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Sum rules for the planar surface of stabilized jellium
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The Hellmann-Feynman sum rules for the planar surface of s-p-bonded metals modeled by a
half-space-stabilized jellium are presented and numerically tested. They relate density derivatives
of the (stabilized) bulk and surface energies to moments of the electric field appearing in the metal
region, to the number of electrons spilled out into the vacuum region, and to the electronic density
at the surface.

I. INTRODUCTION

The progress in the calculation of the electronic surface
properties of metals observed over the last three decades
has been accompanied by the derivation of several exact
relations and sum rulesi s involving bulk and surface
quantities. These exact relations were derived by the
application of the uniform background (jellium) model
of (s-p-bonded) metal surfaces. (For the modification of
the sum rules for crystalline systems cf. also the addition
in Ref. 5.) The jellium model describes well basic fea-
tures of the inhomogeneous electron gas near the metal
surface and allows us to treat the problem numerically
without, relatively, great computational expense. The
exact relations or theorems prove to be useful checks on
the consistency of such numerical calculations. It is im-
portant that jellium calculations require one input pa-
rameter only, namely, the average electron density in the
bulk. Also, the calculated surface properties depend on
this parameter solely. This nice property of jellium is
overshadowed by the fact that jellium is in mechanical
equilibrium only for the average electron density n cor-
responding to r, —4.2, where n = 3/4vrrsaso. In addition
to this, the instability of jellium is manifested by the neg-
ative surface energies for high density metals (r, + 2.5).

Recently, Perdew, Tran, and Smith, 7 and indepen-
dently Shore and Rose, have proposed the stabilized-
jellium model which retains the simplicity of jellium (i.e. ,

depends on r, only) and stabilizes it for all r, by introduc-
ing a structureless pseudopotential correction. s Applied
to the metal-surface problem the stabilized jellium gives
very encouraging results: ' the calculated surface
energy is positive in the whole range of metallic r, and
fits well to the experimental data.

In the present paper we derive the stabilized-jellium
counterparts of the exact "bulk-surface" and "surface-
surface" relations for jellium. 4 5 In Sec. II we summarize

the essential formulas for stabilized jellium. Section. III
presents the many-electron Hamiltonian of the stabilized
jellium and the derivation of the theorems. In Sec. IV the
results of numerical checks of the theorems are presented.
The last section gives a summary.

II. THE STABILIZED JELLIUM MODEL

For the sake of further discussion it is convenient to
summarize the essential expressions for the stabilized jel-
lium model. Here we will follow the structureless pseu-
dopotential formulation of the problem by Perdew, Tran,
and Smith. 7 The total energy of a (finite) system as a
functional of the electron density n(r) and the positive
background density n+(r) = n0~(r), binding N = nV
electrons, is given by

E[n(r), n+(r)] = E&ei~ [n(r), n~(r)]

+ (s + vi„) d r n+(r)

+ (bv)ws d r O~(r) [n(r) —n+ (r)].

The Heaviside step function O~(r) equals 1 for r inside V
and 0 for r outside V. E„,ii is the total energy of the (ordi-
nary, i.e. , nonstabilized) jellium and includes standard ki-
netic, electrostatic, and exchange-correlation terms. The
two terms added to E;,~~ describe the stabilization. They
contain (i) the average Madelung energy of point ions (of
valency Z) embedded in a uniform negative background,

9 Z'/' "
M 10 r, ap

'

with ez = ez/47rso and ao = hz/rnez; (ii) the (averaged)
Ashcroft pseudopotential contribution
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W„(n, r, ) = 2vre nr, ;

(iii) a "difFerence potential"

where T, [n(r)] is the noninteracting kinetic energy. The
potential v (r) differs from vo(r), the corresponding
quantity for the nonstabilized jellium, according to

(6'v) = n [s (n)+iv (n r )], M.s"„,
v„",(r) = vo (r) + As„" + n "' [Oy(r) —1]. (12)

being the average over the Wigner-Seitz sphere of the dif-
ference between the pseudopotential of the lattice of ions
and the electrostatic potential of the uniform positive
background. For the details of the averaging procedure
see Ref. 7.

Now the Ashcroft pseudopotential radius r, is chosen
by demanding the bulk energy, which corresponds to the
functional (1),

s(n, r, ) = s~o + s (n) + u) „(n, r, ), (5)

to have its minimum for the (experimentally or theoret-
ically) given equilibrium density np of the particular (s-
p-bonded) metal under consideration. The first term is
the usual jellium bulk energy

O
s(n, r, )On

=0

leads [using s~(n) n ~
] to an expression for the

Ashcroft radius r, as a function of no.

so —= &o(n) + sxc(n),

where tp(n) and sxc(n) represent the kinetic and
exchange-correlation contributions, respectively. The
minimum condition

The third term on the right-hand side (rhs) describes a
discontinuity of the potential v„,(r). Just this jump in
the effective potential stabilizes the jellium; cf. also the
discussion of Shore and Rose. In the special case n = no
the jump amounts to np dso'/dnp because of Eq. (10).

