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In this paper the process of IR resonant molecular vibrational photodesorption, applied to the
system CHsF-NaC1, is treated in terms of a simple two-dimensional (2D) classical model. Desorbing
trajectories are shown to undergo a chaotic motion. By using the transport theory in Hamiltonian
systems, in the phase space spanned by the coordinates of molecule-surface bond (the other coor-
dinate being the intramolecular vibrational excitation), the characteristic bottlenecks, which render
IR photodesorption an infrequent event, are located, the rates through them are computed, and the
time evolution of the system is followed up to all times. A comparison with results obtained from
numerical simulations, which are shown to be impractical in most of the cases of physical interest,
is presented.

I. INTRODUCTION

A detailed microscopic description of desorption pro-
cesses of molecules from solid surfaces is useful in sev-
eral respects. For example, it can clarify the role of the
energy-transfer mechanism, both the intramolecular one
and that between the adsorbate and the solid, and un-
ravel the existence of bottlenecks which may render such
a phenomenon an in&equent event. In this field, it is
particularly interesting to investigate selective desorption
processes, i.e., those where an external probe excites one
of the intramolecular (electronic or vibrational) degrees
of &eedom of the adsorbate. While the system relaxes
into a new configuration, an energy exchange between
various degrees of &eedom can occur leading to desorp-
tion of molecules &om the surface. In the theoretical
treatment of desorption induced by electronic transitions
(DIET), the interaction between the adsorbate and the
substrate phonons is usually ignored since the time scale
of the process is very short; in IR-resonant molecular
vibrational photodesorption (IR-RMVP), where one res-
onantly excites an intramolecular vibration, the validity
of such an approximation seems to be controversial even
at very low substrate temperatures, and in any case, it
strongly depends on the system under investigation.

It is well known that a correct description of an IR-
RVMP process stems from quantum mechanics and
wave-packet calculations for the molecular motion have
been performed. However, correct desorption times, of-
ten much longer than picoseconds, cannot be presently
achieved in this way because of computational limita-
tions. Since interesting information on molecule-surface
interaction can also be obtained by classical mechanics
for models with few degrees of freedom, such a solu-
tion for IR-RMVP is still worthwhile, especially in
view of the information that can be obtained by using

recently developed methods of stochastic mechanics.
They are particularly powerful for two-dimensional (2D)
Hamiltonian systems allowing one to locate bottlenecks
in phase space which hamper energy transfer in physical
systems, and to calculate the relevant rates of the process
under investigation.

In this paper we shall apply the transport theory in
Hamiltonian systems (TTHS) to the elastic resonant
state decay (ERSD) model, whose application to IR-
RVMP, has been extensively investigated. ' This model
consists of a Hamiltonian with two nonlinearly coupled
degrees of freedom, one being the intramolecular vibra-
tion pumped. by the IR radiation, the other the molecule-
surface bond. When the former is excited up to an en-
ergy greater than the depth of the adsorption potential,
then the energy relaxation due to the nonlinear coupling
between the two oscillators may lead to desorption. In
Ref. 14 such a model has been studied by integrating the
classical equations of motion to obtain the desorption
rate by suitably averaging over a set of initial conditions,
and to analyze the phase-space structure of the system
in terms of the Poincare sections. From such an analysis
applied to IR-RMVP of CH3F physisorbed on NaCl, a
qualitative explanation has been given why the survival
probability of the molecule in an adsorbed state does not
follow a single exponential decay law. Here we wish to
proceed further by exploiting the properties of nonlin-
ear classical Hamiltonian mechanics in order to locate
the relevant bottlenecks in an IR-RMVP process and to
compute the rates through them and the evolution of the
system using TTHS methods. It is worthwhile to point
out that such methods have already been used in the vi-
brational predissociation of van der Waals molecules.
Yet, the ERSD model applied to an IR-RMVP process
such as CH3F desorption from NaCl, although described
by essentially the same Hamiltonian, displays the follow-
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ing peculiar features that make it different from vibra-
tional predissociation of molecules such as He-I~, and
warrant a separate investigation: ' (i) the depth Vo

of the physisorption potential is much larger than that
of the van der Waals potential between He and I2, (ii)
Vp ) Rd~ 4J~ being the frequency associated with the
intramolecular C-F stretching mode v3 excited by the
IR radiation; (iii) the mismatch of the two fundamen-
tal frequencies uH and wp for the van der Waals bond is
much larger for CH3F-NaCl than for He-I2. In fact, these
properties imply that the process to release CH3F from
NaCl takes a few orders of magnitude longer than that
to dissociate He from I2. This re8ects a much more com-
plex phase-space structure for the former system closely
related to the infrequent event character of IR-RMVP.
Also, in a perturbative quantum calculation, one observes
a five order of magnitude jump of the desorption rate of
CH3F from NaCl, as a function of the physisorption bond
energy, not to be found in the vibrational predissocia-
tion of van der Waals molecules such as He-I2.

