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We derive the thermodynamic density of states (TDOS) and the charge-density-wave (CDW)
instability condition by including both electron-electron interactions and electron-impurity interac-

tions.

We calculate the TDOS in two different ways.

Our first approach involves obtaining the

long-wavelength static polarizability, whereas the second one involves calculating the density deriva-
tive of the chemical potential. We present our results for GaAs-Al,Ga;_,As heterostructures in
the lowest Landau level and ignore spin effects. We find that the TDOS becomes negative at high
mobilities due to the renormalization effects of exchange and correlation. We also show, for the
Hartree-Fock case, that when these renormalization effects are sufficiently strong, a CDW instability
can occur. We derive an analytic expression for the CDW instability condition by considering the

poles of the static-charge susceptibility.

I. INTRODUCTION

The discovery that the Hall resistance has plateaus
at odd denominator filling factors in high mobility sam-
ples has shown that electron-electron (EE) interaction ef-
fects have important consequences.! Laughlin? proposed
a trial many-electron wave function which has been fairly
successful in explaining several features of the fractional
quantum Hall effect. It has also been demonstrated that
at these special filling factors the thermodynamic density
of states (TDOS) becomes zero.? Thus the many-body ef-
fects on the TDOS is of interest both theoretically and ex-
perimentally. In the past, magnetocapacitance measure-
ments were performed to determine the TDOS.%® Re-
cently, a new technique was employed to determine both
the magnitude and the sign of the TDOS.¢ Interestingly
enough, negative values of the TDOS were reported by
Kravchenko, Pudalov, and Semenchinsky® and by Eisen-
stein, Pfeiffer, and West.® On the theoretical side, EE
interactions were recognized to be sufficiently important
to even result in negative values of the TDOS.” However,
a full-fledged many-body analysis of the TDOS that con-
sistently takes into account the vertex corrections due to
both EE interactions and electron-impurity (EI) interac-
tions has not been presented so far.

It has been presumed that at low filling factors or low
densities, similar to the case of a zero magnetic field,
the electronic interactions become sufficiently strong to
result in the formation of a crystal.® Different investiga-
tors have predicted different values for the critical fill-
ing factor below which crystallization occurs.® Earlier
on, within a Hartree-Fock approach, it was found that a
charge-density-wave (CDW) transition occurs at a high
melting temperature!® and that the CDW can be re-
garded as a Wigner crystal with the same periodicity.!!
At low densities, the importance of including higher har-
monic terms in the triangular CDW state was pointed out
by Gerhardts.’? Recently, Manolescu'® has studied the
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CDW instability as a second-order transition by examin-
ing the temperature dependence of the charge susceptibil-
ity. Also, within a “parquet” approximation, Bychkov!*
has found that a CDW instability may occur at low fill-
ing factors when the wave vector is small. However, it is
important to note that none of the previous works con-
siders the effects of the EI interactions. On the experi-
mental side, anomalies such as large diagonal resistivity,
radio-frequency absorption resonances, sharp threshold
conduction fields, and an additional luminescence line
below a critical filling factor have been considered to be
indicative of a pinned Wigner crystal.!® Thus, all in all it
is of interest to know the conditions for the formation of
CDW'’s when both EE interactions and EI interactions
are considered.

In this paper we obtain the TDOS and the CDW in-
stability condition by including for the first time both
EE interactions and EI interactions. We calculate the
TDOS using two different methods. The first method
involves consistently taking into account the vertex cor-
rections due to EE interactions and EI interactions and
obtaining the long-wavelength static polarizability. The
second approach involves evaluating the TDOS from the
derivative of the electronic density with respect to the
chemical potential. We find that at 0 K when the typical
EE interaction energy is much larger than the broaden-
ing of the single-electron density of states (SDOS), the
renormalization effects due to exchange and correlation
become large enough to significantly alter the shape of
the TDOS and can even make the TDOS assume negative
values. These renormalization effects are strongest some-
where between the center and the tails of the Landau
level (LL). Our calculated curves for the negative TDOS
are in qualitative agreement with the experimental re-
sults of Kravchenko, Pudalov, and Semenchinsky® and
Eisenstein, Pfeiffer, and West.® Although negative TDOS
does not imply an instability; nevertheless, we find that
the renormalization effects that make the TDOS nega-
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tive could also lead to a divergence in the static charge
susceptibility at some nonzero values of the momentum
and thus lead to a CDW instability. We present an ana-
lytic expression for the CDW instability condition for a
strictly two-dimensional Hartree-Fock (HF') case by tak-
ing into account the effects due to both EI interactions
and EE interactions. We consider only the lowest Lan-
dau level (LL) because the typical EE interaction energy
is the largest for this level and thus the above effects are
most likely to occur here. For simplicity, we ignore spin
effects.

