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Photon drag in a single-level metallic quantum well
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A theoretical study of the photon-drag effect in a one-level metallic quantum well is presented. It is
demonstrated that the photon drag, associated with second-order nonlinearities in the two-dimensional
electron-gas system, originates in a combined diamagnetic and paramagnetic response. The photon-drag
current density along the quantum well and the prevailing dc electric field across the well are calculated
in a manner which takes into account local-field effects in the induced dc field as well as in the funda-
mental field of light. The local-field phenomena at the excitation frequency are studied on the basis of a
self-consistent integral equation formalism. Within the framework of the slave and self-field approxima-
tions the photon-drag current density and the dc field prevailing across the well are examined. Finally,

0
numerical results for the integrated photon-drag current density in a 3-A-wide niobium quantum well
deposited on a crystalline quartz substrate are presented. Data are obtained in the —10-pm wavelength
regime for both bulk and surface-wave excitation schemes.

I. INTRODUCTION

In recent years, the linear optical properties of so-
called ultrathin metallic films deposited on dielectric sub-
strates have been investigated experimentally' and
theoretically. ' The attractiveness of these systems is as-
sociated with the fact that the (few) monolayer thick films
form metallic quantum wells. The confinement of the
conduction-electron motion perpendicular to the plane of
the film can give rise to a strong frequency dispersion of
the reflectivity, ' and hence to large changes in the s- and
p-polarized reflection coefficients in certain wavelength
ranges. Furthermore, the linear optical properties can
change drastically with the thickness of the quantum
well. ' From a theoretical point of view, the metallic
quantum wells are of considerable interest because they
allow studies of a number of fundamental subjects in op-
tics, e.g., local-field effects, two-dimensional jellium elec-
trodynamics, mesoscopic phenomena, and few-level dy-
namics. As far as the few-level electrodynamics is con-
cerned, it is possible in a narrow metallic quantum well to
have only one bound state. If such a system is excited by
light having a frequency far below that needed for photo-
emission, only the diamagnetic effect plays a role for the
optical response of the quantum well, and even in the
case of quantum wells with more than one bound state
the diamagnetic response will dominate the electro-
dynamics if the frequency of the light is so low that no
transitions can take place between the discrete levels. In
fact, it has turned out that extremely good agreement be-
tween theory and experiment can be obtained in the (far)
infrared regime where the diamagnetic effect is the dom-
inating one. ' ' In the case of two bound states in the
metallic quantum well, basic local-field phenomena asso-
ciated with the paramagnetic effect can be investigated.

Keeping in mind that the optical second-harmonic gen-
eration from centrosymmetric media is surface sensitive
on the monolayer level (for a review, see Ref. 5), it ap-
pears natural and important to extend the studies of met-

al overlayers on dielectric substates to the nonlinear re-
gime. Thus, a preliminary theoretical study of the
second-harmonic generation from niobium quantum
wells has recently been put forward by Liu and Keller.
One would expect that quantum-well effects in certain
cases can play a role for metallic overlayers deposited on
semiconductor or metal substrates. Second-harmonic
generation investigations of these systems have also been
on the rise for some years.

In the present work, a theoretical study of the photon-
drag effect, inevitably accompanying second-harmonic
generation (and higher even-order nonlinearities), has
been carried out for quantum wells of the metal-dielectric
type within the framework of a nonlocal scattering-
theory formalism for mesoscopic systems.

' The
photon-drag effect in two-dimensional electron-gas sys-
terns also has been studied recently theoretically by
Vas'ko, ' Luryi, ' and Grinberg and Luryi, ' and experi-
mentally by Wieck, Sigg, and Ploog. ' In semiconductor
heterostructures, Stockman, Pandey, and George' have
carried out a theoretical analysis. In previous studies of
the photon-drag effect in confined structures the main
emphasis was devoted to the effects that occur when the
optical excitation frequency is close to an intersubband
transition. Here, we focus our considerations on the sim-
plest quantum wells, viz. , the ones where only one bound
(and occupied) state exists in the well, and we pay special
attention to the role of local-field effects, which are
known to play a prominent role for the linear electro-
dynamics of quantum wells in the diamagnetic regime.
The two-band light-induced free-electron drift in metals
was very recently investigated theoretically by Shalaev,
Douketis, and Moskovits, ' who also presented experi-
mental evidence for the effect in the form of spatially
asymmetric photoemission from silver films. An experi-
rnental study of the picosecond response of photon-drag
detectors in the 10-pm wavelength range of the
Al Ga& As/GaAs multiple-quantum-well type has been
presented by Kesselring et al. '

0163-1829/93/48(7)/4786(4)/$06. 00 48 4786 1993 The American Physical Society



PHOTON DRAG IN A SINGLE-LEVEL METALLIC QUANTUM WELL 4787

The paper is organized as follows. Taking as a starting
point the Liouville equation for the many-body density-
matrix operator, we establish, within the framework of
the relaxation-time approximation, a general expression
for the forced part of the second-order dc current density
in Sec. II. When specializing in the case where the quan-
tum well contains one bound state only, it is realized that
only so-called semilocal processes, i.e., processes consist-
ing of a combination of the diamagnetic and paramagnet-
ic responses, contribute to the nonlinear dynamics of the
two-dimensional electron gas. The semilocal photon-
drag response tensor is calculated and analyzed in the
low-temperature limit. The section is terminated by a
calculation of the photon-drag current density across the
quantum well. In Sec. III, the prevailing dc electric field
inside the quantum well is calculated in a self-consistent
manner. Due to the fact that the photon-drag current
density and the local electric dc field depend crucially on
the p-polarized first-harmonic local field in the well, we
take up a study of the local field associated with the fun-
damental frequency in Sec. IV. A nonlocal calculation of
the linear conductivity tensor of a single-level quantum
well is performed, and the basic integral equations for the
s- and p-polarized parts of the local field are studied. Spe-
cial emphasis is devoted to an analysis of the p-polarized
local field in the slave model. In this model the com-
ponent of the local field perpendicular to the quantum
well is driven (slaved) by the background field plus the
field generated by the current density along the well in an
approximation where this current density is independent
of the local field across the well. The slave approxima-
tion is analytically simple to handle and leads, in general,
to accurate quantitative results. ' In Sec. V, we use the
slave model to calculate the photon-drag current density
and the local dc field prevailing across the quantum well.
Also, a few remarks concerning the self-field approxima-
tion are given. Finally, we discuss within the framework
of the slave model the local-field resonances expected to
appear in the photon drag associated with a single-level
quantum well. In Sec. VI, numerical results are present-
ed for a niobium quantum well of thickness 3 A deposited
on a crystalline quartz substrate. Using a bulk-wave exci-