With the ("stabilized" ) potential (12) the solutions of
the Kohn-Sham equations for each considered stabilized
jellium yield the electronic density and the total energy
in the same way as for the nonstabilized potential vp (r),
but the results are of course different due to the changed
effective one-particle potential.

III. THE HAMILTGNIAN AND THE THEOR, EMS

For the nonstabilized half-space jellium from the
Hellmann-Feynman theorem sum rules for the deriva-
tives of the bulk and the surface energy with respect
to the background density ("bulk-surface" and "surface-
surface" theorems) have been (re)derived, 4's'is general-
izing corresponding Budd-Vannimenus theorems. To re-
peat this procedure for the stabilized jellium, we need
the many-body Hamiltonian, which corresponds to the
energy functional (11). From the expressions presented
above it is obvious that the Hamiltonian is given by

2 [ ( ))2
1s (no) dao

3 7lo dAO
(8)

d r Oy(r) [n(r) —n]
In this way the total energy (1) depends on the mate-
rial parameters no and Z and on the actual background
density n, which may agree with np (for the case of equi-
librium, i.e. , zero pressure) or not (nonzero pressure).

With r, (np) from Eq. (8) the bulk energy (5) of the
stabilized jellium is now denoted as

OE'

On
=0 or

GE'0

dAp

M.s"„,
On

(10)

and the functional (1) takes the form

E[n, n+] = E;,ii [n, n+] + Ac"„,N

M,s"„,
+n d r O~(r) [n(r) —n).

From this functional results an effective one-particle po-
tential for the Kohn-Sham equation,

6
v„",(r) = (E[n(r), n+(r)] —T, [n(r)] j,

= 6'O + LE'~ )

(n) + w„(n, r, (np)),

where the subscripts np and 0 refer to stabilized and non-
stabilized jellium, respectively. Thus the minimum con-
dition (7) can be written as

with n(r) = g,. b(r —r, ) being the electron density op-
erator.

With this Hamiltonian, we proceed similarly as in the
derivation of the sum rules for jellium (see Refs. 4 and
5), i.e. , we do the following.

(i) Start with a finite geometry (a cylinder or disk with
radius A and thickness 2L).

(ii) Consider first the limit of an extended slab (A —+

oo) and then the limit of a half-space jellium (L —+ oo).
(iii) Specify the Hellmann-Feynman theorem to appro-

priate scalings of the positive background (n) and to the
material parameter no.

The application of the Hellmann-Feynman theorem and
the above procedure lead to the final formulas where
derivatives of' the bulk energy e~, and of the surface en-

ergy o.„",with respect to n and no are related to moments
of the electric field and the electron density profile.

The resulting sum rules can be summarized as follows:

(i) The scaling of n in the bulk energy yields

dz E~, (z) —n
GE'0

dn
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where n„",(z) and E„",(z) are, respectively, the electronic
density and the electric field of a semi-infinite stabilized
jellium with the background extending from z —+ —oo to
z = 0. n„",(0) is, therefore, the electronic density at the
surface (z = 0).

This sum rule (14) can be considered as an analog to
the Budd-Vannimenus ("bulk-surface") theoremi s d

AQ dz zE„";(z)

which follows trivially from Eq. (7) using Eq. (3), i.e. ,
with tv„(n, r, (no)) = n f(no).

For n = no the sum of the theorems (14) and (17)
yields after some simple manipulations

Ap
0

dip
dz Eo'(z) (15) ( d+

~
no co'

~

dz n"„',(z).
qdno dno

0

(21)

for the nonstabilized jellium. For a stabilized jellium at
its equilibrium density n = nc Eq. (14) can be rewritten
in the form

Ao

(no —n"„,'(0)]
Ap

dz E„";(z), (16)

where Eq. (10) is used. It is easy to see that Eq. (16)
coincides with the "generalized Budd-Vannimenus theo-
rem" (F14) of Monnier and Perdewi4 if their quantity C
(variational parameter) is chosen as the stabilizing pre-
factor (b'v)ws at n = no, i.e. , as no dao'/dno—, and their
A is set to zero. A comparison of the sum rules (14) and
(16) with the original Budd-Vannimenus theorem (15)
shows that they differ by an extra term proportional to
the electronic density at the surface, n„",'(0), and by re-
placing Eo'(z) —+ E;(z).