In Sec. II we present the main equations of the ERSD
model, in Sec. III we discuss the method to locate the in-
tramolecular and desorption bottlenecks and to calculate
the rates through them. In Sec. IV the time evolution of
the system for different sets of initial conditions is pre-
sented. The conclusions in Sec. V point out that the
IR-RMVP process is an example of molecule-surface in-
teraction where the desorbing trajectories display chaotic
motion.

II. BASIC EQUATION OF THE ELASTIC
RESONANCE STATE DECAY MODEL

(I)
(2)

H = Hp+ LH,
Hp = Hv+ HM,

IIv = + —m~(z —xo) )= p-' 2 (3)2m 2

= p'" + exp' —2(y —~*o)I —2 xpl —(y —~*o)j
2

IR resonant molecular vibrational photo desorption
(IR-RMVP) is a process of quantum nature, which may
occur after an intramolecular vibrational mode of the
physisorbed molecule is resonantly promoted to an ex-
cited state by absorbing one or more photons of the IR
laser radiation. If such a state is degenerate with contin-
uum states of the molecule-surface potential, then a res-
onance state decay may lead to desorption, while the in-
tramolecular vibration is simultaneously deexcited. This
process is called an elastic resonance state decay (ERSD),
when the energy, initially deposited by the laser in the in-
tramolecular vibration, is conserved within the molecule-
inert solid system (i.e. , no energy is exchanged with the
phonons of the solid). The details and the limitations of
the ERSD model to describe IR-RMVP are discussed in
Refs. 4 and 14.

In practice the Hamiltonian H of the ERSD model
considers a 2D linear molecule physisorbed orthogonal
to the surface. It can be written as

b,II = exp[ —2(y —ox) j —2 exp[—(y —crT)]
—exp '—2(y —oxo) + 2expl —(y —axe)j.

Note that Eqs. (3), (4), and (5) are expressed in suit-
able dimensionless units defined, as well as the param-
eters m, m, and 0., in Ref. 14. The Hamiltonian H~
describes the intramolecular degree of freedom in terms
of a harmonic oscillator of frequency w~. The Hamilto-
nian HM+ AH describes the surface van der Waals bond
approximated by a Morse potential which is nonlinearly
coupled to the harmonic vibration. (z, p ) and (y, p&)
are the canonical coordinates and momenta for the har-
monic and the van der Waals motion, respectively, and
up the frequency at the bottom of the Morse potential
of depth Vp, when the harmonic oscillator is at the equi-
librium position x = zp. More generally, it is a function
of eM to be labeled as uNI(e~). Say v and e are the di-
mensionless times and energies, respectively, and recall
that the corresponding dimensional times t and energies
E are t = v 2/wow and E = e Vo, respectively. In Table I
the values of Vp, cc)p, end w~ for the system CH3F-NaCl
are shown.

The system is allowed to evolve in time following the
classical Hamiltonian equations of motion. However, ow-

ing to the quantum character of IR-RVMP and hence fol-
lowing a previous treatment which allowed a comparison
between the classical and the quantum perturbative des-
orption rates, the initial conditions are fixed. as follows.
First, one assumes that the total energy e is (approxima-
tively) shared between the two unperturbed oscillators, i
so that it can be split between the two eigenvalues of H~
and H~, e" and e~, respectively, corresponding to the
eigenstate lv j) = Iv) Ij),

(Hv + JIM) lv j) = ('" + ei) Iv)
I
j).

Second, the two remaining initial conditions are chosen
among two sets of coordinates, one for each bond, allowed
by the previous conditions, and equally distributed in
time over a period of both oscillators, say T~ and T~ for
the harmonic and the van der Waals bond, respectively.
Energies are chosen in such a way that e & 0 always, and
e~ ( 0 for bound states in the molecule-surface motion.
A necessary condition for desorption is then e + e~ )
0. One can calculate the desorption probability P(r) by
integrating the Hamilton equations of motion starting
from a suitably large set of initial conditions. Details are
discussed in Ref. 14.

One of the main results of Ref. 14 for IR-RMVP
applied to CH3F-NaCl is that the survival probability
I —P(7 ) can be approximately fitted with two exponen-
tial decay laws, one at a shorter and one at a longer time.
The latter allows one to introduce a desorption rate, say
pz ~ „due to slow desorbing trajectories, and the former

Vo meV
233

~o (s )
3.28 x 10

(uH (s ')
1.82 x 1O'4

TABLE I. Characteristic parameters fur the system
CHEF/NaCl.
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a rate p2, ~ „due to fast desorbing ones. The scope of
this paper is to use the transport theory in Hamiltonian
system (TTHS) methods in order to obtain a more ac-
curate and more insightful description of the time evolu-
tion of the desorbing system, and a comparison of the re-
sults with those obtained by numerical simulations, when
available.