tation scheme the normalized integrated photon-drag
current density is calculated as a function of frequency in
the vicinity of the CO2 laser lines for different angles of
incidence. If electromagnetic surface waves are used to
excite the photon-drag current it is demonstrated that the
normalized drag current can be increased by two orders
of magnitude near resonance. Special attention is paid to
a comparison of the results of the slave and self-field
models. In all the numerical studies the incident field is p
polarized.

II. PHOTON-DRAG RESPONSE

A. Second-order dc current density:
General expression

In order to calculate the nonlinear dc current density
Jo(r) induced, at the position r in the quantum well, by a
monochromatic (cyclic frequency co) local field described
by the vector potential,

A, (r, t)= —,'[ A, (r;co)e ' '+c.c.],
one takes as a starting point the general expression

Jo=Tr{pod~I + —,'Tr{p, P, J + —,'Tr{p, P, I .

This expression, valid to second order in the vector po-
tential, is derived from an iterative solution of the Liou-
ville equation for the many-body density-matrix operator.
The quantities p& and po denote the linear amplitude and
the nonlinear dc part of the density-matrix operator, re-
spectively, and PF and 8, are the free (F) and field-
perturbed parts of the current-density operator (in second
quantization). The dagger stands for Hermitian conjuga-
tion, and Tr{ ) means trace of { I. Denoting the field-
unperturbed many-body states of the quantum well by
~I ), ~

J ), etc. , the associated energies by EtEJ, . . . , and
the probabilities for the various states being occupied by
PI, PJ, . . . , one has in the relaxation-time approxima-
tion,

PJ —PrTr{pi~iI=ITr{pi~iI)'= g
and

Tr{p.d', I
= g . &I W. l»&~l~. ll )

IJ J I I 7

I,J,M EJ Er —lA/7

PI PM PJ PM

,+, ,
&I~a, ~~)&M m, ~J)

PI PM PJ PM+ +
EM EI A(co+i lr) ——E~ EM+Pi(co+i /~)—

(4)
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where H& and Ho denote the linear and the nonlinear dc
part of the Hamiltonian, respectively.

B. Second-order dc current density:
Single-level quantum well

Let us now consider a metallic quantum well in the
form of a thin plane-parallel film of thickness -d placed
on top of a semi-infinite nonconducting substrate occupy-
ing the halfspace z )0 in a Cartesian xyz-coordinate sys-
tem (see Fig. 1), and let us assume that there exists only
one quantum level of energy e in the quantum well and
that this level lies below the Fermi level, i.e., e&e~, eF
denoting the Fermi energy of the particles (electrons).
Parallel to the plane of the film it is assumed that the
electrons exhibit free-electron-like behavior with an
effective mass m. Limiting ourselves to a one-electron
description, the particles in the quantum well have
stationary-state wave functions of the form

%(r) =(2') 'P(z)e

Vac.

PO
E E(i

POEg
E

~)x

(i.

)PO

Sub.

Iq~~
'f

A, (r;~)= A, (z;ql, ~)e (7)

where
q~~

is the component parallel to the surface of the
wave vector of the incident field. In the gauge used to
derive the expressions in Eqs. (3) and (4), the time-
dependent part of the scalar potential was set equal to
zero. Hence, the z part of the fundamental electric-field
amplitude E,(r;co) =E,(z;ql, co)exp(iql r) will be given by

where li(z) denotes the one-dimensional wave function of
the only bound state, and (2') 'exp(ikl r) describes the
free-electron behavior of a particle having a wave vector
k~~~

along the film plane. It is possible to choose le(z) to be
real and we shall do so in the remaining part of this pa-
per.

In the following it is assumed that the frequency of the
prevailing electromagnetic field is so low that the elec-
trons in the quantum well cannot be excited into the con-
tinuum. In this case, where one essentially has a two-
dimensional free-electron gas, it can be shown, using ar-
guments of the type given for the superconducting three-
dimensional jellium case in Ref. 20, that the contribution
from the term TrI peg+ I vanishes. Thus, for the single-
level metallic quantum well the current density associated
with the photon-drag effect is to be obtained from

Jo(r) = ~~TrIp&8& I +c.c. (6)

By taking advantage of the fact that our system exhib-
its infinitesimal translational invariance against displace-
ments parallel to the xy plane, the vector potential ampli-
tude of the local field stemming from a plane incident
wave takes the form

E&(z;q~~, co) =iso Ar(z; (8)

In the following, we shall for brevity normally neglect the
superAuous indices

q~~
and co from our notation, i.e.,

E, (z;q~~, co) =E,(z), etc. The translational invariance im-
plies that the photon-drag current density in Eq. (6) be-
comes independent of x andy, i.e., Jo(r) =Jo(z).

Using the single-particle wave function in Eq. (5) to-
gether with the expression for the vector potential in Eq.
(7) [and the formula for &, and 4, (Ref. 12)j, one can by
standard calculations obtain the following explicit expres-
sion for the z-dependent photon-drag current density:

Jo(z) = ,' f f X—o(z,z', z"):E,(z")E,*(z')dz "dz'+c. c. ,

(9)

where the so-called second-order photon-drag response
tensor is given by

FIG. 1. Schematic figure showing a metallic quantum well

(QW), in the form of a thin plane-parallel film, placed on top of
a dielectric substrate (sub. ). A p-polarized field (Ei) of wave-
vector q incident from the vacuum (vac. ) side gives rise to first-
harmonic (Ei) and second-harmonic (E2) components in the
reAected field. The nonlinear process is accompanied by the
generation of a photon-drag (PD) current density (J ) along the
quantum well, and a dc electric field (E~~ +E~ ) in the plane of
incidence. As indicated in the bottom part of the figure it is as-
sumed that there exists only one bound energy eigenstate in the
quantum well, and that this state lies below the Fermi energy,
i.e., e& e~.