The rest of the paper is organized as follows. In Sec.
II we model the modulation-doped heterostructure as a
capacitor and obtain the total compressibility in terms of
the TDOS and the energy stored in the capacitor. In Sec.
IIT we obtain the TDOS in terms of the long-wavelength
static polarizability by taking into account the vertex cor-
rections due to both EE interactions and EI interactions.
Next in Sec. IV we derive the TDOS from the density
derivative of the chemical potential again by including
both EE interactions and EI interactions. Then in Sec.
V we show that a CDW instability could result due to
the same renormalization effects that produce negative
TDOS. Here we also give the HF criterion for the CDW
phase transition. Lastly, in Sec. VI we give our conclu-
sions and present possible future problems.

II. BACKGROUND

We begin by considering the following model for the
modulation-doped heterostructure. The two-dimensional
electron gas (2DEG) and the donors that contribute elec-
trons to the 2DEG are separated by a spacer. These
donors are regarded as long range or remote scatterers.
In addition to these, there are some impurities due to un-
intentional doping in the region of the 2DEG and these
can be treated as short-range scatterers. All the impuri-
ties are assumed to be randomly distributed. The system
of the remote donors and the electron gas can be regarded
as a capacitor with stored potential energy due to the
separation of opposite charges. Thus, unlike the case of
a jellium model, we have a positive contribution to the
Hartree term in modulation-doped heterostructures.

The thermodynamic density of states Dt is defined by

1 du
o= g (1)

DT dn
where p is the chemical potential and is given by the
shift of the Fermi energy (Er) with respect to the non-

interacting value of the bottom of the subband energy

(Eo)
pu=Ep — Eo. (2)

The compressibility of the total system is related to the
above quantities through

2 J2 2 2
l TL_d Etot _ n dEF _ n dE() + J_ , (3)
dn DT

kL dn?
where E}. is the total energy per unit area of the system
and L is the length of the system in the third dimension.

T L dn L

SUDHAKAR YARLAGADDA 48

Strictly speaking, one should also include the rigidity of
the background in the above expression for k. Only if the
background is totally flexible (i.e., offers no resistance to
deformation) will the compressibility be given by Eq. (3).
Now, it is well known that the system as a whole becomes
unstable when the total compressibility becomes nega-
tive. Thus negative TDOS does not necessarily imply an
instability because the compressibility could still be pos-
itive due to the rigidity of the background as well as due
to the energy stored in the capacitor [i.e., the dEy/dn
term in Eq. (3)]. However, later on we will show, within
the HF approximation, that when the renormalization
effects, which make the TDOS negative, are sufficiently
large a CDW instability will result in the uniform elec-
tron gas.

III. LONG-WAVELENGTH STATIC
POLARIZABILITY

We will now show that at 0 K and high mobilities the
TDOS becomes negative. The TDOS can be derived in
two different ways. In this section we will present the
first approach involving obtaining the long-wavelength
zero-frequency limit of the polarizability x(g,w). The
dielectric function €(g,w) is in general given in terms of
the polarizability as follows:

e(q,w) =1 - Vyx(q,w), (4)
where
X(q,w) = XO(‘L‘U) (5)

1+ G4(g,w)Vaxo(g,w)’