III. PHASE-SPACE PROPERTIES AND
DESORPTION BOTTLENECKS

~e

~ ~ ~ J

In order to investigate the classical phase-space struc-
ture and relate it to the desorption process for the ERSD
model, a 2D conservative system, the most convenient
way is to make use of the Poincare section in a plane
spanned by the coordinates and momenta (y, p„) of the
van der Waals motion. In a (y, p„) Poincare section, the
point [y(r), p„(r)] is recorded in that plane for a given
classical trajectory for such r's for which x(v) = xo,
provided p ) 0. It is useful to start our analysis by
showing the Poincare section in Fig. 1 obtained with ini-
tial energies e~ o, e"= [to be denoted (j = 0, v = 20)
henceforth] for 1V = 50 trajectories integrated up to the
time w = 3000. A magnified portion of Fig. 1, to be
discussed in the following, is shown in Fig. 2. Although
such a high excitation of the molecular vibration cannot
be achieved experimentally, nevertheless this is a simple
and instructive case to show how to use the TTHS to lo-
cate the characteristic bottlenecks and calculate the rates
through them. In such a Poincare section, one observes
an inner region with regular motion and a more exter-
nal one where the motion is chaotic. One also verifies
that the stochastic trajectories are the desorbing ones.
The regular region is occupied by closed curves called
invariant tori, slightly perturbed by the nonlinear cou-
pling between the two oscillators, and by smaller closed
curves, called islands, around the points representing res-
onances between the two motions. Observing that the

FIG. 1. The Poincare section for e = e = + e~ o and
N = 50 trajectories. The two contours going to zero for
y ~ oo and joining at the point 0 are the desorption separa-
trix. Desorbing trajectories are contained within the flux-out
area of its homoclinic oscillations.

FIG. 2. The shaded eight-shaped area is the magni6ed
turnstile from Fig. 1.

nonlinear coupling between the two degrees of freedom
is not too strong in the island region, the resonances ap-
proximately occur when the ratio between the frequencies
of the two unperturbed oscillators is a rational number:
wH /wM (eM ) = n jm. For our parametrization of the
ERSD model the resonance with the smallest ratio is the
(n = 6, m = 1) seen in Fig. 1 as six tiny islands surround-
ing the two innermost shown invariant tori. The last reg-
ular structure seen in Fig. 1 refers to the (7, 1) resonance.
Recall that two cycles are associated to any (n, m) res-
onance: a stable one formed by elliptic points centered
within the islands (seen in Fig. 1) and an unstable one
formed by hyperbolic points Q, joined by a separatrix
(see the Poincare-Birkhoff theorem). Stochastic regions
generally exist in the neighborhood of the separatrix. On
such a Poincare section take two ensembles of trajecto-
ries, e.g. , a set of points lying on two segments, either of
them starting &om two adjacient hyperbolic points, one
belonging to the the stable and the other to the unsta-
ble branch of the separatrix, as in Ref. 17. Propagate
the points on the stable and unstable branches backward
and forward in time, respectively, until the two branches
intersect for the 6rst time at a homoclinic point. The
closed curve formed in this way by the stable and unsta-
ble branches of the hyperbolic points of the corresponding
cycle Q is called a dividing surface. One more forward
propagation of such a curve through the Poincare section
determines a curve identical to the dividing surface, ex-
cept in the neighborhood of the homoclinic point. If we
superimpose this new curve upon the old one, the difFer-
ence between them is just an eight-shaped figure, which
is often called turnstile. In fact, while the just-mentioned
forward propagation of the stable branch leaves a gap in
the neighborhood of the first homoclinic point, the same
propagation of the unstable branch moves away from the
dividing surface and fi.lls such a gap with a curve hav-
ing an oscillatory character. By further propagating for-
ward in time the unstable branch, this crosses the sta-
ble branch of the dividing surface infinitely many times.
The intersections are called homoclinic points, and the
oscillations homoclinic ones. In this way the turnstile is
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FIG. 3. The Poincare section for e = t
"= + e~ —0 near a

hyperbolic point Q for the resonance (7, 1). The dashed line
is one of its two stable branches and the dotted-dashed line is
one of its two unstable branches. The solid line is one of the
unstable branches of the neighboring hyperbolic point.