Xo(z,z', z")—:Xo(z,z', z";ql, co) =—Ae U
Q (z)Q (z")&(z—z')4' CO

xf"
A'(co+i/~)+

(10)
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In Eq. (9) the integrations extend over the quantum
well (QW), and in Eq. (10), fo(E)= Iexp[(E p—)/k&T]
+ 1] is the Fermi-Dirac distribution function, U is
the unit tensor of dimension 3 X 3, and 5(z —z') is the
Dirac 6 function. It is interesting to note that Xo, apart
from a factor of —1 is identical to the so-called semilocal
(sl) diamagnetic nonlinear response tensor Xz' ' describing
a part of the second-harmonic response from a two-
dimensional electron gas, i.e., '

f~&f ~f 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0

[zij]

X2"'(z,z', z";q((,co) = —Xo(z, z', z";q((, co) .

C. Photon-drag response tensor and current density

For the normal metallic state it is a good approxima-
tion to assume that the distribution function is a step
function, i.e., fo(E)=1 for E(eF and fo(E)=0 for
E)e~. Using this T=O approximation it is possible to
carry out the double integral in Eq. (10) (see the Appen-
dix). Doing this, one obtains

A'e
Xo(z,z', z" ) =

4m co

Xg (z)g (z")5(z —z')(R+ —R )Ue

(12)

where

FIG. 2. Schematic diagram showing in the upper part the
symmetry scheme of the third-rank photon-drag response ten-
sor, and in the lower part the semilocal structure of the
response. In a semilocal process the induced dc current density
at space point r depends on the product of the fundamental
electric field in the surroundings (straight line, r"~r) and at r
(circle, r' =r).

By inserting Eq. (12) into (9) the photon-drag current
density takes the form

Jo(z) =—
IC(q~~, co)g (z)E*, (z)

1

2 2 2 2R — ' + q() [cx+ Q cx+ P K(( ] K((277

with

i
cx~ =A co+ + q2m

(13)

(14)

with

X J g'(z')E, „(z')dz'+c.c.
QW

Ae

4m co

(17)

(18)

(15)
It is readily demonstrated that R+ —R ~0 for

q~~
0

so that

and K(q~~ ~0,co) =0 . (19)

27ll
~ (eF

g2

1/2

(16)

In Eq. (12), e denotes a unit vector in the positive x
direction. In passing one should note that the last term
in the curly brackets of Eq. (13), i.e., ~~~, does not contrib-
ute to R+ —R

It appears from Eq. (12), and it holds even if the low-
temperature approximation is not made, that the third-
rank photon-drag response tensor only has three nonvan-
ishing tensor elements (-e e e, e~e~e„, and e,e,e )

which furthermore are identical, cf. Fig. 2. It also tran-
spires from this equation (and it is also correct for a
nonsharp distribution function) that the photon-drag
response tensor is semilocal, which means that the
current density at z depends on the electric field in neigh-
boring points only as far as one of the two E fields enter-
ing Eq. (9) is concerned. The spatial structure of the sem-
ilocal response function is shown schematically in Fig. 2.

This means that the photon-drag current density van-
ishes in the long-wavelength (local) limit, an expected re-
sult since there cannot be any net moment exchange be-
tween the electrons and the light in this limit. The
photon-drag efFect also is absent if the prevailing funda-
mental electromagnetic field is s polarized. As is well
known the prevailing fundamental field is s polarized if
the incident electric field is s polarized; cf. also the discus-
sion in Sec. IV.

III. PREVAILING dc ELECTRIC FIELD
ACROSS THE QUANTUM WELL

In Sec. II, an expression [Eq. (17)] was derived for the
forced part of the photon-drag current density. To this
part one has to add an as yet unknown free (F) part JF in
order to obtain a self-consistent solution to the combined
set of the Schrodinger and Maxwell equations including
the appropriate boundary conditions. The translational
invariance parallel to the xy plane implies that the pre-
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vailing dc magnetic field and the free current density are
functions of z only, i.e., HO=HO(z) and J~=J~(z), respec-
tively. In turn, it follows from the Maxwell equation

where

n(z)= (e~ —e)1it (z), e(e~ (24)

V X Bo(z)=po[JF(z)+ Jo(z)] (20)

that the total current density in the direction perpendicu-
lar to the quantum well vanishes, i.e.,

e, [J~(z)+Jo(z)]=0, (21)

o.„(z,z', co=0)= n(z)5(z —z'),ze
(23)

e, being a unit vector in the z direction. If the electrons
are allowed to fiow freely (i.e., without externally im-
pressed dc fields) along thequantum well the associated
current density is given by (U —e,e, ) Jo(z).

Since the total dc current density in the z direction
vanishes, a dc electric field, Eo(z) =Eo, (z)e„must neces-
sarily be created across the quantum well. To determine
this field we shall make use of the fact that the free
current density in the z direction is related to Eo, (z) via
a constitutive equation of the form

J~,(z)= J o„(z,z', co=0)E, ,(z')dz', (22)
Qw

where o „(z,z';co=0) is the relevant linear dc conductivi-
ty response function. For our one-level quantum well,
ozz 1s

is the electron density. The results in Eqs. (22) —(24) are
derived in Sec. IV. By combining Eqs. (17) and (21)—(24)
it is realized that the dc field induced across the quantum
well is given by

Eo,(z)= K qll, co E&,(z)
~A

2e r(e —e~)

X f P (z')E, „(z')dz'+c.c.
Qw

(25)

IV. LOCAL FIELD AT THE
FUNDAMENTAL FREQUENCY

A. Linear conductivity response tensor

In order to achieve an explicit determination of the dc
field generated across the quantum well and the current
density induced along the well one has to calculate the lo-
cal field at the fundamental frequency. As a starting
point let us consider the linear conductivity response ten-
sor for a single-level quantum well, i.e., '