In the above equation V; is the Fourier transform of the
Coulombic interaction, xo is the Lindhard polarizability
of a noninteracting electron gas, and G, is the many-
body local field which takes into account exchange and
correlation effects.'® Earlier on, the SDOS was derived
within the framework of the self-consistent Born approx-
imation (SCBA).!” To obtain the TDOS, we will now
proceed to derive the static long-wavelength value of the
polarizability x within the framework of the SCBA. The
vertex corrections due to the effective Coulombic EE in-
teractions are treated on the same footing as the vertex
corrections due to the EI interactions as depicted in Fig.
1. We consider only the lowest LL and ignore spin ef-
fects in our analysis. The effective EE interaction is as-
sumed to be a statically screened Coulombic interaction
and thus corresponds to the screened Hartree-Fock (SHF)
self-energy.'® Next, we note that the vertex corrections
due to the EE interactions and the EI interactions in
the polarizability can be rearranged to obtain a series of
random-phase-approximation-like bubbles with the bub-
bles containing only the vertex corrections due to the EI
interactions and with the bubbles connected by the EE
interactions. By inspection one can see that there is a
one-to-one correspondence between the series of bubbles
and the ladder diagrams corresponding to Fig. 1(b). We
then sum up all the resulting bubbles to arrive at the
following expression for the TDOS (Ref. 19):
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} =, + A
(a)

D=D+D+D
(b)

FIG. 1. (a) The self-energy ¥ as the sum of self-energies
due to the EE interactions and the EI interactions; (b) vertex
corrections consistent with the self-energy. The thick solid
line corresponds to the interacting electron Green’s function,
the thin solid to the screened Coulombic interaction, and the
dashed line to the EI interaction.

Dr=—-x(g — 0,0)
Dimp(ll')

= Vie J2, (kl
-3 _ke(i?é) L7012 Dignp (12)

, (6)

where Dimp(p) is the SDOS at the Fermi surface and
Joo(kl) [= exp(—kZ2l%/4)] is proportional to the proba-
bility amplitude of scattering an electron in the lowest
LL back to the same LL. Furthermore, the degeneracy of
the LL is taken to be 1/7l2? with ! being the cyclotron ra-
dius. For the strictly two-dimensional HF situation, Eq.
(6) simplifies to the following form:

Dy Dimp(w)
- e? )
1-— Q\/gﬂ'lzDimp(ﬂ)

where €gs is the dielectric constant. As the mobility of the
sample is increased, the denominator on the right-hand
side of Eq. (7) first becomes zero in the center of the
LL leading to a divergence of the TDOS. Thus, for the
HF case the negative values of the TDOS are most likely
to occur in the center of the LL and within the SCBA
the condition for this is [egl/e? < % where T is the

broadening parameter.

In Fig. 2 we have plotted the TDOS as a function
of the filling factor v for the SHF case using Eq. (6)
and the random-phase-approximation value of €(k,0) [=
1 — Vi xo(k,0)]. Here the Lindhard polarizability within
the SCBA, on neglecting coupling between adjacent LL’s,
is given by!”

(7)

xo(,0) = 2T Go(i€) Go(i€) I3y (al)
0\, 2 - 1- %Go(ie)Gg(ie)Jgo(ql)’

(8)

where Gy is the interacting electron Green’s function in
the lowest LL. Furthermore, the chemical potential is ob-
tained from the approximation

n= [ " 4B Diy [2(E)], )

where o(E) = (E — 0.5hwc — Tgg)/T with we being
the noninteracting cyclotron energy and Ygg being the
self-energy due to EE interactions. Our calculations were
performed for GaAs-Al,Ga;_,As heterostructures. The
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FIG. 2. Dimensionless TDOS DsI'wl? vs v at 0 K ob-

tained from the SCBA static long-wavelength polarizability
given in Eq. (6). The curves were calculated at 10 T for
the broadening I' = 2I'scga and the following mobilities: (a)
1 x 10° cm?/V's (thick dashed curve); (b) 2 x 10° cm?/Vs
(thick solid curve); (c) 5 x 10° cm?/V s (thin solid curve).

quasi-two-dimensional nature of the electron gas has been
taken into account by using a Fang-Howard type of wave
function?® with an average extent of 100 A in the third
dimension. In these heterostructures, we have taken the
bare band mass of the electron to be 0.067m. and the
dielectric constant €s to be 12.4. In all our calculations,
the broadening of the LL’s was assumed to be only due
to short-range scatterers and is taken to be given by the
SCBA value (2hw.2)1/2, where 7 is the relaxation time
in the absence of any magnetic fields.'”

