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Using the recently developed exact envelope-function theory, an explicit form for the effective-mass
Hamiltonian is derived for the valence bands (including the spin-orbit split-off band) of a semiconductor
quantum well or superlattice. It is shown that the correct form of the Hamiltonian gives physically
reasonable results, while the commonly used "symmetrized" form can produce nonphysical solutions for
the heavy-hole subbands in which the quantum-we11 effective mass is very sensitive to the difference in
Luttinger parameters between the well and the barrier. This problem arises because the correct bound-
ary conditions for the heavy-hole states are determined exclusively through interaction with other p
states, while the symmetrized boundary conditions implicitly incorporate the much larger s-state interac-
tion, hence they substantially overestimate the magnitude of the interband coupling.

While the use of the effective-mass theory in horno-
geneous bulk semiconductors is very well established, its
application to heterostructures has until recently been the
subject of considerable debate, especially with regard to
the boundary conditions connecting the envelope func-
tions across an abrupt heterojunction. ' The controver-
sy has now been conclusively settled, with the develop-
ment by Burt of an exact envelope-function theory for
semiconductor microstructures. The exact theory gives
a general solution for the effective-mass Harniltonian in
terms of rnornentum matrix elements and energy band
gaps which applies even at an abrupt interface. This pa-
per is concerned with writing the general multiband
effective-mass Hamiltonian given by Burt in an explicit
form for use in valence-band problems. This provides an
unambiguous prescription for the boundary conditions at
an interface; it will be shown that the correct boundary
conditions differ substantially from those currently found
in the literature.

The specific problem of concern here is the valence-
band structure of quantum wells or superlattices com-
posed of semiconductors of the zinc-blende structure
(which have a valence-band maximum at the I point,
neglecting the small linear-k splitting terms). The bulk
band structure of these semiconductors is described in
terms of the Luttinger mass parameters y, , y2, and y3,
which are determined by the k.p interaction of the I »
valence bands with all other states of symmetry I &,

I,5, I,2, or I 2~. These states are compatible (to lowest
order) with the s, p, d, and f orbitals, respectively, of the
constituent atoms. Since the contribution of f orbitals to
the valence electronic structure of semiconductors is
insignificant, the I 25 states will be neglected here.

Each of the remaining (I'„ I,5, and I,2) interactions
will generate terms in the valence-band Hamiltonian with
a different form (i.e., a different ordering of the
differential operators with respect to the band parame-
ters). It is therefore convenient to write the Luttinger pa-
rameters in a manner which explicitly reveals the contri-
bution of each symmetry type:
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Here mo is the free-electron mass, p is the momentum
operator, and E, is the valence-band energy in the ab-
sence of spin-orbit splitting; the sum is over the basis
states u. of all remote bands of a given symmetry. These
states are functions which have the periodicity of the
zinc-blende lattice and the angular dependence shown in
Table I. To calculate o., ~, and 5 in terms of experimen-
tally determined Luttinger parameters,

Y ( Y3+y2) P (y3 Y2)
(3)

o. =y —
—,'5, vr=p+ ', 5, 5= —,'(1—+y, +y2 —3y3) .

Taking GaAs as a typical case, o =4m and ~=45. (The
only qualitatively different semiconductor is Si, in which
the conduction-band p states actually lie below the s
state, hence o =m. )

Using these parameters and the basis functions in
Table I, it is straightforward to evaluate the effective-
mass Hamiltonian given by the exact envelope-function
theory. However, the spin-orbit interaction splits the
I » states, so it is most convenient to work with eigen-
functions of the total angular momentum

I J, m J ) which
diagonalize this interaction:
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In the exact envelope-function theory, these functions are required to be the same throughout the structure, indepen-
dent of material composition. In this basis, the effective-mass Hamiltonian takes the form
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where, in atomic units (fi= mo = 1), and with the hole en-

ergy positive,
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TABLE I. Basis functions.

Representation

r,
I ls

Ii2

Basis functions

x +y +z or xyz
x,y, z

2z2 z2 y2 /3(z2 y2)

Here the quantum well or superlattice is assumed to be
grown on a (001) substrate, and the possibility of lattice
mismatch has been taken into account in the matrix ele-
ments P and Q. In these equations, E,(z) is the bulk I 8

valence-band profile (including hydrostatic but not shear
strain), b, is the spin-orbit splitting, and g is the shear-
strain splitting energy. Note the asymmetry with respect
to k, of S+, which will be of fundamental importance in
the boundary conditions. Also, the matrix element C,
which is zero in bulk material, introduces a coupling of
the states IJ, +mJ & in the light-hole (LH) and split-off
(SO) bands. It arises because any change in material
composition breaks the local inversion symmetry of the
lattice (since the inversion asymmetry of the zinc-blende
lattice has already been neglected). A similar term will
couple the heavy-hole (HH) states if the spin-orbit in-
teraction is included in the Luttinger parameters. Final-
ly, note that S+ =X+=v 3y3k+k, in bulk material.

