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We use a simple two-dimensional band-structure model for La,_,Sr, CuO, incorporating marginal-
Fermi-liquid self-energy corrections to calculate the spin-fluctuation spectrum at low energies. Features
in the band structure lead to peaks in the structure factor at incommensurate wave vectors. The fre-
quency and temperature dependence of these peaks is controlled by the quasiparticle lifetimes. Compar-
ison with both neutron-scattering data and NMR or NQR relaxation rates suggests a modest mass
enhancement, and indicates neither strong magnetic-exchange interactions nor a separate non-Fermi-
surface contribution to the polarizability. We compare our results with conventional Fermi-liquid
behavior, and with a model of magnetic fluctuations with a long correlation length.

I. INTRODUCTION

Since the insulating parents of the high-temperature
cuprate superconductors are localized antiferromagnets
(AF), the quest for magnetic fluctuations in the metallic
phases has been aggressively pursued. The strongest indi-
cation that AF fluctuations persist in the superconduct-
ing phases has come from nuclear-magnetic-resonance
(NMR) relaxation rate measurements which show 7!
enhanced over the band-structure value for the planar Cu
site with unusual temperature dependence,! while the
corresponding planar O follows a modified Korringa rela-
tionship (T, T) !« K, in YBa,Cu;0,.2 Within a model
where the dominant hyperfine interactions are
transferred from near neighbors,>* these results suggest
commensurate AF fluctuations with a long, and
temperature-dependent, correlation length.>®

NMR measures the local spin fluctuations and there-
fore averages the structure factor over reciprocal space.
A clearer picture of the magnetic structure factor
S(q,0)=[1+n(w)]lx"(q,o) is now emerging
from inelastic neutron-scattering measurements on
La, 9sBag osCuO,, " La,_, Sr,Cu0O,,%!° and metallic su-
perconducting samples of YBa,Cu;O,_,.!! Most
dramatic is the observation of sharp, incommensurate
peaks in La,_, Sr, CuO,, with a spectral weight compara-
ble to that associated with spin waves in the insulating
parent; the peak widths are unusually @ and T depen-
dent.!°

Turning aside from the magnetic response, a different
perspective on these materials is obtained by focusing on
the quasiparticle properties. The photoemission'? and
positron annihilation results'® have for YBa,Cu;0, and
Bi,Sr,CaCu,0q, established the existence of a Fermi edge
whose position is close to that predicted from band struc-
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ture. However, the quasiparticle linewidth grows rapidly
with energy away from Ep.!* The “marginal-Fermi-
liquid”!>!® scenario of a quasiparticle scattering rate
linear in frequency or temperature (whichever is greatest)
in fact provides a consistent description of photoemis-
sion, the linear bias dependence of the tunneling conduc-
tance, infrared absorption, and electronic Raman scatter-
ing.!” It was suggested that such an anomalous self-
energy could be obtained by the interaction of quasiparti-
cles with a particle-hole pair spectrum of the form
F(q)tanh(w/T)."> Thus both the polarizability and the
self-energy would be logarithmically singular in the limit
w,T—0. Since the optical response tests only the ¢ —0
limit, where the continuity equation rules out any singu-
lar contribution to the charge or spin-density response,'®
such a singular Jocal polarizability is expected to be visi-
ble only in finite-g probes (in the spin channel NMR and
neutron scattering). Nevertheless, nothing in the original
picture suggested that the singular response would be
confined to a narrow region of momentum space.
Nevertheless, the success of the marginal-Fermi-liquid
(MFL) phenomenology in describing both transport and
single-particle properties suggests that the heavily doped
compounds are amenable to a bandlike picture. Whether
or not interactions between the quasiparticles can give
rise to a singular local polarizability, there must at least
be a “conventional” contribution to the susceptibility
analogous to the Lindhard response function of the free
Fermi gas. It is that contribution that we work out
here.!® We shall argue that (i) the peaks seen in neutron
scattering are produced by simple Fermi-surface effects in
an itinerant model and (ii) more importantly, their (o, T')
dependence can be reproduced by a finite quasiparticle
lifetime consistent with the model of a marginal Fermi
liquid.!> We thus obtain a reconciliation of the MFL
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phenomenology, originally developed to describe long-
wavelength properties, with the short length-scale struc-
ture seen in NMR and neutron scattering.

We are of course not alone in noting that Fermi-
surface nesting features will give rise to incommensurate
peaks in y [point (i) above].' ?* Lu et al.?® have noted
that even without nesting, in fwo dimensions any Fermi-
liquid-like model will give singular momentum depen-
dence of Im[x(g —2kz,0—0)]=x".% If nesting effects
are weak, there will be little enhancement of Re[x(q,0)].
However, a free Fermi gas description will fail badly to
describe the energy and temperature dependence ob-
served in experiment; the characteristic scale is the Fermi
energy.’® We believe that the MFL approach provides a
natural explanation for the energy and temperature
dependence by broadening the Fermi-surface singularities
because of quasiparticle lifetime. We find no need to in-
voke strong magnetic interactions.

We stress, however, that the itinerant model we adopt
should not be taken to imply consistency with local-
density approximation (LDA) band-structure models.

A(p,v)A(p+q,v')

We find evidence of significant band narrowing in com-
parison to LDA (m*/m,~2—4). The LDA bands have
considerably more three-dimensional character than is
consistent with the measured anisotropy of the resistivity
and plasma frequency?’ with our interpretation of
neutron-scattering measurements.