2

cr(z, z';q, co) = n(z)5(z —z')U
m(1 icor)—

2/2
fo &+ It'll qlll fo &+—

(co+i /r)+ lcll q

d k
'2 (26)

where the electron density is given by

d
klann(z)=2/ (z) J~™fo e+ kll2m (2~)2

e To.„(z,z', q, co) = n(z)5(z —z')
m (1 icor)—

2/2
+

2 Q (z)P (z')(S —S+), (29)

mk~ T EF Ef (z)ln 1+exp
7TA2 k, T E (EF. (27)

cr (z,z';qll, co) = . n(z)5(z —z')
m 1 icor)

In the low-temperature limit, the expression for the den-
sity reduces to that cited in Eq. (24). It is possible in the
T~O limit to perform the integrations in Eq. (26), cf. the
Appendix. The result one obtains is the following: and

2 2

(30)

where

0 o. 0

0 o„
(28)

e 1"
cr„(z,z';qll, co) = . n(z)5(z —z'}

m 1 Eco'r

with n (z) being given by Eq. (24). The wave-vector
dependence of o. is contained in the quantities
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1S~(q, co) =
2~p2

K
II

4mp

a+ + q)( (32)

2
CX+ q

)(+ [CX~ +it+ P K)) ]
2 2 2

2

ly appears from Eq. (26) that the paramagnetic contribu-
tions to 0.„and0. vanish in the limit qII

—+0. Hence, in
the local limit only the diamagnetic term survives and

&yy 0 zz 7 as exPected.

B. Solution of the basic integral equations for the local 6eld

and

a+
T+(q, co) =

2~p2 3p2~

K
[( 2 p2 2)3/2 3 ]++

II
+

With a knowledge of the linear conductivity response
tensor, the local electric field at the fundamental frequen-
cy can be obtained by solving the basic integral equa-
tion'

(33)

One notices that the conductivity tensor is diagonal. In
general, i.e., in cases where several levels are present and
interband transitons are thus allowed, the elements 0. ,
and 0., are different from zero. The elements 0.

+y
0.yz,

0 yz and 0.
zy a1ways vanish since the s- and P-Po 1arized

excitations are uncoupled. The reason that 0.„,and 0.,
are zero here stems from the fact that when only one lev-
el is present the electron motion in the z direction is
frozen implying in turn that the z component of the tran-
sition current density vanishes. Since the z component of
the transition current is zero, o.„consists only of the lo-
cal (i.e., q~~

independent) diamagnetic contribution. In
the static limit, o.„ofEq. (31) is reduced to the expres-
sion given in Eq. (23). The nonlocal (paramagnetic) terms
entering the exPressions for 0. and 0.

yy
are different

(S+WT+) because the electron motions along the x and y
directions are no longer equivalent when q~~&0. It readi-

E,(z) =E, (z) —ippco f f 6 (z,z') o (z', z" )
Qw

E,(z")dz "dz ', (34)

Ei y(z) Ei y(z) iixpco f f Gyy(z z )o (z z )
Qw

XE i (z" )dz "dz', (35)

where G is the relevant electromagnetic Green's func-
tion of the vacuum-substrate system, and E& is the so-
called background field (consisting of the sum of the in-
cident field and the field refiected from the substrate).
The tensorial forms of the Green's function and the con-
ductivity [Eq. (28)] allow us to divide the integral equa-
tion in (34) into decoupled equations for the s- and p-
polarized components of the fundamental field, i.e.,

(z)=E, (z) ippco —ff [G (z,z')o(z', z".)E, (z") +G„(z,z')o„(z',z") E, ,(z")] dz "dz',
Qw

(36)

E, ,(z)=Ei, (z) imp~ f—f [G, (z, z')o „(z',z")Ei (z")+G„(z,z')cr„(z',z")Ei,(z")]dz"dz', (37)

respectively. Since the integrals in Eqs. (35)—(37) extend
over the quantum well the basic problem consists of
finding a self-consistent solution for the local field inside
the quantum well. Once this has been obtained the field
outside the quantum well, if necessary, can be found by
integration of known functions over the quantum well.

Let us start by considering the integral equation for the
s-polarized part of the fundamental field. Since for the
wavelengths of interest in the present context (optical
ones) the electromagnetic propagator and the back-
ground field are almost constant across the quantum well,
one has Ei (z) =E i (0):E i and—

G (z,z') =G (0,0)=(1+r') /(2iqi ),
where r' is the amplitude reAection coefficient for s-
polarized fields, and qi=[(co/cp) —

q~~
]' is the com-

ponent of the wave vector of the incident field perpendic-
ular to the surface. In turn, this means that the local field
is approximately constant across the well, i.e.,
E, (z) =E, (0)=E, . Next, this im—plies that the solu-
tion of Eq. (35) is given by

E, =E, I+ippcoG~~(0, , 0)

&& f f o„(z',z")dz"dz'
Qw

(38)

where

EB
1,y

yy

(39)

@pe(eF e) 2iLi, pA ( T —T+ )
K =e G (0,0) +

m2(~+i /r) m

(40)

The result in Eq. (39) [with (40)] is for one level a general-

inside the quantum well. Utilizing the normalization of
the wave function [f&wI itj(z)I dz =1], it is a straightfor-
ward matter to carry out the double integral

f f&wo(z', z" ).dz "dz'. Doing this, finally, one obtains
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ization of that obtained recently in the local limit. The
local diamagnetic calculation performed in Ref. 3 was ap-
plied successfully to interpret recent linear infrared
reAection data for a niobium quantum well deposited on a
crystalline quartz substrate. '

Let us turn our attention now towards the coupled in-
tegral equations for the p-polarized part of the fundamen-
tal field. Thus, by inserting the expressions for o.„and
o„given in Eqs. (29) and (31), with n(z) taken from Eq.

