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We study the dynamic process of homogeneous quantum phase slippage in bulk charge-density-wave
systems. A topological singularity, namely, a "vortex shell" in 3+1 dimensions is proposed as a trial
wave function of the saddle-point field. The quantum tunneling rate is roughly I -exp( —const/c, ) as a
function of applied electric field c. The physics is qualitatively different from previous works.

The charge-density wave (CDW) is an interesting
ground state of matter. ' Below the Peierls transition
temperature, electrons that are otherwise in the normal
metallic state condense into a CDW condensate which
can be described by a complex order parameter, in com-
mon with other ordered states such as the spin-density
wave and the superAuid, etc. The CDW is mainly a
quasi-one-dimensional phenomena, with an intrinsic
chain structure in, e.g. , NbSe3. The coherence length in

0
the chain (z axis) direction is g, —10 A, while in the per-
pendicular directions, g, g —10 A. Much interesting
physics stems from this one dimensionality, such as, for
example, charged solitons.

Experimentally, one of the most interesting properties
of the CDW condensate is nonlinear transport in an elec-
tric field c applied parallel to the chain direction. In ad-
dition to a normal linear conductivity, a nonlinear con-
ductivity is found to scale as —exp( —const/E). There
are two quantum-tunneling theories trying to explain this
phenomena. One paper by Maki proposes quantum nu-

cleation of the soliton-antisoliton pair in a one-
dimensional space plus a one-dimensional imaginary time
(1+1D). The other by Bardeen deploys a Landau-
Zener —type tunneling model. Both these theories rely on
quasi-one-dimensionality and get a scaling form of the
conductivity as exp( —const/E. ). However, late experi-
ments suggest that the nonlinear conductivity is thermal-

ly excited. This discrepancy was reconciled in a quanti-
tative theory by Ramakrishna et ah. by realizing that the
length scale of the experimental samples is much larger

I

than the coherence length and, hence, one must use the
3D Ginzburg-Landau free energy to formulate the corre-
sponding theory. The essence of their model is a
thermally excited dislocation loop (i.e., a vortex ring),
similar to the one proposed by Langer and Fisher in the
context of superAuid He.

However, the issue of quantum tunneling in a CDW
remains unsettled. Theoretically, we are curious to know
the corresponding quantum process for 3D CDW's. This
issue is also of experimental interest, since at extremely
low temperature thermal activation is presumably dom-
inated by quantum tunneling. It is therefore desirable to
estimate this quantum limit to see if it is experimentally
feasible. In this paper we investigate the homogeneous
quantum phase slippage in bulk CDW systems in the
weak impurity potential limit, in the hope that the phys-
ics presented here is qualitatively correct, and that quan-
titatively the order-of-magnitude estimate of the tunnel-
ing exponent is not misleading.

To study the dynamical quantum process we need to
consider the time variation of the order parameter. At
low temperature the dynamics of the phase P of the order
parameter is believed to be important and there is a
characteristic phason velocity co along the chain direc-
tion. ' There is also a collective mode for the order-
parameter amplitude 2 with a characteristic velocity
2co/&3 in the chain direction. Together with the static
3D free energy, we construct a total action 5 as a func-
tional of the order parameter in 3D space plus 1D time as
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x'=x/g, y'=y/g

z'=z/g„~'=r/{g, /co) .

The Euclidean action is

aA'„g gyp,
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where the contributions from phase, amplitude, electric
field, and impurity potential are, respectively,
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Here, K, (i =x,y, z) are anisotropic elastic constants
measuring the bending energies of the order parameter;
a,P are the usual Ginzburg-Landau coefficients; e is the
absolute charge of an electron; p, ( A) is the number den-
sity of condensed electrons; Q =2kF; and the impurity
pinning potential V; (P) is periodic in P.

From {1)we can define anisotropic coherence lengths

g;=+K;/a and a homogeneous condensate amplitude
A„=v'a/P. For later convenience, we will from now
on work in dimensionless coordinates in which the
order-parameter amplitude f = A /A „(0&f & 1) and
space variables are scaled by coherence lengths, and
imaginary time r (r=it) is scaled by the "coherence
time" g, /co,

from a 3+1D (equivalent to 4D) nonlinear equation,
which turns out to be difficult. So we use trial wave-
function method to construct the picture of this topologi-
cal soliton.

