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Temperature-dependent radiative decay of localized excitons in a type-II GaAs/A1As superlattice
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The low-temperature luminescence intensity decay following pulse excitation of localized excitons in a
type-II GaAs/A1As superlattice is nonexponential. The decay obeys a previously derived theory in
which excitons experience a distribution of decay rates corresponding to a Gaussian distribution of X to
I scattering matrix elements. At high temperature the decay is exponential with a rate equal to the
mean of the distribution. The transition is attributed to excitons motionally averaging the distribution
as temperature is increased and thermal delocalization occurs. This paper develops a theory of radiative
decay which takes into account motional averaging and is valid at all temperatures. The theory has one
fitting parameter y which is the ratio of exciton lifetime to jump time and determines the extent of
averaging performed. Good agreement is found between the theory and experimental data; however, at
high excitation intensity and low exciton energy the theory must be modified to take saturation of local-
ized states into account. The temperature dependence of the fitting parameter y reveals two delocaliza-
tion processes, the activation energies of which are interpreted as the localization energy and the exciton
binding energy.

I. INTRODUCTION

The time dependence of low-temperature luminescence
intensity decay of localized excitons in a type-II
GaAs/A1As superlattice is nonexponential. ' The form
of the decay is the same as that derived for Brillouin-
zone-boundary excitons in an indirect-gap semiconductor
alloy such as Al„Ga, „As. In this alloy the potential
fiuctuations created by the random placement of the Al
and Ga atoms mix states at or near the zone boundary X
with those at the zone center I . The scattering matrix
element V is a random variable with a Gaussian distribu-
tion for excitons located exactly at the zone boundary
and with a Rayleigh distribution for excitons located off
the zone boundary. The exciton decay rate is proportion-
al to

~ V~ and, therefore, also has a distribution. It has
been observed in Al Ga& As that the low-temperature
decay is nonexponential and corresponds to that of local-
ized excitons located off the zone boundary (k&kz). '

At higher temperatures ( T ) 8 K) the decay is exponen-
tial, with a rate approximately equal to the sum of the
mean of the distribution and a nonradiative rate deter-
mined from the measured quantum efficiency. The tran-
sition from nonexponential decay at low temperature to
exponential decay at high temperature is attributed to ex-
citons becoming thermally delocalized and motionally
averaging the distribution of decay rates.

As stated above, the low-temperature decay of excitons
in a type-II superlattice is also nonexponential. The
high-temperature (T-25 K) decay has been measured
and found to be exponential due to the domination of
nonradiative processes. It has also been found that the
exciton decay can be made exponential by increasing ex-
citation intensity. ' The effect of high intensity is
presumably to saturate localized states, causing the ob-
served decay to be from the more numerous delocalized
states.

The purpose of this paper is to construct a theory of
exciton decay which is valid at all temperatures, and to
make measurements on a sample in which nonradiative
decay is not important in the relevant temperature range.
The theory is developed in Sec. II. It is based on a hop-
ping process in which, as temperature is raised, localized
excitons begin to hop to neighboring sites, and in so do-
ing average over the distribution of decay rates. The
theory contains one temperature-dependent fitting pa-
rameter, the ratio of exciton lifetime to jump time. The
temperature dependence of this parameter will tell us
about the thermal activation processes involved in the
delocalization. We will find that there are two thermally
activated processes. The activation energy of the lower-
temperature process will be interpreted as the localiza-
tion energy. This same quantity has been measured in
direct-gap GaAs/A1As multiple quantum wells and we
will make a comparison with these results. ' Section III
will present experimental data along with a comparison
to theory, and Sec. IV will give a discussion of the results
and conclusions.

II. THEORY

In 1982 Klein, Sturge, and Cohen derived the low-
temperature radiative intensity decay of excitons in an
indirect-gap semiconductor alloy, based on a distribution
of radiative rates. It is our purpose in this section to de-
velop a model of exciton localization which includes the
effects of temperature, and with which we can derive an
intensity decay curve which is valid at all temperatures.
This radiative decay will be found to contain two parame-
ters. One of these is the mean of the distribution of rates
which can be found from the low-temperature result.
The other is defined as the ratio of exciton lifetime to
jump time and will be the only fitting parameter in the
theory. Since the theory developed here is an extension
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of that developed by Klein, Sturge, and Cohen, we will
begin with a summary of it.