The curves in Fig. 2 were obtained at 0 K and for
various values of the mobility. As the value of the mo-
bility increases (i.e., as I" decreases), the EE interaction
term becomes more important in comparison to I' and
the TDOS, as shown in Fig. 2, differs more from its
semielliptic shape of the SDOS. Furthermore, unlike the
HF case, the divergence in the TDOS is most likely to
occur away from the center of the LL on account of the
screening effects. As the mobility increases from 1 x 10¢
cm?/Vs to 2 x 106 cm?/V s the TDOS changes from be-
ing positive in the entire LL to a case with positive values
in the center and the tails of the LL and negative values
in between these two regions. In the latter case, depicted
by the thick solid curve in Fig. 2, the TDOS diverges
in the lower (upper) half of the LL around » = 0.1 (0.9)
and v = 0 (1). The thick solid curve is in qualitative
agreement with the experimental observations reported
in Ref. 5. At an even higher mobility of 5 x 10 cm?/V's
the TDOS is negative over the entire LL except in the ex-
treme tail regions where it diverges. This can be seen in
the thin solid curve in Fig. 2 which is in qualitative agree-
ment with the experimental results of Kravchenko, Pu-
dalov, and Semenchinsky® and Eisenstein, Pfeiffer, and
West.® However, unlike our curves which are symmet-
ric about the center of the LL, these two groups observe
larger negative values for the inverse of the TDOS around
even filling factors as compared to around odd filling fac-
tors. This is probably due to weaker renormalization
effects around odd filling factors arising due to the larger
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screening effects produced by the overlap of LL’s of the
opposite spin. Since we ignore spin effects we do not take
this effect into account around » = 1. In the next sec-
tion we will discuss the divergence of the TDOS in the
extreme tail regions of the LL.

Our calculations were done at a fixed magnetic field
and varying density. Alternately, one could fix the den-
sity and vary the magnetic field. However, varying the
magnetic field does not change the ratio e%/esil’ for
short-range scatterers. The only change is in the form
of the Coulombic interaction which becomes more quasi-
two-dimensional as the magnetic field increases. This is
because when there is an increase in the magnetic field
there is a corresponding decrease in the ratio of the cy-
clotron radius with respect to the average extent of the
electronic wave function.

IV. DENSITY DERIVATIVE
OF THE CHEMICAL POTENTIAL

We will now obtain the TDOS by an alternate ap-
proach involving use of its definition [see Eq. (1)].
this approach, we include the Coulomb hole term in the
electronic self-energy and also account for the change in
the dielectric function as the density is varied. The chem-
ical potential of the modulation-doped heterostructure at
0 K is given by

p = thwc + Sg1 + ek, (10)

with Yg; being the self-energy due to the EI interac-
tions. It is understood that the chemical potential in
the above equation does not contain the Hartree con-
tribution. Then from Egs. (1) and (10) we obtain the
following expression for the TDOS:

i _ dEEI dYgE 1 dZEE

= = . 11
Dy dn dn Dimp (1) + dn (11)

To evaluate the derivative of the self-energy due to the
EE interactions we use the following quasistatic approx-
imation (see Ref. 21):

V. Joo(ql
Tpe = = Z €(g,0)

LS VoTE(a) [ﬁ - 1] , (12)

where the last term is due to the Coulomb hole contri-
bution. To perform calculations, the dielectric function
is assumed to be of the Thomas-Fermi type,

€(q,0) = 1+ VoJ3o(ql) Dimp (1)- (13)

Then assuming that the SDOS D, (F) is a Gaussian??
we obtain

dEEE —_ Z Vngo(ql)ﬂ'lz

dn €(g,0)
2 ) 1 N
- Z Ve(i, @, 5)#- (14)
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Compared to the TDOS given by Eq. (6), the TDOS
obtained from Eqgs. (11) and (14) contain an additional
term, namely the second term on the right-hand side of
Eq. (14). The renormalization term of the TDOS, i.e.,
d¥gg/dn given in Eq. (14), has particle-hole symmetry,
as it should, because both the SDOS and the TDOS have
this symmetry. Furthermore, if the Coulomb hole term in
Eq. (12) was not included the particle-hole symmetry is
violated. Also, the SCBA SDOS would not be appropri-
ate for the above method because its derivative diverges
at the edges where it has sharp cutoffs.'”