There are two principal contributors to the result we
shall present. The momentum dependence is almost en-
tirely determined by the spectral details of the band
structure. However, the energy and temperature depen-
dence is produced principally by the self-energy, at least
for low-energy transfers in the range of momenta where
x''(q,w) is large. We shall first present the model and
calculations, and then engage in comparison with data on
La, ,Sr,CuO, and give some discussion of the proper-
ties of other cuprates.

II. MODEL AND CALCULATIONS
A. Dynamical susceptibility

We wish to calculate the dynamical susceptibility

2
X(q,0)=—— h Zf fﬂA(p,v,erq, ")
P

where f(v) is the Fermi occupation factor, and

A(p,v)=—2Im[G(p,V)]
=—2Im[v—e(p)—=(p,»)]"}, )

is the electron spectral function, &(p) the conduction-
band energy, and = the electron self-energy. A is a vertex
function representing the effect of interactions within the
excited particle-hole pair. If strong AF couplings are
present, it will be peaked near q=(, 7). We show below
that the Fermi-surface contribution to Eq. (1) has
sufficient structure to account for the neutron-scattering
data. Thus, we set A=1, because if not a strong function
of momentum, its effects on our calculation are indistin-
guishable from a mass (bandwidth) renormalization. Es-
timates from optical data'® suggest that A ~2 at tempera-
tures near T,. For the MFL self-energy, we adopt a sim-
ple analytic form!

S=mAQo/mIn([T+iv]/w. )+iT] .

We note that limy_ olim,  ox''(q,0)/® is a Fermi-
surface quantity and is unaffected by purely energy-
dependent self-energy corrections, as in the MFL hy-
pothesis. At nonzero temperature or frequency there are
considerable differences, which we detail below.

Before we go into the detailed calculation incorporat-
ing both band-structure and lifetime effects, it is instruc-
tive to remind ourselves of the result for a free electron
gas. In two dimensions limy_ lim, ¥ (q,0)/w is
singular for any q such that the Fermi surface (FS) is mu-
tually tangential (but not necessarily nested) to the FS

v—v't+o+id

fOW)—Ff(N], (n

displaced by q. For example, in two-dimensional free-
electron gas (parabolic bands), we have the familiar (Lin-
dhard) result

lin})xZ(q,w)/w=(4qu)_’(1—q2/4k})_1/29(2kF—q) ,

(3)

with a square-root singularity at 2k, which will be cutoff
by the quasiparticle decay rate Im(2) [comax(w,T) in
MFL]. Without additional FS nesting, there is no corre-
sponding peak in Re[x(q,w)]. This line of singularities
will cut the zone boundary close to (7 /7) in the cuprates;
band-structure effects, in particular the strength of Um-
klapp scattering, will determine the details. The g depen-
dence, and doping dependence of Y''(q,) can be qualita-
tively described by inscribing circles of radius 2k, about
the reciprocal lattice vectors. For dopings somewhat
below half-filling, these will intersect at four points on the
zone boundary 7(1+8Q,1), m(1,18Q) (see Fig. 1). At
these points, we then expect to see peaks in Y''(q,w).

n(1-8Q), n

2kg

o=

FIG. 1. Schematic picture of the evolution of Fermi-surface
singularities in a band-structure model for La,_,Sr, CuO,.
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With a more realistic band-structure model, this picture
needs some small modifications.

B. Model band structure

For our purposes, we need a good description of the
dispersion near the Fermi surface, describing accurately
the band effective mass, the doping level of the Van Hove
singularity, and the curvature of the Fermi surface. The
appropriate values of these parameters are not known
with great accuracy, even if one believes the LDA band
structure provides a correct description of the dispersion.
We model the Fermi surface with a three-band Hamil-
tonian comprising hybridized Cu dx2—y2 and O p, and p,
orbitals:

Hy=¢3 (chicai—chicy _C;ricyi )
i
+3 [t,-jc;r,-cxy +H.c. +(x—y)]
ij

+2[t,-'jc,:r,-cxj+H.c.] . 4)
i

Here e=1(E,—E,) and we have included a nearest-
neighbor Cu-O hybridization #;;==t, and O(p,)-O(p,)
hybridization ¢;;=+t'. The O-O hopping breaks the spe-
cial symmetries which obtain at half-filling for a simple
one-band model with nearest-neighbor coupling. With
t'=0, the Fermi surface at half-filling is square and there
is thus perfect nesting of the FS under a displacement
(7r,7); coincident with half-filling is a Van Hove singulari-
ty in the density of states. The use of a three-band model
is not crucial, as there is only a single band near the Fer-
mi surface; for us it provides the advantage of a basis in
which to calculate the NMR relaxation rates for different
nuclei.

In Fig. 2, we show the Fermi surface at different values

7T

=TT

FIG. 2. surface at different levels

Fermi
x—x,,=—0.10, —0.05, 0.00, 0.05, and 0.12 for e=1.2 eV,
t=—1.5eV, and t'=0.5 eV. The arrows mark the direction of
“best ” nesting.

doping

of filling for the parameters e=1.2 eV, t=—1.5 eV, and
t'=0.5 eV, which are good fits of a three-band model to
LAPW band structure over a range of several eV near the
Fermi surface. At low density (large x), the FS is elec-
tronlike, but as the electron filling is increased (reducing
x) the FS becomes increasingly square; at a doping X,
the curvature of the FS changes sign around the FS, with
the “holelike” pieces growing. Finally, as doping is re-
duced through the Van Hove singularity, at x.; the FS
becomes entirely holelike. So for fillings x,; <x <x,
there are two values of Q along the zone face that satisfy
the “touching” condition, where the low-frequency imag-
inary susceptibility will be singular. The values of 8Q
(measured from the zone corner, see Fig. 1) are plotted in
Fig. 3 as a function of doping (measured from x., for
several different values of t’. In practice, we shall see
that the singularity nearest the zone corner (i.e., smallest
8Q) has the largest amplitude and dominates the
response. Note also that the singularities are sharpest
(smallest width in momentum space) at x =x, since this
marks the doping level of strongest nesting. 6Q is gen-
erally larger than in the square lattice single-orbital mod-
el (i.e., '=0) and closer to the typical values observed in
experiment.