Klein, Sturge, and Cohen considered the radiative de-
cay of excitons in an indirect-gap semiconductor alloy
AB C ] . In such a material the potential Auctuations
created by the random placement of B and C atoms mix
exciton states at X with those at I and cause the no-
phonon transition to become allowed in the same manner
as in an impurity system such as GaP:N. The scattering
matrix element which serves to mix the states is V(k),
where k is a vector in reciprocal-lattice space, and is
given by

V(k) = g e' V„q(L)P(L),
L

where

with

Vr k ( L ) =fr. va + ( 1 ft. )vc— (2)

( V2) (2~V2( V 2) )
—1/2e —v /2( v ) (4)

while, for krak»,

(
~

V~2) —( V2) —le —P /( v )

Here (x ) is the mean or ensemble average of x. The ra-
diative decay rate w is proportional to

~
V~ and has the

same probability density. If all the excitons are localized
then each one samples only a small environment of the al-
loy, and a population of excitons exhibits this same distri-
bution of decay rates. For a 5-function excitation, the
luminescence decay curve is then found to be

I(t)=e '(1+2(w)t), k=k»,

I(t)=e "'(I+(w)t), krak» .

(6)

Here w' takes into account any nonstochastic processes
such as phonon-assisted transitions.

We are concerned with type-II GaAs(n)/AIAs(m) su-
perlattices in which the lowest-energy excitons are in-
direct and also have momentum parallel to the growth
direction, z. The X to I scattering potential is now the
superlattice potential, and the scattering centers are

va(c)= J uc(r)Va(c)(r)uc(r)d r .
cell

Here V~~c~ is the potential in a cell containing a B (C)
atom. ft is a random variable due to the random place-
ment of the B and C atoms in the crystal lattice with vec-
tor L and has a mean of x. The u are conduction-band
Bloch functions, and g is the center-of-mass-dependent
portion of the exciton envelope function. When
k =kz =2~/a, where a is the lattice spacing, the quanti-
ty e' =+1, and since V„z(L) is a real random variable,
V(k) is real with a Gaussian distribution. When krak»
but is close to 2n/a, Eq. (1) contains a sum of terms of
random phases with a uniform distribution. The distri-
bution of

~

V is then Rayleigh, as in the distribution of
amplitudes in laser speckle. '

The resulting probability density function of
~
V(k)

~
is,

for k =k~,

essentially confined to the interface planes. The lattice
vector L in Eq. (1) now has zero or at most a very small z
component and, since we are only considering excitons
with momentum parallel to z, the phase k-L is zero re-
gardless of the value of kz. This was first pointed out by
Minami et al. The matrix element Vrz(L) is still writ-
ten as in Eq. (2), where ft now has a mean value of one-
half. Vr&(L) is therefore still a random variable with a
random sign due to the random placement of the Ga and
Al atoms along an interface. V(k) then has a Gaussian
distribution leading to Eq. (6) for the intensity decay.
From now on we will refer to this case as the k =kz case,
to which it is mathematically equivalent. Note however,
that while it is applicable only to zone-boundary excitons
in the alloy, it applies to both zone-boundary or off-zone-
boundary excitons in the superlattice.

We now consider the effects of temperature by con-
structing a simple model of exciton mobility. We begin
by creating (with a laser pulse) a population of excitons in
an indirect-gap semiconductor with some sort of random
potential. At low temperature, say &4 K, all the exci-
tons will very quickly localize in the deepest potential
wells. When temperature is increased slightly, to about 8
K, the excitons begin to overcome the potential barriers
which confine them and they hop to other nearby poten-
tial wells. At high enough temperatures, about 30 K, the
excitons freely hop from site to site, i.e., they are com-
pletely delocalized. Note that here excitons are delocal-
ized in the sense that they are able to hop from one local-
ized state to another. They are not necessarily entering a
state with an extended wave function such as a state with
energy higher than a mobility edge.

When the excitons are completely localized, the popu-
lation will exhibit the distribution of radiative rates dis-
cussed above and decay nonexpotentially according to ei-
ther Eq. (6) or (7). If the excitons are sufficiently delocal-
ized, they will motionally average the distribution of de-
cay rates, and a single rate will result, namely (w ), or
something close to it. The decay then becomes exponen-
tial. Of course the changeover from nonexponential to
exponential decay is not instantaneous, and at intermedi-
ate temperatures, where the excitons begin to move
around but are not yet mobile enough to fully average
over the distribution of decay rates, a different form is ex-
pected. We thus seek a formula for the radiative decay
which is valid at all temperatures. This will involve a
different form of the probability density of the squared
scattering matrix element, V.