(ii) The scaling of n in the surface energy cr„, yields

This sum rule corresponds to the Vannimenus-
Budd ("surface-surface") theorem for the nonstabilized
jellium '

d
Op

dfl 0
dz zEO ' (z) . (18)

The difference terms in the theorems (14) and (17), com-
pared with the expressions for the nonstabilized case, re-
sult from the stabilization terms appearing in the Hamil-
tonian (13).

(iii) Application of a change of no in the Hellmann-
Feynman theorem yields

0

dz n„",(z). (19)

For the derivation of this formula we used amongst other
things the relation

(O~s"„,) O24~"„,

( On2 )„Ono On
(2o)

O „—„(O O
o.„", = dz zE„",(z) —

~

n A~„",
~

dz n„",(z).
On On

—OO 0

(17)

The last term of Eqs. (17), (19), and (21) contains the
number of electrons (per unit area) spilled out into the
vacuum region.

Finally, we want to mention that in analogy to the
"surface-edge" theorems, which we have derived for the
nonstabilized jellium recently, such sum rules can be
obtained for the stabilized case too. So as for the ordi-
nary (nonstabilized) jellium also for the stabilized jellium
there exists a hierarchy of sum rules leading from bulk
via surfaces to edges (and even cornersis).

IV. NUMERICAL CHECKS OF THE THEOREMS

The validity of the stabilized jellium sum rules derived
above has been tested numerically using the Monnier-
Perdew version of the Lang-Kohn computer code. As-
suming that the uniform positive background occupies
the left half-space, i.e. , n+(r) = no( —z), the Kohn-Sham
problem was solved self-consistently with the effective po-
tential including the stabilizing term n(M.s„,/On) 0(—z)
on the metal side. The surface energy functional con-
sists of jellium (kinetic, electrostatic, and exchange-
correlation) terms plus the stabilized jellium contribu-
tion resulting from the last term on the right-hand side
of Eq. (1). The jellium terms are influenced by stabi-
lization only indirectly. The exchange and correlation
energy was calculated in the local-density approximation
and for the correlation energy the parametrized values
of Ceperley and Alder " have been used.

The calculations were performed for four representa-
tive metals with the r, values covering the whole range of
metallic densities. For the numerical integration over the
wave number k an integration mesh with A(k/k~) = 0.01
is taken. The real space region of computation extended
from —3.5A~ to 2.0A~ with the integration mesh spaced
by A(x/A~) = 0.005 where A~ = 27r/k~ is the Fermi
wavelength. To assure a good convergency of the quan-
tities, in each calculation 100 iterations were used.

The results are presented in Table I for several values
of the actual density parameter r, (corresponding to n)
for each metal, which is characterized by the equilibrium
density parameter r, o (with no = 3/4vrrsoaso). In columns
3 and 4 we give the numerical values of the two sides of
Eq. (14). The integral over the electric field E„", inside
the metal, appearing in Eq. (14), has been determined
through the electrostatic potential difference between the
surface and the bulk according to the relation
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dz E„",(z) = P(0) —P(—oo). (22)

Here P(0) and P(—oo) denote, respectively, the values of
electrostatic potential at the uniform background edge
and in the bulk. The comparison of the numerical val-
ues of the left- and right-hand sides of Eq. (14) shows
excellent agreement both for polyvalent (Al, Mg) and
monovalent (Na, Cs) metals. The deviations are lower
than 0.3%.

Columns 5 and 6 of Table I contain the numerical re-
sults for Eq. (17) connecting the derivative of the surface
energy, with respect to the uniform electron density n,
with the integral over the electric field. The surface en-

ergy derivative, appearing in this relation, was evaluated
numerically. The integral standing on the right-hand side
of Eq. (17) was determined from the following relation for
the integral of the electrostatic potential P(z):

increase of r, . This decrease is smaller, however, than
the corresponding increase in the value of the integrated
electrostatic potential [Eq. (23)] which eventually pre-
vails and causes the derivative of the surface energy to
increase with r, .

The results of the numerical tests of Eq. (19) are given
in columns 7 and 8 of Table I. Similarly, as for Eq. (17)
the derivative of the surface energy with respect to no
was calculated numerically. The displayed numbers show
perfect fulfillment of this sum rule. For the densities con-
sidered the left- and right-hand sides of Eq. (19) do not
difFer by more than 0.5%. The derivative of the surface
energy with respect to the equilibrium density no is a
decreasing function of r, and does not change its sign.
Both the prefactor appearing on the rhs of Eq. (19) and
the integrated electron density on the vacuum side are
positive and decreasing functions of r, .

