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Electron-phonon interaction, Kohn anomalies, and the Peierls transition
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We calculate the magnitude of phonon softening due to the electron —acoustic-phonon interaction in a
continuum one-dimensional model as appropriate for semiconductor quantum wires. We compare the
relevant quantum-wire parameters with those of a typical Peierls-unstable one-dimensional compound
K2Pt(CN)4Bro 3 3H20. We obtain quantitative results for the phonon softening, and discuss the possibil-
ity of a Peierls instability in quantum-wire structures. We discuss quantitative effects of electron-
electron interaction on Kohn anomalies in doped wires. We obtain conditions for a continuous phonon
softening as the temperature reaches the mean-field transition temperature. We conclude that for realis-
tic system parameters it is unlikely for quantum wires to exhibit Peierls instability even though strong re-
normalization of phonon modes may be observable under suitable experimental conditions.

I. INTRODUCTION

Recent advances in nanofabrication have opened up
the possibility of making semiconductor wires sufficiently
thin for the observation of one-dimensional electron gas
(1DEG) behavior. ' Combining heteroepitaxy and nano-
lithography one can quantize the motion of the electrons
in the conduction band of a semiconductor in two or-
thogonal directions, while leaving the motion in the third
direction essentially free (in the effective-mass sense).
Moreover, by controlling the doping of adjacent semicon-
ductor regions and/or the voltage applied to adjacent
electrodes, one may be able to continuously vary the con-
centration of these free carriers. If the combination of
(high enough) energy-level spacing due to the lateral
confinement and (low enough) carrier concentration is
such that only the lowest subband is occupied, the car-
riers behave as a 1DEG. The construction characteris-
tics of these semiconductor quantum wires, and the rela-
tive freedom of choice of material, wire dimensions, and
carrier concentrations, make them convenient systems
for studying the 1DEG in a jellium background within
the effective-mass approximation in a controlled manner.

One task at hand for theory is to ascertain the
relevance, for these semiconductor quantum wires of
various fundamental results derived earlier in the litera-
ture in the context of 1DEG, and observed in other
classes of one-dimensional systems. In particular, it was
proposed a long time ago by Peierls that 1DEG is in-
herently unstable with respect to the formation of a
ground state consisting of a lattice distortion of wave vec-
tor 2kF (kz =Fermi wave vector of 1DEG) together with
a charge-density wave of the electrons of the same 2kF
wave vector. In this paper we discuss the relevance of
the Peierls instability to semiconductor quantum wires.

The basic concept of the Peierls instability is that in a
one-dimensional system the phonon frequency at 2kF
may be driven to zero by the electron-phonon interaction
effect. Lattice vibrations correspond to a periodic defor-

mation of the lattice. Each lattice deformation causes,
through the electron-ion interaction, a change in the en-
ergy levels of the electrons. If 1DEG were not polariz-
able, its energy would increase in regions of dilation and
decrease in regions of compression (or vice versa) and the
energy to create this distortion would not be altered by
the presence of 1DEG. However, 1DEG is polarizable,
and responds to the periodic lattice perturbation, redistri-
buting itself to take advantage of the regions where its en-
ergy would decrease. The net result is that the restoring
force for a lattice deformation is decreased by the pres-
ence of 1DEG and, consequently, the vibration frequency
lowered. The shift in frequency is expressed by the renor-
malization of the phonon propagator, whose denomina-
tor becomes

A to fi to —2A'to lM—(q) y(q, co, T),

where co~ =cq is the bare phonon frequency (i.e., in the
absence of 1DEG) at wave vector q, lM(q)l is the
squared matrix element for the electron-phonon
deformation-potential interaction, and y is the polariza-
bility of 1DEG. In fact, Eq. (1) may have a root co =0 for
q&0, and the highest temperature at which this occurs
defines the transition temperature T, for the Peierls insta-
bility,

A'coq+2lM(q)l y(q, O, T, ) =0 . (2)

The effect is more pronounced in a one-dimensional
system for wave vector 2k~ (twice the Fermi wave vector)
since g(q, O, T, ) in 1DEG is strongly peaked at this wave
vector and, therefore, T = T, corresponds to to(2kF) =0.
Below this temperature, the zero-frequency 2kF mode be-
comes the static lattice distortion accompanied by the
electronic charge-density wave, with the free energy of
this distorted configuration lower than that of the undis-
torted metallic state.