constituted by the first two homoclinic oscillations of the
unstable branch. An example of homoclinic oscillations,
associated with the (7, 1) resonance, is shown in Fig. 3.
Recall that any separatrix defines two dividing surfaces,
since at any hyperbolic point four curves (two incoming
branches and two outgoing ones) join Ref. 25. We shall
take into account that dividing surface, which is defined
more exactly in Appendix A. Because the ERSD system
is conservative, the area contained within any homoclinic
oscillations is preserved, as a consequence of the Liouville
theorem. The properties of any unstable cycle, together
with the generation of the turnstile for a similar system,
are shown in Ref. 17. Here we only recall that, in the
phase space spanned by the canonical coordinates of the
van der Waals motion, half of the area of the turnstile
lying outside the dividing surface is called the flux out
and the other half, lying inside it, the flux into the region
surrounded by the separatrix. Since, for any unstable
cycle, trajectories cross the separatrices only through the
corresponding turnstiles, such separatrices indeed con-
stitute the dynamical intramolecular bottlenecks for the
motion of the van der Waals bond. It has been shown
that the last invariant torus to disappear in the standard
map is the one characterized by a ratio uH/wM = 1+kg,
with pz —— 2, the golden mean. More recent work in
molecular physics has focused attention on similar tori,
characterized by a ratio su~/uM = r + pg (r real), as
the strongest invariant tori to break, although they are
not generally the last ones to disappear. The remnants
of such tori, partially destroyed by the nonlinear cou-
pling between the two oscillators, are invariant Cantor
sets which represent the most important bottlenecks also
for the ERSD system. In fact, they constitute strong
barriers to the stochastic motion. The first cantorus dis-
playing the character of an intramolecular bottleneck,
for our parametrization of the ERSD model, corresponds

to r = 7. By expanding the irrational number 7+ pg
into continuous fractions, one obtains the convergents
C = ((7, 1), (8, 1), (15,2), (23, 3), . . .), each of them
characterized by a frequency ratio cuH/ceo ——n/m, which
approximate the ratio 7 + pg better and better. Since
a continuous-&action expansion converges very rapidly,
few convergents C are enough to obtain an unstable
cycle, which well approximates the properties of the cor-
responding cantorus. In particular, one can often calcu-
late the flux in and the flux out and the corresponding
rates in and rates out (see Appendix B) through such a
bottleneck with very good accuracy, by using the area of
the turnstile of the separatrix of the first convergent.

There is also another important bottleneck in the sys-
tem: the one which all trajectories leading to desorption
must pass through. In Fig. 1 the two contours (in bold
face) going to zero for y ~ oo and joining at the point
0 are defined as the desorption separatrix between the
bound and the unbound motion for the van der Waals
degree of freedom. This separatrix has only one (degen-
erate) hyperbolic point for y —+ oo. After propagating
in time an ensemble of trajectories &om the hyperbolic
point forward for negative p„(unstable branch) and back-
ward for positive p„(stable branch), the two intersect at
the homoclinic point 0 for the first time (Fig. 1). These
branches, i.e., the thicker curve in Fig. 1, form the des-
orption separatrix. Further forward propagation of the
unstable branch past the point 0 leads to several homo-
clinic oscillations. The first eight-shaped figure, which is
magnified in Fig. 2, represents the turnstile associated
with the desorption separatrix. Note that all desorbing
trajectories are contained only within those regions of the
homoclinic oscillations which lie outside the desorption
separatrix. In conclusion, both the desorption and the
intramolecular separatrices are the relevant bottlenecks
for the ERSD model.

In order to calculate the time evolution of our system
in terms of the flux in and out areas of the turnstiles, we
need the following.

(i) A definition of the rate through any turnstile,
e.g. , the frequency by which an ensemble of trajecto-
ries crosses a bottleneck. These rates will be denoted
by A, ,+i (when they refer to the transport rate from an
inner R; to an outer R;+i region), and by A;~i, , in the
opposite case. In both cases, 0 & i & s. In short, the
former will be called rates out, the latter rates in. They
are defined in Appendix B. Of course A, ,+q is the last
rate out leading to desorption. The rates A; ~ form a real
nonsymmetric matrix, with a null diagonal element. An
accurate definition of any region B, is given in Appendix
A.

(ii) A method of fundamental, although technical, rel-
evance, namely how to very accurately locate the hyper-
bolic points of any unstable cycle 'R . In fact, only a
very accurate estimate (Q') of the hyperbolic points (Q)
can result in a correct identification of the stable and
unstable branches of the separatrix. In practice, the fol-
lowing condition is required: 10 (

~

Q' —Q
~

( 10 in
the dimensionless units defined in Ref. 14. The method
for finding Q is given in Appendix C.

Then we assume that in each region except the regular
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This system of (s + 1) equations implies that the phase
space leading to desorption can be subdivided into (s+ 1)
subregions, so that a trajectory starting from the inner-
most one (s = 0) has to cross (s + 1) bottlenecks before
desorbing. Ni are the trajectories within the ith stochas-
tic region, with 0 & i ( s. We can recast the system (7)
in the matrix form

n= An, (8)

where n is a column vector whose elements are n;
N;/N (N is the total number of trajectories) and A is
a square nonsymmetric matrix whose elements can be
worked out in terms of the rates A; ~ defined above. The
solution of Eq. (8) is4

n, (t) = ) A, (i) exp( p, )r, — (9)

A~(i) = a, (i) ) b~(i' )n; (r = 0), (10)

where p~. are the (non-negative) eigenvalues of —A and a~
and b~ are the corresponding right and left eigenvectors.
The survival probability S(r) can be expressed in terms
of the solutions (9) of the system (7), as

S

S(r) = n+) n;(r),
p

with n = N/N and N is the total number of regular
trajectories that never desorb.