For the case where D7 is calculated using the formu-
las in Egs. (11), (13), and (14), the TDOS values are
plotted in Fig. 3 at 0 K. Similar to Fig. 2, here too as
the parameter e?/esll increases the deviation from the
Gaussian shape increases for the TDOS. Furthermore, as
before, at all filling factors away from the tails of the LL
there is a critical value of the mobility at which the TDOS
becomes negative and this critical value is the least some-
where between the center and the tails of the LL. In Fig.
3, for all the mobilities larger than 2.5 x 10* cm?/V's, the
TDOS diverges in the extreme tail regions of the LL. The
corresponding curves are again qualitatively in agreement
with the values of the TDOS observed by the authors of
Refs. 5 and 6. Although Figs. 2 and 3 are qualitatively
similar, nevertheless quantitatively they differ because of
the different forms of the SDOS, the different screening
effects, and also because additional Coulomb hole effects
are included in Fig. 3.

Here we would like to point out that if we were to
consider the effect of remote scatterers on the broadening,
as we approach the tails of the LL, the contribution of
the long-range scatterers to the broadening increases due
to a decrease in screening. However, close to the center of
the LL, the screening of the long-range scatterers would
be most effective and the contribution of these scatterers
to the broadening would be at its minimum.

In Figs. 2 and 3, as we approach the tail regions of the

10 " 7
o
—
=
— 0 r
e
A
-10
v
FIG. 3. Plot of the dimensionless TDOS vs v at 0 K ob-

tained using Eqgs. (11), (13), and (14) and a Gaussian SDOS.
The curves were calculated at 10 T for I' = I'sca and the
following values of the mobility: (a) 2.5 x 10* cm?®/V s (thick
dashed curve); (b) 1 x 10° cm?/V's (thick solid curve); (c)
1 x 10° ¢cm?/Vs (thin dashed curve); (d) 1 x 107 cm?/Vs
(thin solid curve).
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LL from the center, the TDOS, if negative, diverges and
changes sign. This is because the TDOS assumes posi-
tive values in the extreme tail regions due to vanishing
values of the SDOS. It should, however, be noted that
the linear screening picture we assume does not actually
hold in these regions.?3 In the tails of the LL, the elec-
tron liquid breaks apart into puddles and can no longer
screen the remote donors. The electron then sees fully
the long-range fluctuations in the remote donor charge
distribution. Furthermore, approximating the SDOS by
a semiellipse or by a Gaussian is no longer valid in these
regions.

V. CHARGE-DENSITY-WAVE INSTABILITY

In this section we will show that when the renormaliza-
tion effects that make the TDOS negative are sufficiently
large a CDW instability could result. The renormaliza-
tion effects are accounted for through the many-body lo-
cal field G4 (g,w) defined in Eq. (5). We will now study

the charge susceptibility x¢ for possible CDW instabil-
ity when the many-body local field is large enough, i.e.,
G is of the order unity. The charge susceptibility, on
using Egs. (4) and (5), is given by

xc(g,w) = Viq (——e(ql’w) - 1)
_ XO(q,w)
1-[1-Gy(g,w)]Vaxo(q,w)

Then, for a strictly two-dimensional system, the Hartree-
Fock SCBA condition for the denominator of the above
equation to change sign is given by (see Fig. 1)

Tesl _ { 4 @M] XO(q,O)W—Zf—F, (16)

(15)

e2 wql Joo(ql)

where Iy(y) is the modified Bessel function of order zero
and the static Lindhard polarizability [see Eq. (8)] can
be expressed as a compact formula as follows:

4 [e ]
,0)=-Im——-— denp(e 2 - ;
Xo(g,0) T2l2[2 /_oo F(€) {1 _ %G0(5+25)G0(6+z5)J020(ql)}

4 o0
= I T / denr(€) { 1— J3(ql) exp

— o0

_2y/1-a?() 1 arctan R(gl)
N w221 R(ql) ’

with R = [2Joo/1 — a2(p)]/(1 — J&). We now ob-
serve that xo(g,0) in the above equation is indepen-
dent of the sign of a(u) and thus ensures particle-hole
symmetry. In Fig. 4 we plot the instability condition
given by Eq. (16). The minimum mobility at which
the CDW occurs increases as we go from the center to
the edge of the LL with the dimensionless CDW wave

0.4 } } } }
0.3 1 4
N
(3}
— 0.2+ 4
w
—
0.1+ 4
0.0 } } } }
0.0 0.2 0.4 0.6 0.8 1.0
o (1)
FIG. 4. Plot of the dimensionless broadening Fesl/62 vs

the dimensionless chemical potential shift a(p) expressing
the CDW instability condition for a two-dimensional Hartree-
Fock SCBA case.

[~2icos T a(e)] }

(17)

-

vector gl monotonically decreasing from 2.12 to 1.52. It
is also of interest to note that the broadening at which
the TDOS turns negative in the HF approximation [i.e.,
' = e?/(esl)\/2/my/1 — a2(pn) ] is always higher than
that leading to a CDW instability. However, the cause
for the negative TDOS and the CDW instability are the
renormalization effects given through the many-body lo-
cal field G (gq,w).

Now the above analysis, within the HF approximation,
predicts a second-order CDW phase transition when the
conditions given by Eq. (16) are met. However, this
does not imply that a state with a lower energy other
than the predicted CDW state is not possible. In fact, in
high mobility samples, we know that at odd denomina-
tor filling factors the lowest-energy state has value zero
for the TDOS due to special correlations among the elec-
trons and these states cannot be derived within a ladder-
diagram type of approach. Furthermore, it is not clear
whether the transition to a Wigner crystal (which is a su-
perposition of CDW states) can be understood in terms
of a topological long-range order?* or in terms of the
charge susceptibility. Thus although the phase transition
could be different from the predicted second-order one,
nevertheless the uniform electron-gas state is no longer
stable and the CDW state given by Eq. (16) is one of
the possible candidates for the lowest energy.

We will now remark on the consequences of including
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additional effects on the CDW instability. First, we note
that taking screening effects into account would shift the
most likely position, at which CDW instability occurs,
from the center of the LL to some point between the cen-
ter and the edge of the LL. Second, including the effects
due to the extent of the electronic wave function in the
third dimension would decrease the strength of the elec-
tronic interactions and thus require higher mobilities for
the occurrence of the CDW instability. Last, considering
finite-temperature effects is similar to considering lower
mobilities.?5

VI. CONCLUSIONS

In conclusion, we say that taking the EE interactions
into account can substantially alter the shape of the
TDOS from the SDOS obtained by including only the
EI interaction effects. At 0 K and high mobilities the
renormalization effects due to exchange and correlation
make the TDOS negative. We show this by calculating
the TDOS from the static long-wavelength polarizabil-
ity as well as from the density derivative of the chemical
potential. The two approaches yield qualitatively simi-
lar results which are also qualitatively corroborated by
the experimental results of Kravchenko, Pudalov, and
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Semenchinsky® and Eisenstein, Pfeiffer, and West.® Fur-
thermore, for sufficiently strong renormalization effects
there could be a CDW instability in the electron gas.
We obtain an analytic expression for the CDW transi-
tion within a HF treatment by considering the poles of
the static charge susceptibility. We find that for the HF
case the CDW instability always sets in after the TDOS
turns negative.

In the future, to calculate the TDOS, one could include
the effects of long-range scatterers, the effects of dynamic
screening, and the effects of nonlinear screening. As for
the CDW transition, one could include screening effects
and obtain the corresponding criterion for the instabil-
ity. Figuring out the combination of CDW’s that would
minimize the total energy is also a problem for possible
future studies.
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