The simple reasoning given above is correct for phonon
softening, but not for the occurrence of a phase transi-
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tion. If such a transition occurs, it would imply that the
continuous translational symmetry of the one-
dimensional system would be broken at a nonzero tem-
perature. It is believed that this cannot occur in one di-
mension if it is driven by a short-range interaction such
as the electron-phonon interaction.

There have been several experimental observations of
low-temperature phases of this kind in 1D compounds
such as tetrafluoro-tetr acyanoquino dim ethane TF-
TCNQ, NbSe3, and K2Pt(CN)48ro 3.3H20 (KCP).
The stabilization of this Peierls phase has been explained
by the intervention of mechanisms for pinning the phase
of the charge-density wave. Possible pinning mechanisms
could be impurities or interchain coupling between one-
dimensional chains. The simple reasoning is believed to
give correctly the transition temperature for the onset of
the one-dimensional structural fluctuations, which, how-
ever, will only stabilize at a lower temperature T & T, .

The aim of this paper is to supply quantitative results
concerning the softening of acoustic phonons caused by
the phonon-1DEG interaction in an artificially structured
semiconductor quantum wire, and discuss the possibility
of a Peierls instability in such systems. In Sec. II we dis-
cuss the interesting general consequences of the continu-
um model, and in Sec. III we specialize our considera-
tions to semiconductor quantum wires. We conclude
with a summary in Sec. IV.

II. PHONON SOFTENING AND
PEIERLS TRANSITION

and

n =n /n*, (4)

(where we included a factor v in the definition of n * to

First, it is worth contrasting the characteristics of
semiconductor quantum wires with the known Peierls-
unstable one-dimensional systems. These are typically
"half-filled band" systems, that is, they are be described
as a chain of atoms or molecules, with of the order of one
free electron per atomic or molecular site, thereby result-
ing in kFb —1 where b is the lattice spacing. In a semi-
conductor quantum wire, on the other hand, there are far
fewer free electrons than atoms, resulting in kFb « 1, the
electrons occupying only a small portion of the bottom of
the conduction band. The atomic lattice can then be
treated as an elastic continuum, and questions concerning
the commensurability of the lattice spacing and kF sim-
ply do not arise. (Our whole discussion is based on this
effective-mass approximation approach to semiconductor
quantum wires. )

In the usual Peierls-unstable compounds one can ap-
proximate the electron-electron interaction by a short-
range interaction, for instance, by an on-site Hubbard
repulsion term in a tight-binding model. We define a di-
mensionless electron density n in terms of the real 1D
electron density n and the quantity n defined as

1mevn*=—

take care of a possible valley degeneracy in semiconduc-
tors, v= 1 for GaAs structures). For dielectric constants
c, of the order of 10, effective-masses m of the order of
0.1, and linear concentrations n of the order of 10 —10
cm, n is typically in the range of 1 —10 for semiconduc-
tor quantum wires, while in the continuum model for the
1D organic compound TF-TCNQ, for instance, would
correspond to an electron gas with n =0.1. In this
sense, the 1DEG in semiconductor quantum wires is a
relatively weakly interacting electron gas because the di-
mensionless densities are substantially higher making ki-
netic energy relatively more important in quantum wires.

We now apply the simple continuum effective-mass
model to 1DEG in a semiconductor quantum wire. We
evaluate the changes in the frequency of the acoustic
phonons propagating along the quantum-wire axis as de-
scribed by Eq. (1) and also the temperature T, given by
Eq. (2) as a function of the material parameters of the
semiconductor and wire parameters n and a (wire width).
The phonons interact with the electrons via the
deformation-potential interaction which measures by
how much the electron states change in energy for a
given amount of strain in the lattice,

/~~2 2

2pa Q)q

where p is the three-dimensional ionic density and:- is
the deformation-potential coupling constant for the par-
ticular semiconductor. We take into account the
electron-electron interaction in 1DEG. Starting from the
three-dimensional Coulomb interaction between elec-
trons, one can obtain the matrix element for the interac-
tion between electrons in the lowest subband of a quan-
tum wire (with its axis in the z direction). We get

V(q) = f "
dx dy dx'dy'I +~(»y) l

+~(x' y')
I

X 2%0(q +(x —x '
) + (y —y') ) .