At this point it is crucial to select the unstable cy-
cles 'R of the strongest intramolecular bottlenecks of
our system. When a lot of trajectories are stochastic, as
in the case (j = 0, v = 20), they are given by the con-
vergents C of the cantori. So we calculate the rates
through the corresponding turnstiles, and by Eq. (11)
compute S(w), which can be also compared with 1 —P(7 )
obtained with a numerical simulation. In other cases,
most of the initial conditions may refer to regular trajec-
tories, so that the initial conditions leading to stochastic
motion could be much inside any cantorus. In such a case
the first innermost stochastic region Ro (see Appendix A)
is just a narrow strip between the last regular torus and
the separatrix of the unstable cycle of a resonance which
may not be the convergent of any cantorus.

one, which never contributes to desorption, the motion is
completely chaotic, so that a system of first-order kinetic
equations is appropriate to describe the dynamics of the
desorbing trajectories.

dNO (7).
d7-

= —A(p y)Np + A(y p)Ng)

dN; (7.)
d7-

+A(i+g;) ¹+g,
dN. (~)

A(, ,—+i)N, —A(. . .)N, + A(. ..l&, i. (7)

IV. RESULTS

We wish to calculate the survival probability S(r) for
the ERSD model, parametrized in such a way as to de-
scribe IR-RMVP for the system CH3F-NaCl, using the
TTHS. This theory allows one to calculate the dynami-
cal behavior of the system, without integrating a suitable
set of initial conditions for long times and then averaging
over them, as is usually done in numerical simulations.
This fact turns out to be crucial in the analysis of pho-
todesorption of CH3F physisorbed on NaCl, since the
process is infrequent in character. Consequently, a nu-
merical simulation becomes often an impractical tool to
be used for determining realistic desorption rates, espe-
cially when the total energy of the system is hardly higher
than the threshold energy of the physisorption bond.
This is indeed the experimental situation, where the
intramolecular stretching bond C F (vs) of the CHsF
molecule is unlikely be excited up to a level higher than
v = 2 because of its anharmonicity. It would be natural
to investigate the case (j = 0, v = 2), since at ambient
temperature, the state with ~~ p has the greatest occu-
pancy. However, for such a splitting, e = e~ —p + e"=, of
the total energy, the system is regular and no desorption
occur s.

We present results for the time evolution of the sys-
tem for the following three initial energy partitions:
(j = 0, v = 20), (j = 2, v = 2), and (j = 1, v = 2).
The two latter ones are physically more significant and
represent the hardest test for our parametrization. For
(j = 0, n = 20) one can easily obtain numerically
1 —P(r) by integrating the classical equations of motion,
because the internal relaxation of the system is fast, des-
orption occurs on a shorter time scale, and there is good
statistics of desorbing trajectories. From a detailed anal-
ysis of the Poincare section in Fig. 1, we see that the con-
vergent C(7 z), of the cantorus deriving from the breaking
of the torus characterized by a ratio uH/w~ = 7 + ps
is the only important intramolecular bottleneck. So, it
suKces to subdivide the stochastic region into two parts:
the first one between the inner regular region and oo(7, 1)
and a second one between ao(7, 1) and the desorption
separatrix. Note that here we can neglect the rate into
the region limited by 00(7, 1), because it is much smaller
than the rates out. Figure 4 shows the survival proba-
bilities S(7) and 1 —P(r). The two curves are in very
good agreement. We note that at short times 1 —P(w)
is lower than S(r), because some trajectories immedi-
ately desorb within one period of the harmonic oscillator
T~. At longer times, the situation is reversed, since only
one intramolecular bottleneck (Clr il) approximates the
dynamical effect of the cantorus. It is interesting to com-
pare the rates, p~, ~ „and p~, i „,obtained by the best
fit of 1 —P(7 ) with two exponentially decaying functions,
with the two eigenvalues of Eq. (8), for this case. Their
values are reported in Fig. 4. While qualitatively both re-
sults show the existence of two characteristic times, e.g. ,
the inverse of such rates [see Eqs. (9)—(11)], the eigen-
values are about one order of magnitude larger than the
rates of the fit. However, S(w) reproduces much bet-
ter 1 —P(r) than the numerical fit reported in Ref. 14.
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V. CONCLUSIONS
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desorption separatrix. In Table II all details for the case
(j = 1, v = 2) are summarized. Observe that the rate in
A2 1 is not included, being negligible as in the previous
case. Similarly (see Fig. 7 ) there is a much smaller eigen-
value determining the long-time behavior of the system
so that all trajectories desorb in about 10 s, roughly the
inverse of pq. In Fig. 7 the behavior of S(7 ) is shown. No
significant results can be obtained by a numerical simu-
lation.