While the three-band model can give reasonable fit to
the LDA band structure over several eV, it fails to place
the Van Hove singularity at the same doping level as the
LDA.2® The doping level of the Van Hove singularity is
determined by the band structure and density of states far
from the Fermi level. Better agreement with LDA can be
obtained by including hybridization with other bands
(e.g., Cu 4s), which have a tendency to compress the
dx2—y2'1’ manifold. However, it is not necessarily ap-

propriate to make a detailed fit to LDA because the prop-
erties of the itinerant carriers are probably very strong re-

0.04 0.08 0.12 0.16 0.20

X = Xyh

FIG. 3. Position of dominant peaks in Y'(q,0—0), at
Q,=m(1—58Q,1) as a function of doping measured from x;, for
e=1.2 eV, t=—1.5 eV, and several values of ¢’. In the case of
t'=0.5 eV only, the position of the secondary nesting peak is
shown by the dashed line. The chain line is expected from a
model of domain walls separating AF regions.
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normalized from the LDA bands. In our case we shall
use the three-band model simply to parametrize the band
structure.

Since our results are strongly influenced by proximity
to the Van Hove singularity, we choose a representative
set of parameters, and measure the density away from
Xx,,. There are then three important measures of our
band structure: (1) the value of x.,, which determines
the density at which 8Q —0, and the peaks become com-
mensurate, (2) the ratio ¢’ /¢, which determines the shape
of the Fermi surface, and in particular the scale of 8Q
variation with x (see Fig. 3), and (3) the density of states
near the Fermi level, which we shall for convenience
parametrize by a rescaling of all the band parameters
with an effective mass m *

The appropriate density of states can be estimated
from the measured static Pauli susceptibility, which is
free from MFL renormalization.?’ Using the canonical
parameters of Fig. 2, we calculate x'(0,0)/u%=1(eV-
Cu)! at x~0 (i.e.,, away from Van Hove singularity).
The LAPW band structure gives a value of ~2 eV~ 1,28
still smaller than experimental estimates of the Pauli sus-
ceptibility of ~4 (eV-Cu)~1.3° Thus we require a modest
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FIG. 4. Perspective plot of Im[y(q,0=2 meV)]/y%; convoluted with a Gaussian broadening (see text) for e=
=5. Contour labels are values in (eV)
—0.04 (a); 0.01 (b); 0.06 (c); 0.12 (d).

t'=0.5eV,A=0.3,0,=1eV, T=2meV,and m*
ties for FS “touching”. Doping levels are x —x,

mass enhancement m*~35, only about half of which
arises from many body corrections beyond LDA. This
mass correction affects only the local susceptibility, and
does not enhance special regions of q. In the rest of this
paper, we shall present results for e=1.2 eV, t=—1.5
eV, t'=0.5 eV, and m*=S5. Aside from changes of scale,
all our results are qualitatively similar when expressed as
a function of x —x ;.

III. RESULTS

A. Spin susceptibility

Figure 4 shows x''(q,w) calculated from our model at
low frequency and temperature (w=2 meV, T=4 meV),
for four different values of doping. In addition we have
included the MFL self-energy with A=0.3, o, =1 eV, pa-
rameters taken from approximate fits to optical and resis-
tivity data.!> At this low temperature and frequency, the
self-energy corrections are not large. We have restricted
the region plotted to a quarter of the zone near 7, 7—i.e.,
m/2<q,, q, <3m/2. The ridges in the figure are lines of
singularities, due to FS touching, which we have
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broadened by convolution with a Gaussian of width
0.017/a (comparable to experimental resolution'?). For
x <Xy, we find a broad peak at (s, ); although this peak
does not correspond to 2k, and it is not therefore singu-
lar, it has the dominant spectral weight. For doping lev-
els beyond x.,, the peak splits into four and sharpens.
These results are primarily a measure of Fermi-surface
geometry, and are thus qualitatively similar to the calcu-
lations of others.?%?325 Away from the ridges and peaks,
the value of x"’(q,w) is very small.

At fillings where the curvature of the FS changes sign
as a function of angle, the topology of touching FS be-
comes quite complex; then there are two singular points
along the zone face, and hence in principle eight peaks in
x''(q,w) near (7,1) (see Fig. 3). In practice the subsidiary
peaks are not resolved due to inelastic effects in our cal-
culations (see below); they produce, for example the
unusual “square” line shape in Fig. 4(a).?> The peaks are
sharpest at a doping when the two singular points con-
verge (i.e., at x =Xgq» where the Fermi surface is
“squarest”) and broadest near the Van Hove singularity,
and closer to half-filling.

It is important to recognize that the singular behavior
in x¥"'(q,w) at low frequencies does not imply an enor-
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mous enhancement of the static susceptibility
Re[x(q,o=0], which would indicate strong nesting. In
Fig. 5 we plot the static susceptibility for the same pa-
rameters as Fig. 4 (in this case over the whole zone). The
nesting features are evident, particularly at larger doping
levels, but the enhancement over parabolic bands is not
more than a factor of 3. Neither is there strong energy
nor temperature dependence at the peaks—at the points
in momentum space where Im[x(q,»)]/o is divergent as
©—0, Re[x(q,w)] has a cusp.