I

G„(z,z') =
2

Cp
5(z —z')+P„(z,z'), (41)

the basic integral equations take the form

(24), into Eqs. (36) and (37), and by extracting the self-
field part, (co/co) 5(z —z'), of the background propagator
from G„,i.e.,

e'r(eF e)—
E, (z) =E, „(z) i poco— 2 f G„„(z,z')g (z')E, „(z')dz'

vrR (1 ice—r) Qw

2 2

+ (S —S+ ) f G (z,z')g (z')dz'
m co Qw

e'r(eF e)—
+

2 G~z z, z ' z ' E&, z ' dz
vugh (1—ivor) Qw

z" E& z" dz"
Qw

(42)

and

e'~(eF e)—
E, ,(z) =E, ,(z) —ipoco, f G,„(z,z')P'(z')E, (z')dz'

mR (1 i cur—) Qw

2/2
+ (S —S+ ) f G, (z,z')P (z')dz'I co . Qw

z E& z" dz"
Qw

coe r(eF —e) e'r(eF —e)+
2 ~ P (z)E, ,(z)+ 2 f P„(z,z')g (z')E, ,(z')dz'

mR co (1 icos—) '
rrR (1—icos) Qw

(43)

Since no double integrals occur in Eqs. (42) and (43), this coupled set of integral equations is considerably simpler to
solve than the general set in Eqs. (36) and (37). A further reduction of the problem is obtained by utilizing that the
background field and the propagator components G and P„areslowly varying across the quantum well. Thus, in an
explicit form,

20
q~ cp

G„,(z,z') =G „(0,0)= (1 rF), —
l CO

(44)

2 2

P„(z,z') =P„(0,0)= (1+rF),q(( Cp

2iq z
(45)

E, (z) =E, (0)=E,„,and E—, ,(z) =E, ,(0)=E, „where rF—is the p-polarized amplitude reflection coefficient. The
ofF'-diagonal elements of the electromagnetic propagator are only slightly reduced in their spatial structure by the
neglect of the slow variations. Thus,

2

G.', (z,z )=
2l co

V+(z, z')

and

Cp
Gg(z, z )=

2l co

2

V (z,z'), (47)

where

V+(z, z') =e(z' —z ) —e(z —z')+r", (48)

e being the Heaviside unit step function. By inserting the above-mentioned approximations into Eqs. (42) and (43), and
by utilizing the normalization of g(z), the fundamental set of coupled integral equations for the p-polarized case takes
the form
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E, (z) =E, „+Kf g'(z')E, (z')dz'+ 3 f 2+(z,z')P'(z')E, ,(z')dz',
Qw Qw

E, ,(z)=E, , + A f V (z,z')g'(z')E, (z')dz' + U f V (z,z')g (z')dz'
Qw Qw

+ VP (z)E, ,(z)+ IVf g (z')E, ,(z')dz',
Qw

f g (z')Ei (z')dz'
QW

(50)

where

e q~(r~ 1)—K„=
26pCt)

r(e~ —e) 2ifi (S —S+ )

7pR ( 1 —/co7)
+

m co
2

where

+ IVf P (z')E, (z')dz
Qw

[1—VQ (z) ]E, ,(z) =E, ,' (z)

(5g)

Fq e r(e —e~)

2vreocofi (1 i cur—)

(51)

(52)

(A+U)E,
„E, '; (z)=E, , + ' f 7 (z,z')g (z')dz'

(59)

e A'
q~~(S

—S+)U=
lEpm co

e r(e~ —e)V=
i eocovrfi (1 i cur)—

and

(53)

(54)

is an effective background field consisting of the im-
pressed background field, E& „and the field created by
the self-consistent motion of the electrons along the
quantum well (in an approximation where the effect of
the field across the well is negligible). It readily appears
that the solution for E&,(z) in Eq. (58) must have the
form

W
e rq (e—e~)(1+r~)
2~eoq~coA (1 ivor)— (55)

E,", (z)+ IVC
EI,(z) =

1 —VP (z)

where

(60)

By numerical methods it is a straightforward task for
reasonably simple choices of the one-electron wave func-
tion P(z) to obtain the solution for the self-consistent
field.

Instead of embarking on a general analysis which
would bring us outside the scope of this paper, let us con-
sider the solution of Eqs. (49) and (50) in a limiting case
of conceptual interest. The freezing of the electron
motion in the z direction implies that only the off-
diagonal elements of the electromagnetic propagator are
able to couple the x and z components of the local elec-
tric field. In the so-called slave approximation which, at
least in the

q~~
=0 limit, has turned out to give results for

the local field in extremely good agreement with those ob-
tained by exact numerical calculations, the term contain-
ing G„,( V+) in Eq. (49) is neglected. Neglect of this term
makes the integral equation for the local field along the
quantum well independent of E, ,(z), i.e.,

C= f f (z')E, ,(z')dz'
Qw

(61)

is a yet unknown constant. This constant can be obtained
by inserting Eq. (60) into Eq. (61). Doing this, one ob-
tains

P (z)E, (z)dz I

Qw 1 —V z Qw 1 —V z

(62)

E, =E, „(SFapprox. ) (63)

If one neglects all parts of the electromagnetic back-
ground propagator with the exception of the self-field
part, (co/co) 5(z —z')e,e„the local field inside the quan-
tum well is given by

E, „(z)=E, +If
„ f g (z')E, (z')dz' . (56)

Qw

Since the right-hand side of this equation is independent
of z, E& (z) must be independent of z and is given by

and

E', ,E, ,(z) =
1 —VQ (z)

(SF approx. ) . (64)

B

1,X
XX

(57)

As one would expect, the solutions for E,„{taking in the
slave approximation [Eq. (57)]) and E, [Eq. (39)] have
the same form. By inserting the solution in Eq. (57) into
Eq. (50), the integral equation for E, ,(z) becomes

While such an approximation certainly is too crude to be
able to account for the linear p-polarized reAectivity
which depends almost exclusively on the local field along
the quantum well, ' the self-field approximation de-
scribes the z component of the local field quite well at
least in thin quantum wells.
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V. PHOTON DRAG IN THE SLAVE
AND SELF-FIELD APPROXIMATIONS

A. Drag current and voltage

Within the framework of the slave approximation the
photon-drag current density can be obtained by inserting
Eqs. (39) and (57) into the expression (U —e,e, ) Jo(z),
taking Jo(z) from Eq. (17) and using the normalization of
the wave function. Thus,

B

(U —e,e, ) Jo(z)= —K(qll, co)g (z)

and a dc voltage

7n62
Vo=

2 K(qll m)EB, (EB, )*
2e r(e —eF)

dzX +C.C.
o~ [1—V1t 2(z) ]*

B. Local-field resonances

(69)

(70)

B BE) c E( c
x ' +

1 —K 1 —E +c.c.