FIG. ?. Plot of logos [S(r)j for (j = 1, v = 2). For the
values of p see the text.

This work contributes to two aspects of the molecule-
surface interaction. First, it shows that desorbing tra-
jectories undergo a chaotic motion and that by using the
techniques of stochastic mechanics such as the TTHS, it
is possible to handle the time behavior of a molecule-
surface interacting system characterized by the fact of
being an infrequent event, such as IR-RMVP. Table II
shows that for the initial condition (j = 1, v = 2), out
of 10 initial trajectories only 0.25% are stochastic ones,
eventually desorbing. In such a case, while a classical
simulation has very little meaning, since the statistics
of the desorbing trajectories is extremely poor (consider
that we could not follow a single one up to desorption
for r = 10 ), the TTHS allows one to obtain the time
behavior of the ERSD model parametrized to describe
CH3F desorbing from NaCl. For such a system we have
been able to compute relevant rates down to 10 s, but
smaller ones could be obtained for other similar systems
with the same method. In conclusion, the TTHS allows
for a clear identification in the phase space of the phys-
ical bottlenecks, and provides a method to compute the
rates through them independently of any simulation.

Second, looking at the very low percentage of desorbing
trajectories from the van der Waals state (j = 1, v

2), whose population is much smaller than that of the

TABLE II. Phase-space region and rates for the case (j = 1, v = 2). A sample of N = 10 initial conditions is considered.

AREA
AREA
AREA
AREA
AREA
AREA
AREA
AREA
AREA
AREA
AREA
AREA

of the
of the
of the
of the
of the
of the
of the
of the
of the
of the
of the
of the

inner regular region
region enclosed by the separatrix op(31, 4)
region enclosed by the separatrix cr1 (8, 1)
region enclosed by the desorption separatrix
quasiperiodic region for the resonance (31,4)
quasiperiodic region for the resonance (1, 8)
stochastic region Rp
stochastic region R1
stochastic region Rg
flux out associated with the turnstile of Ro
flux out associated with the turnstile of R1
flux out associated with the turnstile of R~

(A„)
(A, o)
(A, 1)
(A. , )
(A „)
(A )
(Ao =A, o
(A1 ——A, 1
(Ag —A, , 2

(Ae, o)
(At 1)
(At, 2)

—A„—Aqp p)—A p —Aqp & Aqp p)—A, , 1)

2.63
2.70
3.405
8.88
0.00
0.174
0.07
0.53
5.475
3.5 x 10
1.4x 10
2.87x 10

RATE in the region Rp

RATE out the region Rp

RATE out the region R1

RATE out the region Rg

[A(~ p)
——Aq p/(A1T~)] (s )

[A(o, x) = Af, ,o /(Ao TH )] (s )

[A(1 2) ——Ag 1/(A1.T~)] (s )

[A(Q 3) —Ag 2/(A2T~)] (s )

8.25 x 10
1.9x 10
6.25 x 10
1.45 x 10
3.25 x 10
7.54x 10
6.55 x 10
1.52 x 10

NUMBER of trajectories starting
from inner regular region
NUMBER of trajectories starting
from the quasiperiodic region for the resonance (8,1)
NUMBER of regular trajectories
NUMBER of trajectories starting
from the stochastic region Rp
NUMBER of trajectories starting
from the stochastic region R1
NUMBER of trajectories starting
from the stochastic region Rg

FRACTI ON of regular traj ect or ies
FRACTION of trajectories starting
from the stochastic region Rp
FRACTION of trajectories starting
from the stochastic region R1
FRACTION of trajectories starting
from the stochastic region R2

(N„)

(N„,.)
(N = N + Nqp, 1)

(No)

(N, )

(N )

(n = N/N)

(np ——Np/N)

(n, = N, /N)

(n2 ——N2/N)

9975

0
9975

25

99.75%

0.25%

0.0%

0.0%
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state (j = 0, v = 2) at ambient temperature, one is
led to conclude that IR photodesorption has often to be
thermally stimulated. In fact, our results show that a
selective effect such as IR-RMVP, i.e. , predesorption, is
a very weak one for CH3F desorbing from NaCl.

AC KNO%'LED G MENTS

Computational support of the CNR's Progetto Final-
izzato Sistemi Informatici e Calcolo Parallelo is greatly
appreciated. We are also grateful to Z. W. Gortel for a
very careful reading of the manuscript.

APPENDIX A

Consider a Poincare section in the phase space (y, p„)
for the ERSD system. Let Q~ . .

~
be the unstable

Callcycle associated with the ith resonances &~n;, m,.~.