While the existence of peaks in the structure factor at
the appropriate values of momentum follow directly from
the band-structure model, the energy and 7 dependence
observed requires an explanation beyond simple band
structure, which by itself would give rise to energy or
temperature dependence only on scales comparable to the
energy dependence of the joint density of states. The
marginal-Fermi-liquid ansatz, which has been successful
in explaining many anomalous properties of the cuprates,
notably the single particle spectral functions A4 (p,v)
measured by tunneling and photoemission, again plays a
natural role here, where we are dealing with an
integral, Eq. (1), over the products of one-particle
spectral functions. Since according to this ansatz,
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FIG. 5. Perspective plot of Re[y(q,w=0)] for the same parameters and doping levels as Figs. 4(a)—4(d).
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1/7«<Im(2) < max(w,T), we expect that near ¢ =2k the
susceptibility becomes strongly temperature and frequen-
cy dependent. Explicit calculation bears this out, and in
Fig. 6 we show x''(q,®) calculated at low frequency v =2
meV and higher temperatures 7=10 meV (a), 50 meV
(b), as well as the low-temperature susceptibility at a
larger energies @ =20 meV (c), 100 meV (d). The peaks
are rapidly smoothed by going to either nonzero tempera-
ture or nonzero frequency on account of the rapid in-
crease in the quasiparticle scattering rate with either w or
T.

In fact the smoothing is approximately the same with
either w or T (with a scale factor controlled by the cross-
over scale in the self energy—here set to ). This is
shown explicitly in Fig. 7 where we present the calculated
spectral function S(q,0)=[1+n(w)]x"(q,w) at a low
temperature. While the overall behavior is rather com-
plex, the value of the spectral function at the peak shows
much less frequency and temperature dependence than
expected from a Fermi liquid. The detailed balance fac-
tor approximately cancels the frequency dependence of
X'’ at wave vectors near the peak(s), so that S(Qpe,, @) is
flat. Near the peak(s) a crossover occurs on a scale 0~ T,
but
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This does not fit the simple functional form
F(q)tanh(w/T) suggested theoretically!> and found to
agree with some experimental results.”® Accidentally,
this form works quite well as a fit to our results at low
doping before the separated peaks are fully resolved. Ex-
periment is more sensitive to the scale of the crossover
than to any detailed functional dependence either at
small or large w. In a conventional Fermi liquid, .S con-
tinues to grow linearly with frequency up to a scale of or-
der the Fermi energy.

With doping, the line shape changes from a single
rounded peak [Fig. 7(a)] which becomes first quite square
[in Fig. 7(b) the two component peaks are unresolved]
and then develops into two well-separated features [Figs.
7(c) and 7(d)]. For doping levels close to x, [Fig. 7(c)],
the line shape evolves with frequency from two well-
separated peaks into a single broad feature, while the
maximum intensities show little frequency dependence.
The broadening is asymmetric, with the region near (i, )
filling in with both increased frequency and temperature,
in agreement with experiment.” !
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FIG. 6. Perspective plot of Im[x(q,0=2 meV)]/u3 for e=1.2eV,t=—1.5¢eV,t'=0.5eV,A=0.3, o.=1 eV, and m*=5. The
same parameters as Figs. 4(d) and 5(d), but the following temperatures and frequencies (in meV). (a) T=10, ®=2; (b) T=50, 0=2;

(©) T=2, w=20;(d) T=2, ©=100.
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n[1, ], ®)

2.0

S(a=

FIG. 7. Spectral function S(q,) along q=(1,x) with same
parameters as Figs. 4(a)-4(d), at T=20 K, and energies o=3
meV (solid line), 6 meV (dotted), 9, 12, and 15 meV (long
dashed).

B. NMR relaxation rate

The strong temperature dependence of the susceptibili-
ty at low frequency is most clearly manifest in NMR re-
laxation, since T'{ ! is proportional to a weighted average
of ¥''(q,w)/w over the zone. Strong T dependence is
only found in the vicinity of the touching singularities
(i.e., @~Qpeax), Which of course allows a different T
dependence for Cu and O NMR relaxation rates. Follow-
ing earlier work3 ¢ the orbitals are coupled to the nuclei
via the hyperfine Hamiltonian

an= 631n [ Ac;aaaﬁcdﬁ-'-BcIsaaaﬁc%B]
+C 17In(c;sa0aﬁc3s5) ’ (5)

which includes (anisotropic) dipolar coupling of the Cu
nucleus to dxz__yz orbitals, as well as an (isotropic) Fermi
contact interaction to the Cu 4s or O 3s orbitals. We cal-
culate the occupancy of the s orbitals within perturbation
theory from overlap with neighboring orbitals, generating
a transferred hyperfine coupling similar to that of Mila
and Rice,’ although we use band wave functions [i.e., a
susceptibility from Eq. (2)], and not the ionic limit.®
However we have found that the two approaches yield re-
sults differing only by factors ~2. From the Cu and O
Knight shifts, we fix the parameters 4, B, and C; 4,
can be determined from the anisotropy of the Cu relaxa-
tion rate, leaving both'? T, and %7, as tests of the mod-
el. In contrast to the calculation of the susceptibility, the
NMR calculations depend additionally on the basis wave
functions, here obtained from our three-band model.
Consequently, the failure to properly reproduce correla-
tions embedded in the effective band structure (e.g.,