V. SUMMARY

dz zE~, (z) = dz [4(z) —4(-~)] (23)

As in the previous case both sides of Eq. (17) agree very
well. The agreement is best for the high density met-
als. Generally, the deviations are very small and in the
worst case do not exceed 3.2%%uo. It is interesting to note
that the derivative of the surface energy with respect to n
changes its sign and becomes positive with the decrease
of the actual density. This means that the surface en-

ergy attains a minimum for a certain value of r, . The
r, minimizing the surface energy does not coincide with
the r,o characterizing the bulk equilibrium and generally
exceeds r,o.

For a given r,o the number of electrons spilling out into
the vacuum, determined by the integral appearing in the
last term on the rhs of Eq. (17), is decreasing with the

The results of several recent papers seem to
support the opinion that the stabilized-jellium model
provides a more realistic description of the properties of
s-p bonded metals than ordinary jellium does. In this
paper we demonstrated how the sum rules for the (non-
stabilized) jellium are modified if one applies the stabi-
lization procedure.

Considering the density derivatives of the bulk and sur-

face energies, for the stabilized jellium we have to distin-
guish between the equilibrium density (no) of the par-
ticular metal under consideration and the actual density

(n), which may be difFerent from the former one (nonzero
pressure) or not (zero pressure). Our results are as fol-

lows.
(i) For the derivative of the bulk energy we have ob-

tained Eq. (14), which is a modification of the "bulk-
surface" (or Budd-Vannimenus) theorem, relating bulk

TABLE I. The numerical values for the left-hand sides (lhs's) and right-hand sides (rhs's) of the
sum rules (14), (17), and (19) of a half-space stabilized jellium. All quantities are given in atomic
units (energies in hartrees).

Metal
rsO rs

Eq. (14)
lhs rhs

Eq. (17)
lhs rhs

Eq. (19)
lhs rhs

Al
2.07

1.80
2.07
2.40

-0.012338
-0.039325
-0.050362

-0.012341
-0.039326
-0.050366

-0.154321
-0.058592
0.003206

-0.154171
-0.058554
0.003180

0.184007
0.072278
0.027212

0.184162
0.072296
0.027193

Mg
2.65

2.30
2.65
3.00

0.002348
-0.017163
-0.024941

0.002350
-0.017164
-0.024945

-0.102914
-0.031704
0.007597

-0.102930
-0.031688
0.007597

0.138370
0.053954
0.023887

0.138555
0.053938
0.023830

Na
3.99

Cs
5.63

3.70
3.99
4.30

5.40
5.63
5.90

0.004323
-0.000899
-0.004417

0.005909
0.003436
0.001209

0.004324
-0.000900
-0.004420

0.005907
O.QQ3436
0.001207

-0.026211
-0.005376
0.010434

-0.011919
-0.001345
0.008543

-0.026201
-0.005379
0.010502

-0.011776
-0.001304
0.008624

0.056515
0.034261
0.020941

0.042374
0.031523
0.022681

0.056475
0.034225
0.020846

0.042194
0.031447
0.022578
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and surface properties, but with an extra term propor-
tional to the electronic density at the surface. (The ob-
tained theorem for the derivative of the bulk energy with
respect to no instead of n is a trivial relation. )

(ii) The surface energy derivative with respect to the
actual density n is given by Eq. (17), which is the coun-
terpart of the "surface-surface" (or Vannimenus-Budd)
theorem for jellium and contains an extra term propor-
tional to the number of electrons (per unit area) that spill
out into the vacuum region. The derivative of the sur-
face energy with respect to the equilibrium density no is
given by Eq. (19), i.e. , it is also proportional to the num-
ber of electrons outside the electronic surface. The two
theorems (17) and (19) for the derivative of the surface
energy involve the second derivative of the bulk energy.

By solving self-consistently the Kohn-Sham equations
for a semi-infinite stabilized jellium, these new sum rules
(14), (17), and (19) have been tested numerically. The
results of Sec. IV show that they are very well satisfied.
Hence, these sum rules can be applied for checking the
self-consistency of numerical calculations and to get fur-
ther insight into the physics of the stabilization procedure

at planar surfaces.
The sum rule (14) is used in a recent attemptis to

study spherical voids within stabilized jellium (as a model
for spherical-like vacancy clusters in s-p-bonded metals).
Besides this, the stabilized analogs to the nonstabilized
jellium-void theorems4 szo can be derived. Similarly,
one can derive sum rules for edges and corners of the
stabilized jellium.
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