8 . . the separatrix of 'R~ . .
~

without homoclinic
oscillations. Let 'R~ . .

~
be the closed polygonal line

obtained connecting any couple of adjacent hyperbolic
points of 'Ri . . l by a segment. Define o;(n;, m, ) as the
closed curve constituted by that part of 8~, , ~

ying
outside 'R~ . .

~
as the dividing surface in our problem.

Following Refs. 17 and 18, we generally subdivide the
phase space in each Poincare section as follows: Bi, the
inner regular region constituted by the invariant tori plus
the islands; B2, a region Bo in between the regular one
and the first closed curve just defined, say ap(np, YDp);

Bs, i regions R, defined in between a, i(n; i, m; i) and
cr, (n, , m;) with 1 & i & s —I; B4, the region R, out-
side o8—i~ns —i ms-d ~ m

&
~and inside the desorption separa-

trix without the homoclinic oscillations.

APPENDIX 8

Consider a 2D conservative Hamiltonian system with
two degrees of freedom, described by the following Hamil-
tonian:

H(~, y, p, p„) = Hp + sH'.

1(7,R ) = OI7 (R ) nR j. (B3)

In Eq. (B3) R' is the complement of R . In Fig. 8 the
dashed shaded region is L(7, R ).

We wish to extend the definition (B3) to the case where
the dynamics of the system is not fully stochastic. As-
sume that within B there is a region Bp, limited by at
least one invariant torus under 7 (7 P = P). In genera,

bwithin it there may be invariant tori not destroye y
the perturbation, while the resonant invariant tori are
destroyed by the nonlinear coupling eH' and replaced by
an even number of fixed points (elliptic and hyperbolic
points). The separatrix joining the hyperbolic points is
usually enclosed by a stochastic layer. However, being
such a stochastic layer surrounded by invariant tori, it
cannot contribute to L, nor can the regular portion of
the region Bp. In conclusion, L is only determined by the
points of R between n and the invariant torus P. We
call such a region p (the dotted area in Fig. 8), and define
the transport rate through o., where B is not completely
stochastic, as

L(» s)~(»R ) (B4)

(B5)

where I (» p) = 0 7(p) 9 R'
The difFerence between Eq. (B2) and Eq. (B4) essen-

tially lies in the denominator. At first sight one could say
that being A(p) & O(R ) the definition (B4) contradicts
intuition, since the transport rate apparently increases
when the regular region surrounded by R is larger. In
practice, however, as we have verified, the numerator de-
creases faster as soon as the area of the stochastic region
becomes smaller. The parameter r is a dimensionless
rate. To convert this rate to the units defined in Ref. 14
we need the time phase-space average between two cross-
ings of any trajectory through the surface of section. In
the case of the ERSD model parametrized in such a way
as to describe CHBF-NaC1, this quantity coincides with
the period of the harmonic oscillator TH. In conclusion,
the transport rate out of the region p is

v.(» p)
TH

In Eq. (Bl) Hp is an integrable Hamiltonian and sH'
a nonlinear perturbation to it. Let 7 be the mapping
induced by the Hamiltonian II, which describes the time
evolution of the system on the Poincare section (y, p„)
defined for x = x. In the following only the dynamics of
the system on such a Poincare section will be considered.
Label n a noninvariant closed curve under 7 (7 n g n)
and let R be the stochastic region surrounded by o..
Following Bensimon and Kadanoff, the transport rate
of the points belonging to B through o. can be defined

I(7,R )K(»R )

where Q(R ) is the area of the region R, and

(B2)
FIG. 8. Flux transport through a noninvariant curve o.:

Rp, regular region surrounded by an invariant curve P; the
dotted area is the stochastic region surrounded by n; the
dashed area is the Hux out stochastic region.
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The transport rate into the region p can be trivially de-
fined by substituting in Eq. (B4) O(p) with O(p' —Bp).

APPENDIX C

Although the mathematical details of the derivation
will be discussed more rigorously elsewhere, it is worth-
while to summarize the main steps of the procedure,
which allows one to calculate the hyperbolic point of the
cycle (n, m) and its eigenvectors. Consider the Poincare
section describing the phase space of a 2D conservative
system and let Q be a hyperbolic point of the system,
relative to a cycle associated to a resonance (n, m). In-
troduce a polar frame with origin Q and consider a circle
centered at Q with radius r. The length of r has to
be smaller than the distance between Q and the near-
est elliptic point, which can be trivially visualized by the
phase-space portrait. The points g on such a circle are
defined by the vector

the following procedure in order to obtain one of them.
(C1) From the structure of the Poincare section (y, p„)

for x = zo, we can make a reasonable guess Q—:(g, p„)
for the coordinates of the hyperbolic point. In the frame
of reference centered at Q, call (rg, 0g) the polar coordi-
nates of Q. Obviously if Q = Q, D„(0g) = G, since any
hyperbolic point Q is a stationary one for the system.