Zhang-Rice singlet formation) may invalidate our ap-
proach. However, because we use the Knight shifts to
determine hyperfine coupling constants, dependence on
any scale factors for the bandwidth (i.e., m *) is removed.
There are no accurate measurements of the electronic
component of the Knight shift in La,_,Sr,CuO,. We
have adjusted the hyperfine constants to provide values of
the Knight shift comparable to those measured in
YBa,Cu;0; (Ref. 31) (8K =0, %K ,=0.003, and
7K =0.002). We also assume that A, is small (for
values, see Fig. 8). (Because the Knight shift depends on
the g =0 susceptibility, we have used the unrenormalized
static susceptibility to calculate K.) The weak tempera-
ture dependence of the calculated shifts (Fig. 8) thus has
its origin in sharp features of the band structure. Calcu-
lated (T'; T) ™! are shown in Fig. 9, again for the represen-
tative parameters of Figs. 4—6. The Cu relaxation rates
are large and comparable to experimental values,*? and
more than an order of magnitude larger than "T[!; the
numerical agreement would be less good using calculated
values of the hyperfine coupling constants. We also find
non-Korringa behavior for O, which would be expected
on general grounds from an incommensurate peak in
S(q,») and the conventional hyperfine Hamiltonian (5).
Also the susceptibility is singular along lines throughout
the Brillouin zone, and therefore always makes some con-
tribution to any local susceptibility. Without the MFL
self-energy corrections, the temperature dependence
would be close to Korringa (i.e., T; ! « T) with small de-
viations due to the energy-dependent density of states.
We also note that any additional source of lifetime
broadening for quasiparticles will change the results. The
effect of adding an impurity scattering rate Im(2)=r;!
will be to drive the low-T" behavior more Korringa-like
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FIG. 8. Calculated Knight shifts (%) for hyperfine constants
A4,=0, A)=—3X107% B=5X10"% and C=8X1075, for the
same parameters as Fig. 4(a)-4(d). Solid line ®K ; dotted line
8K ,; dotted line K.
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FIG. 9. Calculated NMR relaxation rates (T,T)”! corre-
sponding to the hyperfine coupling constants in Fig. 8. Band
parameters are the same as Figure 4(a)—4(d). Solid line
(BT )y; dotted line (BT !');; dotted line 777! X 10. Note that
the oxygen relaxation rate has been scaled by a factor of 10.

for temperatures AT S 7, !. A similar effect is produced

by weak three-dimensional hopping at low temperatures.
IV. DISCUSSION

A. Experiments in La,_, Sr, CuO,

The structure shown in Figs. 4-6 is similar in magni-
tude, temperature, and energy dependence to that ob-
served in neutron scattering in La, , Sr,CuO,. The
spectra weight f dqx" (q,0=10 meV) in the peaks near
(m,m) is calculated to be ~0.4u% eV~! (using a mass
m *=35), which is somewhat below the range of the exper-
imental estimate'® of ~1—2u% eV ! in La,_, Sr, CuO,.
By adjusting x;, to a doping level of 5%, our parameters
yield peak positions comparable to experiment. This is
not in itself remarkable, because the value of 8Q is fixed
by the vagaries of the band structure. But we note that
the peaks sharpen as x increases, as in experiment.!® This
is produced in our model by the enhanced nesting as
X —Xx. The evolution of a relatively broad peak at 7,7
in La; ¢sBg ¢sCuO, (Ref. 7) to incommensurate peaks in
La, ,Sr,CuO, (Refs. 9 and 10) at x=0.075 and
x =0.15, which become sharper at higher doping, is a
strong indication of the Fermi-surface nature of the
features. These features are unremarkable in a band pic-
ture, but are difficult to obtain in a model which depends
entirely on strong magnetic correlations to produce the
structure in momentum space. That the scattering
derives from itinerant carriers is further supported by the
opening of a gap in the superconducting state!® (see
below). Finally, in all these sets of data, there is strong
evidence that the characteristic scale for the fluctuation

spectrum is set by kT, which is natural in the MFL pic-
ture, but accidental in other models. The peaks broaden
dramatically with temperature and frequency on low-
energy scales; a simple band picture cannot account for
this by itself.

Comparison with the NMR results is more problemat-
ic, partly because this system has not been so carefully
studied as YBa,Cu;0,. We have also to make a specific
choice of orbitals and how they relate to the band
structure—implying that we take the prescription of or-
bitals in Eq. (4) seriously, rather than just providing a pa-
rametrization of the Fermi surface. Nevertheless, gross
features (the enhancement, and T dependence of ST })
match quite well to experiment.

The calculated relaxation rates for Cu are large and
comparable to experiment (small by roughly a factor of
2), but the anisotropy of %7, is too small. As the
Knight shifts are not known accurately for this com-
pound we cannot yet say whether the failure to obtain the
correct anisotropy represents a serious flaw. The ratio of
10-20 between the Cu and O relaxation rates is also
reasonably close to experiment. The non-Korringa
behavior of T ! is in disagreement with the only pub-
lished measurements®> in La,_ Sr,CuO, and
La,_,Ca,CuO, with x~0.15. However, more recent
measurements on La, ,Sr,CuO, (Ref. 34) and
La,CuO,_, (Ref. 35) show some deviations from the
Korringa law for 17T1, but the detailed behavior is not
unambiguously established. In our calculations, we find
x'(0,0) to be almost temperature independent; there is no
“spin gap” in our model. This is in agreement with ex-
periments on the “best” (i.e., highest T..) YBa,Cu;0, and
La, 4sSry ;sCuO, samples. A susceptibility increasing
with T at low temperature is observed most clearly in the
less metallic materials, is outside the scope of our model,
and will require extra physics.*®

The quantitative underestimate of both the NMR re-
laxation rate and the magnitude of the measure spin sus-
ceptibility near (7, 7) then indicates a magnetic enhance-
ment of x''(q,w) in the range of 2-5; and thus an
enhancement of Re[x(q=~(m,7))] of 1.5-2.5. This does
not suggest that the La,_, Sr, CuO, system near x =0.15
is close to a magnetic instability.

