and the kinetic momentum ' to some reasonably high
values, since structure factors have been obtained from
sums over frequencies of the dynamical correlation func-
tions and tested in the 1D (Ref. 9) and 2D (Refs. 14 and
10) Hubbard model in detail. Unfortunately, to date, reli-
able results for the high-frequency aspects of the correla-
tion functions, which can be used in order to compare
with the SB results, ' are lacking. The MC calculations
are restricted so far to the equa1-time correlation func-
tions, the structure factor, and the zero-frequency suscep-
tibilities.

In summary, we have directly calculated the Gaussian
fluctuations of the bosonic hopping factor of KR's SB
representation of the Hubbard model. Both the low-lying
excitation cutoF procedure and the sum rule, covering
the whole bosonic spectrum, have been used. However,
the fluctuation contribution to the renormalized mass
enhancement m */m does not reduce to the correct limit,
either for free fermions or in the case of fully polarized
spins in the one-loop expansion. We point out that KR's
functional-integral scheme is basically a low-temperature
(including zero-temperature) as well as low-lying excita-
tion theory. The temperature and frequency dependences
have been studied away from their strict asymptotic lim-
it, but a serious test and assessment of the high-frequency
aspects of the KR SB theory is still an open problem
which has been only partially addressed by the present
paper.
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