An effective method of solving this problem is based on
the Karhunen-Loeve expansion method. " This method
has also been used by Jakeman and Pike in their calcula-
tion of the intensity fluctuation distribution of Gaussian
light, ' as well as by Slepian in determining fluctuations
of random noise power. ' Here we calculate the integrat-
ed square of the scattering matrix element V,

where T is the mean exciton lifetime. It is our purpose to
determine the probability density function p ( A). We be-
gin by expanding V(t) in an orthonormal series over the
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interval 0 to T as follows: and

V(t)= gb„q„(t), 0&t&T,

where

b„=f V(t)y„*(t)dt (10)

f q&„*(t)ip (t)dt =5„
0

We choose an expansion such that the coe%cients b„are
uncorrelated, that is,

E[b„b*]—= (b„b*)= f f ( V(t, )V*(t, ))ip„(t, )y*(t, )dt, dt,
0 0

T T= f f Jv(ti tz)'V n(tz)«z mm(ti)«i
0 0

for m =n,
=0 for m =n, (12)

f T
Ji (t, ; ti )y„(t~ )dt~ =X„ip„(ti ),

0

and, from (8) and (9),

(13)

(14)

For the case k =kx, V in Eq. (10) is real, and, since the
y„are real valued, the b„are thus real, independent, nor-
mally distributed random variables with mean zero and
variance A,„.' The probability density of b„ is then simi-
lar to that of (4):

where

Ji,(ti,'t~) = ( V(t, ) V*(tq) )

and is the autocorrelation function of the scattering ma-
trix element, V. Multiplying each side of Eq. (12) by p„*
and using (11), we obtain the following eigenvalue equa-
tion:

Before continuing, note that if we assume that all the
excitons hop at the same rate I, then the correlation
function takes the form

The probability density of A is the inverse Fourier trans-
form of M„(ig ), and is

m/2
1

2XO
A (m/2 —1) 0e

This is equivalent to saying that an exciton visits an aver-
age of m sites in its lifetime, where m =(I /( w ) )+1.
From the integral equation (13), we find that all the eigen-
values are equal in this case, and if we cut the number of
eigenvalues off such that A,„=0 for n + m and X„=O for
n )m, we see that the characteristic function becomes

M„(ig) =(1 2igio—) (18)

p(b„)=(2irk„b„) '~ exp
b2

2A'

p(A)=
m

2

(19)

which has the Fourier transform or characteristic func-
tion

M, (ig)=(e ")=f e "p(b„)d(b„)
n

where I (m/2) is the I function. From this we can
determine the mean of A:

(&)=f Ap(A)dA=mA,

=(1—2l gA, „) (16) or

M (ig)= + (1—2iP.„)
n=0

(17)

This characteristic function, along with the eigenvalue
equation (13), completely describes the problem as long
as we specify what Ji,(t„tz) is. The probability density
of A is the inverse Fourier transform of this characteris-
tic function.

Because of Eq. (14) and the independence of the b„, we
can write the characteristj, c function of A as the product
of the individual characteristic functions of the b„. That
1S,

m

The decay rate is proportional to A so we replace A by m

and ( A ) by ( w ). The intensity decay is then

I(t)= (w ) ' f we 'p(w)dw
0

' —(m/2+ 1)

1+ (20)
m

which is, again, an approximation because we have as-
sumed that the hopping rate is the same for all excitons.

In actuality we should use a distribution of exciton
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FICx. 3. The temperature-dependent luminescence decay

plotted on a log&0 scale. The excitation intensity is 0.6 J/cm

and the exciton energy is 1.851 eV. The solid lines were calcu-

lated using the theory developed in Sec. II. The values of y
used are indicated on the graph, and (w) =7.0X10 s ' at all

ther b 1.0temperatures. The curves are displaced from each ot er y

for clarity.

and highest temperatures (20 K) are the result of the
standard deviation in the theoretical fit plus an assump-
tion of a 5% inaccuracy in ( w ). The temperature error
bars assume a +0.25-K error in the calibration of the
temperature indicator.