(C2) If not, choose a circle centered at Q of radius
r such that the function D„(0) fulfills the property c2.
This is because we want an expression for D (0) with
only one minimum within the interval G & 0 & 2vr (see
the forthcoming point C4). Then subdivide the circle
into N arcs. The extrema of each arc locate N+1 points
on the Poincare section of coordinates y,. = r cos0, and

p„, = rsino;, with i = 1, . . . , N+ 1. They define N+ 1
diferent initial conditions for the ERSD system.

(Cs) Integrate the equations of motion up to the (n +
1)th intersection of the corresponding N + 1 trajectories
with the Poincare section, say [7ER+sD(y;), 7ER+sD(p„, )].

(C4) Calculate

&(0) = r
I „„0 I

. (C1) D.'(0') =—D.'(~' p~. )

([~ERSD(~') —~']' + [~ERSD(pw*) pii*] ). (C3)
Define the following function:

D (0)= l(7ERSD 1)&(0)
I

-=iS~(0)i'= ~ (0)(S S)~(0),

where 7FRsD is the mapping describing the dynamics of
the system on the Poincare section for the ERSD model

(g and S are the transposed vector and the transposed
matrix). The function D2(0) gives the squared distance,
between a point ( and its image under the (n + 1)th
iterate of the mapping 7FRsD, in the neighborhood of Q,
and displays two maxima of equal magnitude and two
minima equal to zero, for 0 & 0 & 2x.

Take now a circle centered at R g Q and call d the dis-
tance between Q and R. Then the function D, (0) shows
two difFerent behaviors according to the ratio d/r, for
G & 8 & 2x: ci, if d/r & 1, D„(0) still shows two maxima
and two minima but the magnitude of the two maxima
(minima) is different; c2, if d/r ) 1, D„(0) has only one
maximum and one minimum. As already pointed out,
the main diKculty of the TTHS for the ERSD model
parametrized to describe photodesorption of CH3F-NaCl
is to locate the hyperbolic points Q of an unstable cycle
(n, m) with the utmost accuracy. So we have worked out

0 ERSD i a a )I
(C4)

We look for a transformation to calculate the matrix el-
ements of 7o ERsD from those of So SIi,

We determine the coordinates of the minimum as a func-
tion of 0; and use its coordinates as a new guess Q' for
the position of Q. Then we choose a new (smaller) r
satisfying cq.

(Cs) We iterate the method until D, (0) calculated
from Eq. (C3) reaches zero with the required numeri-
cal accuracy. So we can determine the coordinates of Q
with the necessary accuracy [see point (ii) in Sec. III].

This procedure does not require any extrapolation of
the mapping 7ERsD and smoothly converges to the hy-
perbolic point Q.

Once we have computed the coordinates of Q, we
need its eigenvectors to construct the stable and unsta-
ble branches associated with it. Although the mapping
7FRsD is a nonanalytic one, in the neighborhood of Q
it can be safely considered as being its linearized form
70,ERSD ~

Following Ref. 25 we can use its (n+ 1)th iterate and
look for its eigenvectors. We can write

STS ~&
bii b12 l~ (aii —1) + a21

(b12 b22 ) (ail 1)a12 + a21(a22 1)

Substituting Eq. (C5) in Eq. (C2) and using Eq. (Cl), one obtains

bye sin 0 + bg2 sin 20 + 622 cos 0

(all 1)a12 + a21(a22 1)
'. +( --1)'

D2(0)

(C5)

(C6)

The matrix elements b;~ of (So) So can .be obtained by choosing three difFerent values of theta, 0g, k = 1, 2, 3, which
locate a particular point belonging to the circle of center Q. Integrating the three corresponding trajectories, we can
evaluate D2(0i, ) for each k. A simple way to calculate the matrix elements of 7o E+RsD from those of Sz+So is supplied
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by the following transformation:

(aii —1) = pi cos cdi,
Qy2 = p2 cos M2,

G2y = p2 Sln &2,
(agg —1) = pg siniog. (C7)

Substituting Eq. (C7) in Eq. (C5), the new variables satisfy

1

pg + ( (pg U) + (pl —pg W) —(plpg W) )= 2arctan
(pi —pg W) + pipgW

—arccos(U),

(Cs)

(C9)

(C10)

(C11)

with

bi2
(C12)

and

W = Ql —Ug. (C13)

The transformation (C5)—(C13) defines two linear map-

pings, 7~ERsD associated with the function Dg(0). So
given So So by integrating the equations of motion for one
initial condition very close to the hyperbolic point Q, we
can select the right mapping and hence obtain the cor-
rect eigenvectors v. Propagating in time the trajectories
along either eigenvector from adjacent hyperbolic points,
one can construct the stable and unstable branches of the
separatrix together with its homoclinic oscillations (see
Fig. 6).
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