(65)

B B

x ' +Ei.e. E) yey

1 —K 1 —K
+C.C. (66)

By inserting Eqs. (39), (57), and (60) into Eq. (25) it is
realized that the dc field induced perpendicular to the
quantum well is given by

7TA2
Eo, (z) =

2e r(e eF)—
[EB,eff( )]a+ IV+(

X 'K(q, co)
Vq2( )]e

BEj
X ' +c.c.

1 —K
(67)

in the slave model. The dc voltage induced across the
well becomes

OTAL

2e r(e eB)—

By integration of this result over the quantum well, one
obtains the following expression for the integrated
photon-drag current density Ip..

Io=(U —e,e, )f Jo(z)dz
QW

B
1 Ei

K(q co)
1 —X.

„

It is known' that the eigenmodes of the full quantum-
well system can be obtained from the basic integral equa-
tion in (34), setting E& (z) =0. This implies that the eigen-
mode condition for the s-polarized part of the field is, cf.
Eq. (39),

X =1. (71)

(72)

and

0 (z)dz
O~ 1 —V/2(z)

(73)

The eigenmode conditions K = 1 and K = 1 can cause
resonances in the photon-drag current density (and the
integrated current density), cf. Eq. (65) [and Eq. (66)].
The dc voltage induced across the well will be resonantly
enhanced if K „=1or if the condition in Eq. (73) is
fulfilled. Also, the z component of the local field exhibits
a resonance if one of these two requirements is met. In
addition, it transpires from Eq. (67) that Eo, (z) should
show a spatially localized resonance at z=z„,provided
the condition VP (z„,)=1 can be fulfilled. In the col-
lisionless (d'or))1) limit this condition takes the explicit
form

Within the framework of the slave model the p-polarized
field exhibits two eigenmodes, one for the x component
and one for the z component. The reason that the x and z
resonances are decoupled originates in the slave approxi-
mation. The two p-polarized eigenmodes are readily ob-
tained from the singularities of Eqs. (57) and (62), i.e. ,
from the conditions

B

X K(qll, co)

vreo(A'co )g'(z„,) =
e (eB—e)

(74)

[E ' (z)]'+ W"C*
X 1,z

g~ [1—V/2(z) ]*
dz+c. c.

(68)

A usually crude approximation for Ip and Vp can
readily be obtained on the basis of the self-field approxi-
mation. Thus, by utilizing Eqs. (63) and (64) and by set-
ting E, ~ =0, one obtains with Ip=Ipc& a photon-drag
current

VI. NUMERICAL RESULTS

In the present section a numerical analysis of the
photon-drag effect in a niobium quantum well deposited
on a crystalline quartz substrate is carried out for photon
energies in the range 1.0~4'co~1. 8 eV. The Nb-quartz
quantum-well system has been chosen because recent
local-field calculations [based on Eq. (35)] of the s- and p-
polarized linear reAection coefficients ' and of the elec-
tromagnetic surface-wave dispersion relation have



PHOTON DRAG IN A SINGLE-LEVEL METALLIC QUANTUM WELL 4795

turned out to be in good agreement with the experimental

d-
data for these quantities for film th' k

—25 A. For all fil
m ic nesses in the range

m thicknesses the best agreement
is obtained by choosin an

=3X10 s

'

g an electron collision frequency
s ( /r= 1.24 eV). To compare with our

one-level calculations a niobium fil f th km o ic ness d=3 A
was used. For this film thickness th ere exists only one
bound state below the Fermi level, and e—eF—-—3.31
eV. In addition oV. addition, one has an unoccupied (T=300 K) level
(e2) above eF at e2 c—=1.91 eV b t '

he 2
—~ —. e, u in t e photon-

energy range of interest here the optical excitation of this
level is completely negligible The. e optical axis of

coefficient is given by rz = (
—i ) /( tc—q~e —~~ e +~

co co e&
—

q l ] is the wave-vector com-
ponent of the (transmitted) field inside the uartz er
dicular to the surfe surface. In the infrared region studied

reAection s ec
frequency dependence of the complex dielectric constant

current density is calculated using (i) p-polarized bulk-
wave and (ii) surface-wave excitation schemes.

A. Bulk-wave excitation of the drag current

For a p-polarized incident field the magnitude of the
associated Poynting vector (S ) t th;„,a e vacuum-quartz in-
terface is given by S; =—'e c E / 0;„,——,coco & ~

/cos 0, where 0 is
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FIG. 4. Ma nig tude of the normalized integrated hoton-dra
current densit I
(0) for three different

i y o;„,as a function of the angle f ' 'de o inci ence
r ree i erent photon energies, viz. , A'm=0. 12 eV (1)

0.15 eV (2), and 0.17 eV 3 .e ' '. Fully drawn curves: slave model
dashed curves: sel-~-field model. Excitation scheme: obli ue in-
cident bulk wa es.

the angle of incidence and E,
„

is the x component of the
incident field. Utilizing that E „=Ei„1—,'t fol-
lows cf. Eq. 66)] that the ratio between the magnitudes
of the inteegrated photon-drag current density and the in-
cident Poynting vector is given b

0. 15

E
0.10

I

CO

C:

CO

0.05

o.oo ~
0.10 0.14 0.16

h(d [ev]

0.18

(75)
Io 2i1 —r (qi~, co)i cos 9

coco)1 IC „(q~~&co)—)

Re%( co)

within the framamework of the slave approximation. In Fi
3, the result o

a ion. n ig.
u o a numerical calculation of thee ratio

as a unction of the photon energy for three

It a ear
ifferent angles of incident (0=20 50' d 7 '
t appears from this figure that the drag t

'
1e rag current is largest

in e requency region where the p-polarized reAection
spectrum of the
3. Ifthex a

e quartz substrate has a resonance f R f, c. e.
tal field E

he x component of the local field at th f da e un amen-
e exact"e, , „,is calculated on the basis of the "

equations [Eqs. (36) and (37)], it turns out that the rela-
tive deviation ("exact"—slave)/slave] between th

alculations for all co and 0 is less than 10 . The
en e

mation
'

slave approximation is thus an extremely go dy goo approxi-
ma ion in the present case. As illustrated in F

e se - e approximation is quite accurate in the bulk-

p o on- rag current densi-wave excitation scheme. The phot -d
ty varies appreciably with the angle of incidence as illus-
trated in Fig. 4 where the ratio I /S h bas een plotted
as a function of 0 for
(iiico =0. 12

or three different frequencies
co=0. 12, 0.15, and 0.17 eV). As in Fig. 3, the slave

model has been used to calculate I /S d
~ ~

e o an a compar-
ison is made to the self-field model also.