The upper curve in Fig. 4 is from a set of temperature-
dependent decay data measured at a lower exciton ener-

gy, 6 meV below the luminescence peak, and a smaller ex-
citation intensity of about 0.12 J/cm . At this exciton en-

ergy we obtain similar results to those above, but there
are some significant differences. It was found to be neces-
sary to use the smaller excitation intensity in order to
avoid saturation of localized states and achieve good
agreement between theory and experiment. This point
will be discussed further below. It was also found that
the fitted ( w ) varies with temperature. It has a value of
6.6X10 s ' at the lowest (4—6-K) and highest (17—20-
K) temperatures, but is smaller at intermediate tempera-
tures, being as low as 4.6X10 s ' at 12 K. At this low
excitation intensity, the same effect was observed at a
higher exciton energy about 3 meV below the peak.
Therefore it seems to be an intensity effect rather than an
energy effect. We have, however, no explanation for it.
The solid line is, again, a fit to Eq. (28) with
3 =450+100 and E, =5.0+0.5 meV. For this set of
data there are a few more high-temperature points avail-
able and B—10 and Eb —30 meV. The y error bars at
the 10-K and 12-K points represent an estimate of the er-
ror due to the lack of knowledge of ( w ) at these temper-
atures. The magnitude of the error is equal to the
difference between the value of y obtained from the best
theoretical fit with (w) held at 6.6X10 s ' and the
value of y obtained when ( w ) takes on the value to give
the very best theoretical fit.

IV. EFFECT GF INTENSITY

3.5

--2

-2—
l

0.00
I I I I I I I

0.02 0.04 0.06 0.08 0.10 0.12 0.14
1/T (K )

FICx. 4. 1ny vs 1/T for two sets of decay data measured 3.5
and 6.0 meV from the peak in the photoluminescence spectrum.
The solid lines are fits of Eq. (28). The right and left axes are
separated by 1.0 for clarity.

As mentioned above, the excitation intensity which
gave good agreement between theory and experiment at
an exciton energy 3.5 meV below the photoluminescence
(PL) peak (Fig. 3) gave poor agreement at the lower ener-

gy 6 meV below the PL peak. Figure 5 shows three low-
temperature decay curves measured at an exciton energy
about 6 meV below the PL peak and at three excitation
intensities differing by factors of 10. The bottom curve is
the highest intensity and the top curve is the lowest in-
tensity. The solid lines are best fits of Eq. (6). The theory
fits the data well at low intensity but becomes increasing-
ly poor as intensity is increased. This is presumably due
to a saturation of localized states at high excitation inten-
sity and a subsequent filling of delocalized states.

This saturation can occur in the following manner.
Since excitons are created with photons of energy well
above the band gap (the excitation source is the 2.4-eV
argon laser), they are initially truly delocalized in the
sense that they occupy states with extended wave func-
tions. Lower-energy localized states then serve as exciton
traps. If, somehow, localized and delocalized states exist
at the same energy, then, if all the localized states become
filled, any remaining excitons will occupy delocalized
states. Therefore, if a particular excitation intensity
creates just enough excitons to saturate localized states,
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the double exponential of Eq. (28). The low-temperature
region ( T ( 15 K) is clearly Arrhenius, and there is evi-
dence of some sort of higher-temperature process con-
tributing to the increased hopping rate or delocalization
of excitons with increasing temperature.

The smaller activation energy can be identified with
the energy of localization or perhaps the average well
depth that localized excitons are situated in. The fits to y
of Eq. (28) showed this to be about 5 meV. This is com-
parable with the previous results on direct-gap excitons
in quantum wells of Hegarty and Sturge, who measured
homogeneous linewidth and found E, to be equal to the
difference between the energy of the peak in absorption
and the exciton energy. Our peak in the photolumines-
cence is at 1.855 eV (see Fig. 2) and is about 4 meV lower
in energy than the peak in the absorption, ' so these two
results are in agreement within experimental error.