%'e assume that the saddle-point picture is a linear su-
perposition of the homogeneous metastable state and a
localized excitation centered at, e.g., the origin. This lo-
cal excitation must have the topology of slipping the
phase by 2~. A vortex ring has just this topology. So,
we propose a "vortex shell" in the x'y'~' space as the new
topological singularity (see Fig. 1), with a radius R ( ))1)
and a thickness -O(1). Within the thickness of the
wall, f drops to zero while outside the wall (both inside
and outside the shell) f=—1. The circulation direction
points to the unit vector e ~ of the azimuthal angle y' in
the x'y' plane.

This vortex shell, in fact, describes the dynamic pro-
cess of quantum nucleation of a vortex ring, since a
snapshot at fixed ~' corresponds to a vortex ring of unit
vorticity in real space (see Fig. 2): (a) at r'= —R a singu-
lar point appears at the center of the x'y' plane where

f =0; (b) for —R &~' &0 the singular point evolves into
an expanding vortex ring; (c) at ~'=0 the ring stops to ex-
pand; (d) for 0&v'&R the ring shrinks; and (e) finally, at
r'=R, the ring converges back into a singular point and
disappears. This picture is similar to that of Ref. 8 (see
Fig. 1 of Ref. 8). And, in common with all nucleation
processes, there is a critical shell size R, (to be deter-
mined later) which corresponds to the saddle point. For
R & R, the shell collapses into itself, while for R & R, it
expands to infinity and hence slips the phase by 2m. .

Mathematically, the vortex shell is described by

2
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K(r')=2me, 5(+x' +y' +w' —R)5(z') .

Its Careen's function is

(4)

2ep, ( A)
S fieid= f d r'

2
c.p,

QaA „ (2d)

which satisfies B„B"P(r)=K(r). All vectors in Eqs. (4)

S; p=fd r' V; p(P).aa2 (2e)

From (2a) and (2c), one can see that —aA /4 is the
homogeneous bulk condensation energy density, while

the factor g„g g, /co at the right-hand-side (RHS) of (2a)

is clearly the 3+ 10 coherence volume.
The quantum phase slippage rate is

X

I =F exp( —b,SE„d /R ), (3)

where the prefactor I originates from small fluctuations
around the tunneling path and is less important. In this
paper we concentrate on the exponent where ESE„,l
means the difference between saddle-point action and
metastable-state action, both of which are extremals of
SE„,l, i.e., satisfying the condition that the functional
variation of SE„,l vanishes. The metastable state is just a
homogeneous plane-wave state along the chain direction,
while the saddle-point state, in principle, must be solved

FICE. 1. A vortex shell in x'y'~' space. —2~ indicates the 2~

phase loss inside the shell.



4862 BRIEF REPORTS

a) c) e)

FICs. 2. Snapshots of the vortex she11 at different imaginary
times. Only the z'=0 plane is drawn here.

and (5) are 4D, but K and P have only two components
since e ~ is in the x 'y ' plane; 5's are 5 functions;
p=(x', y', z', r') and the repeated index means summa-
tion. Since c„e =6„,we have B„=B",etc.

In 3D, the phase P obeys V /=0 outside the singular
regions (say, cores of vortex lines) so one can find a vector
potential v (corresponding to our P) such that the gra-
dient of the phase is equal to the curl of the vector poten-
tial V/=VX v. In 4D the correspondent of VXv is a
two-index antisymmetric tensor' B„,=B„P,—B+„and
(8 P) ~8 /2=(B„P )

—B„P r)+„. Using partial in-
tegration and the property that surface integration van-
ishes at infinity for our local excitation, we have

fB„ /2= —f [P (B„B„P)+(B„P„)]. From (4) and (5),
one can show d„P„=O. Using e„e~.=cos(y —y'), we
find the contribution of the vortex shell to the phase ac-
tion (2b):

&S„„„,(R)= —Jd'r P K.=~R'C (6)

sinO sinO' cosy
o o o 1 —cosO cosO' —sinO sinO' cosy

(&0) .