B. Experiments in YBa,Cu;0,

We have been at pains to point out how sensitive our
results are to details of band structure, and so we cannot
use the present results for YBa,Cu;0,. A few comments
are, however, in order.

YBa,Cu;0; has undoubtedly a more complex Fermi
surface, at least because of a significant hybridization be-
tween the two (equivalent) planes within the unit cell.
Some band-structure calculations®” have produced a Fer-
mi surface rotated by 45 degrees from that in
La,_,Sr,CuQ,, and this has been claimed to be in agree-
ment with spectroscopic evidence.’® % Such a rotated
Fermi surface would give rise to peaks in the fluctuation
spectrum far from ,, and this led Zha, Si, and Levin®*!
to suggest that a moderate antiferromagnetic coupling



48 SPIN FLUCTUATIONS IN A TWO-DIMENSIONAL MARGINAL... 495

would be needed to restore the spectral weight to its
rightful place.

The most recent and complete photoemission measure-
ments*® show very clear dispersion of bands in
YBa,Cu;0,; where they are clearly of planar character.
In those directions, which are supposed to match the “ro-
tated” Fermi surface, there is no clear dispersion and
only an edge at the Fermi energy, such as might come
about from a disordered band of states on the chains. We
do not find convincing evidence here for the claimed ro-
tation of the Fermi surface. If the rotation of the FS is
present, it must derive from a complicated interplay of
many orbitals other than those we have in our model
Hamiltonian, and it is thus not appropriate to use a
three-band model to compare with NMR, which depends
strongly on the orbital character. Whether present or
not, the greater complexity of the Fermi-surface topology
will probably reduce the nesting features, and thus reduce
the calculated relaxation rates; indeed the value of 7!
is 2-3 times smaller in YBa,Cu;O, than in
La, ,Sr,CuO,, and the deviation from Korringa less
dramatic. Neutron-scattering  measurements  on
YBa,Cu;0,; show broad features at the commensurate
point,!! which are (especially in fully oxygenated materi-
al) much less intense than the peaks observed in
La,_,Sr,CuO,. In YBa,Cu;0; however, the Korringa
law for T ! is well established.> Our two-dimensional
model will naturally give non-Korringa behavior for both
O and Cu sites, even if the peak in the fluctuation spec-
trum is mostly at the commensurate value [compare Figs.
4(a) and 9(a)]; the susceptibility always has a line of singu-
larities. It is possible that three-dimensional hopping (see
below) can preferentially destroy the singular behavior
everywhere except the zone corner—it is most robust
here because of the proximity to the saddle point—and
thus rescue the Korringa law for O, while leaving %°T,
relatively untouched. We also do not have strong tem-
perature dependence to Re[x] even at large momentum;
thus it will be difficult for this model to reproduce the re-
cently observed temperature dependence of T,.*

C. Effects of superconductivity, three dimensionality

We do not present here calculations for the supercon-
ducting state, although it is very easy to guess the quali-
tative features. In an s-wave superconductor, and assum-
ing no magnetic interactions, the spin-fluctuation spec-
trum will develop a gap of 2A. Because the quasiparticle
lifetime is presumably also produced by electronic
scattering, it must therefore become very long at low fre-
quencies ®<<2A and temperatures T <<T7,.** Conse-
quently, for energy transfers 2A <w <4A the spin fluctua-
tions will be present but unbroadened by lifetime effects,
which will return on higher energy scales @ >>4A. These
lifetime effects are most visible in long-wavelength probes
(optical and thermal conductivity) but they will have
weaker effects at large momentum, more pronounced if
nesting plays a role. If the superconducting state is gap-
less (either from nonzero angular momentum pairing or
via pairbreaking) the lifetime effects will be less pro-
nounced.

The divergence in the low-frequency x'’(q,0)/w at 2kj
is a special feature of two dimensions. While interlayer
hopping is weak in the cuprates, it is not zero. At low
temperatures, the cutoff of the singularity will be given
not by Im(X) but by vz6ky, where v is the (planar) Fer-
mi velocity and 8k the maximum dispersion of the two-
dimensional Fermi wave vector in the perpendicular
direction. Within resolution, this has not been observed
in the neutron-scattering experiments in La,_, Sr, CuO,.
This is as expected, because La,_,Sr,CuO, is indeed
very anisotropic, with a recent measurement of the
plasmon in the c-axis direction showing that the disper-
sion is less than the superconducting gap.?’ Note that the
anisotropy of the plasma frequency is much larger than
predicted by LDA band-structure calculations, which
provides additional evidence for the highly correlated na-
ture of the “bands” in La,_, Sr, CuO,.

Three-dimensional behavior is clearly seen in transport
measurements in YBa,Cu;0;, above T,,* and the average
mass anisotropy is lower than in La,_ Sr ,CuO,. Three
dimensionality will necessarily move toward restoration
of the linear T dependence for T; !, but possibly more
strongly for some nuclei than others, depending (again)
on details of the band structure.