FIG. 3. Ma nitg
'

ude of the normalized integrated photon-dra
current density (I /S ) as;„,) as a function of the photon energy (Ace)

p o on- rag

for three differen
70'(3 F

erent angles of incidence, viz. 0=20 (1) SO"(2), and

field mode
~ Fu y drawn curves: slave model' d h de; as e curves: self-

e model. Excitation scheme: oblique incident bulk waves

B. Surface electromagnetic wave excitation
of the drag current

One should anticipate the photon-drag effect to b
onantl y enhanced if the excitation is caused by a p-

e ec o eres-
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qS;„,(z =0 ) =—,'coco E, (z =0 ) (76)

where

a= q
C0

2 1/2

(77)

and E, „(z=0 ) is the x component of the incident field
at the surface. Since

q~~
)ni/co for the SEW, a=qi/i is

real and positive. The background field is related to
E, „(z=O ) via

polarized surface electromagnetic wave (SEW). The for-
malism developed in the preceding sections can be ap-
plied also if the background field stems from a surface
wave provided the backward coupling of the field from
the surface to the source region is negligible, cf. Fig. 5. If
the SEW is excited by means of the Otto prism
configuration the standard calculation for a three-layer
(prism-vacuum-quartz) system shows that backcoupling
is of no importance for an airgap (vacuum gap), D, a few
times the decay length, o, , of the incident field in the gap,
i.e., aD ~1. In the gap, the Poynting vector of the in-
cident field is parallel to the plane of the quantum well
(see Fig. 5), S;„,(z)=S;„,(z)e„,and just outside (z=O )

the quartz surface, and thus inside the quantum well the
magnitude of the incident Poynting vector is given by

Th x component q of the wave vector is related to the
angle of incidence 0 at the prism-vacuum interface via
q =nz(ni/co)sinO, nz being the refractive index of theqll

—np CO C0, p
prism. For a given np, the quantity coq~~/cu satisfies the
inequalities 1 ~ coq

In Fig. 6 is shown the ratio Io/S;„,(z =0 ) as a func-
tion of c q /co for five difFerent frequencies (A'co=0. 134,
0.136, 0.139, 0.141, and 0.144 eV). It appears from this
figure that in the case of SEW excitation of the photon-
drag effect the local-field effects are extremely important.
Essentially, two local-field factors enter the denominator
of Eq. (79). Thus, since the dispersion relation for a SEW
on a bare vacuum-quartz interface is given by

qZe&+K~=0,0 (80)

or, in explicit form, equivalently by the standard expres-
sion q =(co/co)[E&/(1+@&)]'~, it is realized [see Eq.
(79)] that the drag current density has a pronounced max-
imum when the background field is resonantly enhanced
b SEW excitation. To stress the importance of the back-
ground resonance the dotted curves in Fig. 6 show
Io/S;„,(z=0 ) as a function of coq~~/co setting K =0
(self-field approximation). In comparison to Fig. 7, in
which the real and imaginary parts of the dispersion rela-
tion in Eq. (80) are shown, it appears that the broadening
of the resonance with increasing light frequency stems

E~(0)

E, (z=0 )

2K'

qy6g +Kg0 (78)

0
—11

The ratio between the integrated photon-drag current
density and the magnitude of the incident Poynting vec-
tor is obtained by combining Eqs. (66), (76), and (78).
Thus,

I0

S;„,(z =0 )

8 2 l2 R«(q„,~)
~oniq~~ lqieg+ail' I

l —&..(ql, n~) I'

(79)

Prism g~ Vacuum &g Substrate

x ~~~~aO4 i~&~

/J

10

10

Zo

10
1.0

l
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coque~

l(d

l.4

FIG. 5. Schematic illustration showing the electromagnetic
Poynting vectors in the prism and vacuum regions, and the in-
tegrated photon-drag current density (Io). As indicated, the
SEW-excited photon-drag current density is calculated under
the assumption that there is no electromagnetic feedback on the
source region.

FIG. 6. Magnitude of the normalized integrated photon-drag
current density [Io/S;„,lz=0 )] as a function of the normal-
ized (real) wave vector (coqll/co) paralle1 to the plane of the
quantum well in the vicinity of the SEW resonance for five
different photon energies, i.e., Aco=0. 134 eV (1), 0.136 eV (2),
0.139 eV (3), 0.141 eV (4), and 0.144 eV (5). Fully drawn curves:
slave model; dashed curves: self-field model.
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r(e.~ —e) 2iiri (S —S+ )+
&p~ mA' (1 icos—) m m

(82)

Eq. (79) becomes

S;„,(z =0 )

8a'~~, ~' Reise(q

~p~Q~( Igi&g+&i
(83)

Now, since the condition

11BO
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Im(c, q()/uj
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FIG. 7. Real (a) and imaginary (b) parts of the SEW disper-
sion relation for the bare vacuum-quartz system (dashed curves)
and for the vacuum-niobium-quartz system (fully drawn curves).
The reciprocal vacuum wavelength of light has been denoted by

' and the SEW wave number (qI~) is normalized by the vacu-
um wave number (co/co).