The symbol C contains divergence which precludes an ex-
act estimate. In principle, one can regulate such diver-
gence by using the cutoff 1/R so that C is a function of
lnR. After integration over y, we find that the leading
divergent term in C is 2~1n R, and for practical nu-
cleation processes we assume C —0 (1). '

The order-of-magnitude estimate of amplitude action is
easy, since f only varies appreciably within the hard core
on the vortex shell; in the z' direction the ring thickness
is —0 (1), and the integrand at the RHS of (2c) is
—0(1). These give us

AS, p, (R)=4vrR

which is basically the surface area of the shell, and is
comparable to b.S „„,[see (6)].

The electric-field action [Eq. (2d)] is also obtainable,
since the principal role of the topological vortex shell is
to lose the exact 2m phase inside the shell. The integra-
tion of the phase change outside the shell cancels due to

USE„„(R) =
aA„g„g g,

2 co

(4~r) ep, (A )
X 4~R2C'— cR

3QaA „
(9)

where C'=1+C/4 is of order unity. From (9) one can
see that ASE„„(R)-R for small R, and USE„„——R
for large R (see Fig. 3). Similar to other nucleation prob-
lems, there is a competition between the surface energy
(R term) and the bulk energy (R term) of the vortex
shell. The critical-shell size R, is determined from
B[b,SE„„(R) ] /M =0,

C'Qa A
R, =—

2vrep, (A ) e
(10)

Note that R, is inversely proportional to c. Inserting
(10) back into (9), and from (3) we get the quantum-
tunneling rate

I =Fexp
aA„g„g g, Ep

2A co

2

where Eo= C' ~ Qa A /(i 3irep, ) is a constant with the
dimension of an electric field. This scaling form is quali-
tatively different from those of previous quantum-
tunneling theories. '

ASE„,((R)

Rc

FICs. 3. ASE„,&(R) as a function of she11 radius R.

antisymmetry and gives a null result. So, AS, „,&d is pro-
portional to the volume of the shell,

(4m. ) ep, (A „)
ES y ]d(R)= c,R

3QaA

An estimate for impurity action [Eq. (2e)] is hard be-
cause we do not have an explicit form of V; (P). But
since the phase change is 2~ inside the shell and it decays
to zero quickly outside the shell as the distance from the
origin increases, and V; (P) is periodic in P, we know
that only those impurities with their space time close to
and outside the she H contribute significantly, hence,
b,S; „(R)-R,which is the same as the phase and am-
plitude terms. For the weak impurity potential hS; is
qualitatively unimportant and we will neglect it.

Using Eqs. (6)—(8) and Eq. (2a), we get
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In principle, each tunneling event leads to a lower en-
ergy state. The energy difference per unit volume can be
calculated from the electric-field term on the RHS of (1)
by noting that after the tunneling phase in half-space,
z &0 loses 2~ and that for z (0 remains unchanged.
This energy is dissipated through a phenomenological
tunneling conductivity o,„„: o.,„„e /2 =2irI ep, E/2Q.
Using (11),we get

27Tep
tun Fexptun

Q

aA„ggg, Eo

2A co E,
(12)

Now we estimate the tunneling exponent for NbSe3.

From Ref. 7 we have K„A „=6.2 X 10 ' J/m,
K A =2.24X10 ' J/m, Q=—10' m ', and p, -=10

m . Besides, ' co—= 10 m/s and g, —10 A. So we have

2
3X 107

~tun ~ exp

electric field is strong enough to destroy the CDW con-
densate.

Finally, we remark on the method we use in evaluating
S~h», [i.e., Eq. (2b)]. Presumably, S~h», is the action of
the "Higgs boson" field P with a single degree of free-
dom. We identify it with the action of the corresponding
"pseudoelectromagnetic field" B„with the "vector po-
tential" P„. Note that in doing so we do not introduce
extra degrees of freedom, since there are only two
nonzero components of P„which are constrained to each
other by the "Lorentz gauge" B„P„=O.

In summary, we propose a topological soliton, i.e., a
3+1D vortex shell as the saddle-point picture of quan-
tum phase slippage in bulk CDW systems. This quantum
effect is unlikely to be observed experimentally. The
physics discussed here and the conclusions are qualita-
tively different from that of the relevant quantum
theories proposed earlier. '

where e is in units of V/m. This tunneling rate is too
small to be detected experimentally since the applied field
is usually' E(10" V/m. In order to observe this quan-
tum effect, one ideally needs e) 3X10 V/m, but this
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