D. Comparison with other models

There are a number of different models for the magnet-
ic behavior which rely on itinerant carriers and therefore
have some features in common with our description. The
major difference between our approach and many others
is that we have given a description in terms of nonin-
teracting but heavily renormalized quasiparticles which
do not form a Fermi liquid.

In antiferromagnetic fluctuation models, temperature
dependence arises from proximity to an AF instability
(i.e., exchange enhancements).?°”22 This is especially
enhanced when there is nearly perfect nesting.’* Such
models have strong enhancements in both the real and
imaginary parts of the susceptibility; both the static sus-
ceptibility

Re(x(q,0)]= [ “ dolm[x(q,0)])/e

and the static structure factor
S(@= [ “do[1+n())Im(x(q,0)]

will diverge at the AF instability for the appropriate g.
In the paramagnetic phase, there is a low-energy cutoff to
the fluctuation spectrum, which means that the proper-
ties will be those of a Fermi liquid on a low enough ener-
gy scale. In our picture neither the static susceptibility
nor the static structure factor is necessarily strongly
enhanced. Although weak enhancements (~2) are not
excluded by our analysis, the correlation length [defined
from S(q)] in our picture is not long. Another viewpoint
is based on bands derived from a mean-field analysis of
the ¢ —J model,**® although spin-fluctuation effects [in
particular a random-phase-approximation (RPA) -like)
renormalization of the susceptibility] were found neces-
sary.
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A different approach is based on a proximity to a near-
ly localized state, which has been argued?® to lead to a
crossover at low temperatures from coherent to in-
coherent band motion (and which is therefore also a Fer-
mi liquid at low temperatures). This picture does require
a very considerable band narrowing to place the coher-
ence temperature in the range of a few hundred degrees.
Magnetic fluctuations can also be incorporated in the re-
normalized bands, and have been suggested to be impor-
tant in YBa,Cu;0; but not La,_, Sr,CuO,.*' Zha, Si,
and Levin have used a renormalized band structure and
small to moderate (g dependent) magnetic coupling to
calculate a RPA susceptibility. They do not include self-
energy effects, which we have focused on. While at low
temperatures and low frequencies their results are those
of a FL, at frequencies or temperatures comparable to or
greater than the separation of the chemical potential
from the Van Hove singularity, features in the band
structure are apparent. In particular, there are peaks in
the calculated S([m7,7],») at an energy corresponding to
excitation to this edge. They have argued*! that this
feature is responsible for the observed /T scaling in
La, 4sBaj ,CuO, (at x =0.05, close to x,;,), and will lead
to deviations in YBa,Cu;0, [where there is a gap in the
spectrum at (m,7)]. All of the band-structure effects are
present in our calculations, but sharp features at nonzero
frequency are not present, owing to the lifetime broaden-
ing of the carriers. The approximate scaling between o
and T in Fig. 7 has its origin principally in the self-
energy, while the momentum dependence arises from
band structure.

The distinction between Fermi-liquid (FL), marginal-
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FIG. 10. Spectral function S(q,w) along q=(1,x) with
e=1.2 eV, t=—1.5 eV, t'=0.3 eV, and n=0.43 (x=0.14)
A=0.3, o,=1 eV, and m*=5 at T=20 K, and energies
0=(3,6,9,12,15) meV. The left panel (a) uses the MFL form of
the self-energy. For comparison the right panel (b) is the con-
ventional Fermi liquid for Im(X)=1 meV=10 K.

Fermi-liquid (MFL), and nearly antiferromagnetic-
Fermi-liquid (AFL) behavior is shown in Figs. 10-12.
Figure 10 compares the energy dependence of S(q,w) for
a FL and MFL, with identical band parameters. The os-
cillator strength in the FL grows linearly with frequency,
while for the MFL it is relatively flat, as we saw in Fig. 7.
The difference between the two models in terms of tem-
perature dependence at low frequency is less dramatic, as
shown in Fig. 11, although the similarity is misleading as
will be seen clearly in Fig. 12. In both cases, the singular-
ity in x"'(q,®) is rounded out at finite temperatures, al-
though more rapidly in the MFL case. Here we have also
shown the temperature dependence of Re[y(q,0=0]; in
both cases the temperature dependence is weak, because
the T'=0 results is only a cusp. This figure also serves to
show that the effect of the MFL self-energy is to reduce
the static susceptibility from the noninteracting value,
here by roughly a factor of 2. The final comparison
shown in Fig. 11 is to a phenomenological model of near-
ly antiferromagnetic spin fluctuations with a
temperature-dependent correlation length £.>¢ For a
simple mean-field model of the fluctuations, one has

X' <&/[1+(g —Qr&], (6a)
limy" /e = x')?. (6b)

To facilitate comparison, we have chosen a value of the
incommensurate Q to match the FL and MFL models,
and fixed the width of the peak to be in approximate
agreement by varying the temperature dependence of &.
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FIG. 11. Susceptibility Im[x(g=m(1,g,)),0=2 meV] [left
panels, (a)-(c)] and Re[x(¢g=mw(1,q9,)),0=0] [right panels,
(d)-(D] for a FL (a)-(d), MFL (b), (e), and AFL (c), (f), for a set
of temperatures 7'=0.002, 0.005, 0.010, 0.015, ...,0.050 eV.
For the FL and MFL, parameters are e=1.2 eV, t=—1.5 eV,
t'=0.5 eV, m*=5, with w.,=1 eV, A=0.3 (MFL) and
Im(2)=2 meV (FL). For the AFL, the susceptibility is de-
scribed by Eq. (6), and we used & T) 2=£&; X1+ T/T,) with
wEy=15and T,=0.05 eV.
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FIG. 12. Low-frequency local spectral function

S=lim,_,03,X"(g,0)/w for the three models of Fig. 11: FL

(solid line), MFL (dotted line), and AFL (dashed line). The rela-

tive scales of FL and MFL curves is correct, that of the AFL
curve is arbitrary.