from the fact that one moves into the damping region of
the SEW as the frequency is increased. The local-field
correction to the background field itself appears via the
factor ~1 —K„„(q~~,co)~ in the denominator of Eq. (79).
Taking this correction into account also, the fully drawn
curves of Fig. 6 show the result of the complete calcula-
tion of Ip/S;„,(z =0 ). Note that the self-consistent cal-
culation reduces the integrated photon-drag current den-
sity by approximately a factor of 2 near resonance. The
resonant behavior of Ip/S;„,(z =0 ) displayed by the ful-

ly drawn curves of Fig. 7 can be understood also as fol-
lows. Rewriting the product of the local-field factors in
the form

iq', eg+sc, ['i 1 —K (qi, , co)i'

= fqieg+~i N,„(q—
(~(,

co)qi~if, (81)

where

q~eg+~q=N„q~z~0 0 (84)

is precisely the dispersion relation for SEW's on the
vacuum-Nb-quartz system, it appears that the resonance
behavior of Ip/S;„,(z =0 ) taking as a function of
coq~~/co stems from the enhancement of the local field
brought about by the Otto configuration excitations of
the SEW in Eq. (84). The real and imaginary parts of the
dispersion relation in Eq. (84) are plotted in Fig. 7. As
one would expect for a 3-A-thick quantum well, this
dispersion relation deviates only slightly from that of the
bare vacuum-quartz system far from the damping region.
In the frequency range of interest here the last term in
the square brackets of Eq. (82) gives a negligible contribu-
tion to the SEW dispersion relation. The increasing
values of the half-widths of the curves in Fig. 6 with the
electromagnetic frequency originate in the increasing of
the damping as one moves into the dispersive part of the
SEW dispersion relation. By comparison to the bulk ex-
citation method considered in Sec. VIA it appears that
SEW excitation causes an overall increase in the photon-
drag current density by two orders of magnitude for the
same incident field at the surface.

It is of interest to compare the SEW-enhanced
photon-drag effect on a metallic quantum well (Nb-
quartz) with the inter subband-resonant photon-drag
effect of a semiconducting (Al„Cia, As/CxaAs/
A1, Ga, ,As) quantum well studied recently theoretically
by Grinberg and Luryi' and experimentally by Wieck,
Sigg, and Ploog. ' In the limit of a large collisional
broadening (small Doppler shift), which is appropriate
from an experimental point of view, it is found' ' using
an oblique illumination scheme that the normalized drag
current is of the order of 10 mA cm/W near resonance,
i.e., two orders of magnitude larger than the resonant
values of Fig. 6. To obtain optical intersubband transi-
tions for incident wavelengths in the vicinity of A,o

-—10
pm, the quantum-well width must be of the order of 100
A in the semiconducting system. In the present Nb-
quartz structure the corresponding thickness is d-3 A.
A further enhancement of the photon-drag effect can be
obtained in the GaAs well if a multiple-quantum-well
core is used in combination with a waveguide excitation
scheme.

For the metallic quantum-well systems under study in
this work it would be of importance to analyze the SEW-
enhanced photon-drag effect as a function of the width of
the quantum well. As the width increases more occupied
levels occur in the well and as long as no interlev|:1 transi-
tions can occur (dominating diamagnetic coupling) one
would expect a considerable increase in the normalized
drag current with well thickness. At higher frequencies
where the paramagnetic effects are important, pro-
nounced resonances are expected to appear near the vari-
ous two-level resonances even in a few monolayer thick
quantum well. As in the semiconducting case multiple-
quantum-well structures will lead to a further increase of
the SEW-enhanced photon drag. It is obvious also that
those (a few) monolayer thick metallic films (Ag and Au,
for instance) having collision frequencies (far) less than
that of Nb are of substantial interest for photon-drag
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studies among other things because a further enhance-
ment of the SEW resonances is to be expected.

APPENDIX: LINEAR AND NONLINEAR
CONDUCTIVITIES AT T=O K

To obtain the result in Eq. (12) for the nonlinear con-
ductivity tensor from Eq. (10), we assume that qII =qIIe, .
With this choice the y component of the integral in Eq.
(10) will vanish since the integrand is an uneven function
of k

II y k
II

ey This means that we only need to calculate
the integral

+ ~kII~
—qIII' —f. +

fi(to+i /r )+
~ kII

—
qII

~—

d k
II

X(2kII „—qII) (2~)
(Al)

Dividing this integral into two, viz. , one contain-
ing fo[E+(I /2m)~kII —

qII~ ] and one with fo[E
+(R @

II

/2m )], it is realized upon a change of variables
(k:kII+qII) in the first integral that I can be written as

step function. Introducing polar coordinates,
(kII, kII r )=kII(cosH, sin8), R+ takes the following form
at T=OK.

II ~z~ (2kIIcos8+qII)kIId0dkIIA~=
(2~)'(a+ —Pk„cose)

(A4)

Ak
fo e+ kII

II

2Pl

A qIIA(co+i /r) +
2m

d k

(2~)
(A5)

where ct+, p, and tcII are given by Eqs. (14)—(16). Carry-
ing out, in turn, the integrations over 0 and KII, one ob-
tains the results in Eq. (13).

As far as the linear conductivity tensor is concerned, it
readily appears from Eq. (26) that the elements o. and
o „will vanish (the relevent integrals are uneven func-
tions of kII ). Since also tr, =tT, =o,=o, =0, of
course, o. has only diagonal elements. Among these diag-
onal elements, only 0. „ando. involve integrations over
the kII plane. By comparing Eqs. (10) and (26), it is obvi-
ous that calculating o. and o.„oneneeds to carry out
the integrals

I=A —8+, (A2)

where

Ak
fo e+ (2kII qII)2Pl

Q2q 2

A(co+i /r) +
2m

g2

m

d kII
(A3)

(2sr )

In the low-temperature limit fo[F.+(A' kII /2m )]
=0[EFE '(jh kII /2m )], where 8 is the Heaviside unit

A' k
(2kII +qII)'

A'
q

fi(co+i /r) +
2&i

d k
(A6)

(2~)

respectively. By conversion to polar coordinates, one ob-
tains in the low-temperature limit after a straightforward
but tedious calculation precisely the results cited in Eqs.
(32) and (33).
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