We do not, however, observe a mobility edge. If there
were an effective mobility edge as in Ref. 8, one would ex-
pect to see a slope of —1 in a plot of activation energy vs
exciton energy. We do not, however, see any increase in
activation energy with decreasing exciton energy. This is
possibly due to the uncertainty involved in our deter-
mination of E„since we were unable to make measure-
ments close to the luminescence peak because of the spec-
tral diffusion process. It may also be that a true mobility
edge does not exist in this system, and that different exci-
ton energies correspond to different regions in the sample
between which there is no communication. Our result
can be compared with that of the Ga, Al As alloy.
Here an activation energy for nonradiative decay was
measured. The dependence of this activation energy on
emission energy also did not indicate a mobility edge. It
was further found that at high intensity, nonradiative
centers became saturated and decay was from the more
numerous delocalized states. If there were a true mobili-
ty edge then there should be, in this case, a shift of the
spectrum to higher energy which was not observed. The
differences (this work versus that of Ref. 8) and similari-
ties (this work versus that of Ref. 4) in results described
above are probably not dependent on dimension, but
rather on the time scale of the measurement.

The preexponential factor 3 is the T = ~ ratio of exci-
ton lifetime to jump time. At T= ~ the lifetime is
1/( w ), which is approximately 1.4 X 10 s, and
2 -250, so the jump time is on the order of 0.5 ns. From
this we can determine the localization time; i.e., the time
it takes for an exciton which is initially delocalized to find
a localized site. To do this we need the density of local-
ized sites. This can be estimated from the intensity at
which localized sites become saturated, and is about
5X10 cm . The density of sites is the inverse of the ex-
citon area which, for an exciton Bohr radius of 50 A, is—10' cm . The exciton therefore visits -2000 sites
before it localizes and the localization time is —1 ps.

The higher activation energy is larger than the exciton
binding energy. If we picture this second process as in-
volving the breakup of the exciton, followed by each par-
ticle hopping to neighboring wells and then recombining,
this energy would be the exciton binding energy plus the
localization energy. The exciton binding energy for a su-

perlattice of comparable layer thicknesses to those of the
sample used for this study has been calculated by
Salamassi and Bauer' and measured by Hodge et al. ' to
be about 17 meV. We might therefore expect this activa-
tion energy to be about 20—25 meV. The value of 30
meV reported above is slightly larger than one would ex-
pect from this oversimplified picture, but not outside ex-
perimental error.

When excitons begin dissociating, y increases dramati-
cally because the individual electrons and holes have
many more states available to them, thus increasing the
effective exciton lifetime. The prefactor B is determined
by mass action and should be the ratio of the product of
electron and hole effective densities of states N, and N, to
the density of excitons. ' The density of electron (hole)
states is given by 2(2m. m, ~„~kT/h )

~ in three dimen-
sions, where m, ~„~ is the conduction-(valence-) band
effective mass. The density of electron states per super-
lattice layer at 10 K is approximately 3 X 10 cm, and
the density of hole states is approximately 7X 10 cm
At the excitation intensity of 0.6 J/cm s the exciton den-
sity is —10 cm, so we would expect B to be —10, as
observed.

In conclusion, we have shown that the luminescence
intensity decay of localized excitons in an indirect gap
GaAs/A1As superlattice is nonexponential at low tem-
perature, and the measured decay curve is well fit by a
model in which the excitons experience a distribution of
decay rates corresponding to a Gaussian distribution of
scattering matrix elements. We have further shown
that, as temperature is raised, the exciton decay gradually
becomes exponential and is almost purely exponential by
20 K. At an excitation intensity at which localized states
are not saturated, the temperature dependence of the ex-
citon decay agrees well with a theory based on a model of
excitons thermally hopping between localized sites and
motionally averaging the distribution of decay rates. The
extent of averaging is determined by a fitting parameter y
which is the ratio of exciton lifetime to jurnp time.

The temperature dependence of y indicates that its in-
crease with increasing temperature is due to two thermal-
ly activated processes. The first of these has a small ac-
tivation energy -5 meV which is interpreted as the local-
ization energy, and the second has a larger activation en-
ergy -30 meV which is of the order of the exciton bind-
ing energy. The activation energies and preexponential
factors of the thermally activated processes were shown
to be in reasonable agreement with other measurements
or previously published results. No evidence was found
for a mobility edge.

At high excitation intensity there is possibly a satura-
tion of localized states and a subsequent filling of delocal-
ized states. This effect can be modeled by considering
two populations of excitons, one which is at least partial-
ly delocalized even at low temperature and another which
is localized at low temperature and then becomes
thermally delocalized.

We conclude that the temperature dependence of the
decay of indirect excitons is well described by the model
of Klein, Sturge, and Cohen, and that it can give some in-
formation on exciton dynamics.
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