For theoretical work on a quantum well or superlat-
tice, the Hamiltonian (5) is not the most convenient, since
a change of basis will reduce it to block diagonal
form. ' '" One possible choice for the transformation is
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Note that g=P for k~~ along the ( 100& and ( 110& direc-
tions. In other directions, because the basis functions
must remain independent of material composition, an
average value for g is used. (This choice is consistent
with the approximations made in deriving the effective-
mass Hamiltonian from the exact envelope-function
equations. ) In the new basis, the Hamiltonian is
transformed to a pair of 3 X 3 blocks,
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where the upper and lower blocks correspond to the
upper and lower signs. Here P and Q are the same as be-
fore, but R, S, X, and C are altered:
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In order to eliminate off-block-diagonal terms involving
the matrix elements X and C, it was necessary to assume
that q=P T. herefore, the Hamiltonian (7) is strictly ap-
plicable only along the ( 100) and ( 110) directions;
nonetheless, it provides an excellent approximation to the
in-plane angular dependence of (5), which is entirely
neglected in the conventional axial approximation. '

Also, the transformation (6) was chosen so that the upper
and lower block basis functions transform into one anoth-
er upon reAection in the z =0 plane. Therefore, if the
structure under consideration has reAection symmetry,
the eigenfunctions of the upper and lower block Hamil-

tonians will be rejections of one another, and their corre-
sponding eigenenergies will be degenerate.

To determine the boundary conditions on the en-
velope functions, one integrates the effective-mass equa-
tion,

(8)

across an interface, where F(r) is a three-component
envelope-function vector and H is either of the blocks in
(7a}. The boundary conditions require the continuity of
F and BF, where
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Note that since y, —2y2= —1+6~, only the small ~ terms appear in the HH equation, while in the LH and SO equa-
tions, the coefticients are dominated by the large value of o.. Thus in all three cases the interband coupling due to the
derivative boundary condition is roughly of order k~~ /k, .

The boundary conditions found in the current literature are significantly different. Prior to the development of the
exact envelope-function theory, the only guidelines available for the construction of the effective-mass Hamiltonian
were that it must be Hermitian and that it must reduce to the correct bulk form away from an interface. This ambigui-
ty allows for an infinite set of possible boundary conditions, but the most common choice in the literature is obtained
from a 'symmetrized" Hamiltonian ' in which all operators linear in k, are written in the form ,' [k,f (z)+—f(z)k, ].
Applying the symmetrization procedure to the Hamiltonian (7) is equivalent to substituting —,

'
y3 for both o —5 and vr in

the matrix elements S, X, and C, thus changing the matrix B to

(y, —2), )a/az + V' ', r3k~~-

B+= ++3y3k —2v~2y t)/t) +(3/&Z)r3kii
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The most important change caused by symmetrization
occurs in the boundary condition for the HH band,
where the large quantity cr is incorporated into the cou-
pling terms. The use of symmetrized boundary condi-
tions will therefore overestimate the magnitude of this in-
terband coupling, which can lead to qualitative errors in
the band structure, as shown below. The changes in the
LH and SO boundary conditions are not as significant
since the resulting underestimate of the coupling causes
only small numerical modifications.

An example of the consequences of the symmetrized
boundary conditions is presented in Fig. 1, where the
zone-center effective masses of the heavy-hole subbands
for an Ino 2Gao 8As/GaAs quantum well are plotted
versus quantum-well width. (The details of these calcula-
tions will be presented in a forthcoming paper. '

) Results
are given for three sets of boundary conditions: correct,
symmetrized, and uncoupled. (In the approximation that
the Luttinger parameters are independent of position, the
boundary conditions are not coupled. ) Qn a physical
basis, one would expect the coupled solution for the
effective mass to differ from the uncoupled solution by
only a small amount (i.e., something on the order of the
relative change in I.uttinger parameters at the interface),
and indeed this is true for the correct boundary condi-
tions. However, the exaggeration of the interband cou-

I

pling due to the symmetrized boundary conditions causes
the mass of the HH2 subband to become a very volatile
function of both the physical dimensions of the quantum
well and the precise numerical values chosen for the Lut-
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FIG. 1. Zone-center heavy-hole subband effective masses vs
quantum-well width for an Ino 2Gao 8As/GaAs quantum well.
Three different boundary conditions are shown: correct (solid
line), symmetrized (dashed line), and uncoupled (dotted line).
The symmetrized HH2 mass reaches a peak value of 1.42, more
than triple the mass obtained from the correct boundary condi-
tions.
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tinger parameters. This nonphysical behavior clearly
demonstrates that the choice of Hamiltonian is not arbi-
trary, and that the correct boundary conditions are re-
quired for physically reasonable solutions.

In conclusion, the effective-mass Hamiltonian given by
the exact envelope-function theory has been evaluated for
the valence band. In the boundary conditions obtained
from this Hamiltonian, the heavy-hole states are coupled
to the light-hole and split-off states only through the in-
teraction with remote bands of p symmetry. The sym-
metrized boundary conditions implicitly include the

much larger interaction with s states. This exaggerates
the interband coupling; consequently, nonphysical solu-
tions are obtained for the heavy-hole subbands in which
the quantum-well effective mass is very sensitive to the
change in Luttinger parameters at the well-barrier inter-
face.
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