In the AFL case, both real and imaginary parts of the
susceptibility are strongly dependent on temperature.
The temperature dependence of Re(y) is the signature of
proximity to a magnetic transition.

Finally, Fig. 12 shows the local susceptibility
S =3,x"(q,0) /o for the three cases, which is approxi-
mately the contribution of the fluctuations to Cu NMR
relaxation rate 1/7T,;T. Notice that this quantity has al-
most no temperature dependence in the FL despite the
superficial similarity of Figs. 11(a) and 11(b). The
difference between FL and MFL is that in the former
case, the effect of nonzero temperature is simply to redis-
tribute weight to different momenta as the Fermi surface
is smeared. If the density of states were uniform, the FL
model would have no temperatue dependence of the
momentum-averaged susceptibility. The self-energy in
the MFL contributes to a suppression of the imaginary
part of the susceptibility for momenta below 2k, which
is not entirely counterbalanced by the growth at momen-
ta above 2k;. The net effect is that the MFL looks much
like a model of a nearly antiferromagnetic Fermi liquid
with a long and temperature-dependent correlation
length. The distinction between MFL and AFL is seen
most clearly in their differing predictions for the real part
of the susceptibility.

Returning to a microscopic point of view, it has been
suggested that Van Hove singularities or Fermi-surface
nesting can feed back on themselves to give the MFL
scenario.*”?%*® Figure 8 makes it clear that only a very
modest temperature dependence in physical quantities
can be obtained from the bare density of states. With
Coulomb interactions (V) included, it might appear that

the feedback of quasiparticles interacting with the polari-
zability of Eq. (1) can lead to the MFL prescription, since
in leading order, ZX2"(0—0)x3 V,x"(q,0)x Ty L
However, unless there is a nesting singularity (which
would be expected only at a special composition), the
temperature dependence of the NMR rate is at most
T'72, and we will not obtain self-consistently the MFL re-
sults. Moreover, there is a natural low-energy cutoff for
the restoration of Fermi-liquid behavior controlled by the
difference of the chemical potential from perfect nest-
ing.*” Furthermore, the self-energy here is a strong func-
tion momentum, which is not obviously consistent with
tunneling measurements.** Finally, a MFL model which
contains a singularity in x'(q,®) (e.g., from a perfect
nesting) would be very likely to undergo a phase transi-
tion to charge or spin-density wave states, or is otherwise
unstable to higher-order terms.>

We have stressed the Fermi-surface contribution to '/,
but NMR measurements are also sensitive to any
temperature-dependent background proportional to
Im(A) as in the original MFL picture, with
A=14+AIn(x/o,)+tirmx /T, where x =max(w,T) and
gvp>©.%! The assumed w/T form combined with the
Knight-shift estimates above would then give an additive
and T-independent contribution to T; ' of about 100
sec” ! on O, and 150 sec™! on Cu. The O contribution is
comparable to or larger than the band-structure piece in
Fig. 9; the failure to observe such a large non-Korringa
term on O (in YBa,Cu;0,) throws in doubt the presence
of a MFL vertex in the spin channel, at least using the
conventional hyperfine Hamiltonian.>?

V. CONCLUSION

In conclusion, we have found that a simple band-
structure model of La,_  Sr, CuO,, together with anoma-
lous self-energy corrections and a moderate mass
enhancement can give a reasonable account of the energy
and momentum dependence of the magnetic structure
factor at low frequencies, as measured by neutron scatter-
ing. We require neither strong magnetic interactions, nor
a polarizability of the form originally suggested in MFL
(Ref. 15) to account for the data. We do not require
strong exchange enhancements of the type found in the
insulating cuprates; nevertheless, our results parallel the
phenomenological model of Millis, Monien, and Pines’
because the peaks in S(q) broaden with increasing tem-
perature. Unlike other models,?>?3 there is no tempera-
ture scale below which Fermi-liquid behavior is restored.
The only length scale in our model is the mean free path
for the quasiparticles near the Fermi level, and it is this
which controls the visibility of the peaks in S(q,w). The
principal experimental distinction between our model,
and models which require large magnetic coupling, is in
the real part of the susceptibility x'(q), or in the instan-
taneous structure factor S(q). ‘

Itinerancy of the carriers, and a corresponding band
structure, need not correspond to the simple picture, e.g.,
that given by LDA. For example, it is clear that in the
t-J model at a moderate doping there appears a well-
defined dispersion for quasiparticles.’® Series expansion
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techniques indicate that the structure factor has a peak
on the zone boundary at momenta not far from that ex-
pected in an unrenormalized band.>* All that is required
is a large Fermi surface, and the appropriate strong re-
normalization of the quasiparticle lifetime.

Our results are somewhat less successful when com-
pared to NMR measurements. Since neutron scattering
is sensitive to sharp features in momentum space, and
NMR measures local properties (averages in momentum
space) it is possible that there are broad features which
dominate the NMR (and correspond to real magnetic in-
teractions) but are difficult to observe by spectroscopic
techniques. Nevertheless, we believe the anomalous T'; 1
on Cu is associated with the emergence of the peaks in

S (g,w) below 150 K in La, sSr; ;sCuO,. In addition, we
predict non-Korringa behavior for the NMR rate on oxy-
gen in this compound.
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