Here, %00(x,y) is the lowest subband envelope wave func-
tion for the electrons. The integration over x's and y's
can be done numerically for any model of confinement.
For a two-dimensional parabolic confinement the integral
involves the two-dimensional harmonic-oscillator
ground-state wave function and we approximate the re-
sult by

2e
V(q) = Ko(qa),

where Ko is the modified Bessel function of zeroth order.
We introduce some definitions. The material parame-

ters can be grouped as

n*= me v

2c
~~2 22 m

m2 A4pC2e„

16 Ac
C 2~~ ~
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TABLE I. Material parameters for some semiconductors. See Refs. 10 and 11.

Material

Ge
Si (v ——1)
Si (v=2)
GaAs
GaAs

0.081
0.19

0.067

16.0
12.0

10.9

P
(g cm ')

5.32
2.33

5.36

C

(10' cms ')

7.5
8.4

4.7

(eV)

11.6
13.9

8.6
16.0

(10' cm ')

4.8
15.0
30.0

5.8

1.5 X10-'
2.8 X 10

2.1X10-'

C

0.28
0.23

0.12

a =an*/v,

n =n/n*,
c =4c/RF c /IT

(10a)

(lob)

(10c)

In Table I we display the evaluation of material parame-
ters for some of the best-known semiconductors of tech-
nological importance. ' '" Here, c is the sound velocity in
the system.

Then, the quantum wire is characterized by the dimen-
sionless parameters

wire parameters. Using Eqs. (12) and (15), we get

1+(g )
—

g2 )go( 1,0, t, ) =0, (18)

so the effect of the Coulomb interaction introduced
through the renormalization of the polarizability, Eq.
(12), is to decrease the coupling responsible for the transi-
tion from the bare value g, it would have in Eq. (18) if f
were approximated by noninteracting go. Since
f (oxO, t)&0, this equation will have a solution only if
g, —

g2 )0. In this case, we can write an explicit solution
for t, by using an analytic approximation' for t «1,

Other dimensionless quantities are x =q /2kF,
y =A'co/EF, D=DsF, f =pe ', t =k~Te~', and
V=X~ V, where kz, cz are the Fermi wave vector and en-

ergy, X„ is the density of states at the Fermi energy, and
kz is the Boltzmann constant. Then,

j,(1,0, t)= —,'In(t/4. 259), t « I

from which

t, =4 259e '~, A, = )0 .g& g2

(19)

(20)

2cx

y —c x cx g,g—(x,y, t)

Xox= -™
1 —V(x)fo

g, =M*/na
2

4 Eo(xmna )
V(x) =

(12)

(14)

and, since we are most interested in the effects at x = 1

(q =2k+), we define the electron-electron interaction
coupling constant by

g2 ——V(1) . (15)

y (x)—c x —c x g, Ref[x,y, (x),t]=0,
and the mean-field equation for the transition becomes
(since go and g are purely real for the y =0 frequency ar-
gument)

I+g,g(1,0, t, )=0 . (17)

We can discuss two interesting consequences of this
continuum model in terms of the coupling constants g&
and g2, and of the reduced sound velocity c, independent-
ly of the detailed dependence of these on the material and

The renormalized phonon frequencies are obtained by
solving for the roots of the real part of the denominator
of the phonon propagator

If g2 were set equal to zero, Eq. (18) for this model
would always have a solution with t, )0 because of the
divergence of yo(1, 0, t) as t~0 This is t.he essential ar-
gument for the intrinsic instability of 1DEG with respect
to the Peierls transition; but the simplest effect of the
Coulomb repulsion is to introduce a competition and
lower t„so that for g2 )g2 the complete softening of the
2kF phonons is not allowed, not even at T=O.

It is also interesting to consider how the renormalized
phonon frequency y(1) behaves as the temperature is
lowered. In Fig. 1 we show graphically the solution to
the equation

y —c —c g&Ref(1,y, t)=0 (21)

for several temperatures. [Actually, in all the numerical
calculations x is not set to 1, but to its value at the
y(x, O, t) peak, which is x„=Qp, /Ez where p is the
chemical potential. This x„ is approximately equal to 1

for t «1.] We see that at t, the zero solution mode ap-
pears, but coexisting with a nonzero solution, and below
t, there is a range of t where there are actually two solu-
tions for y. It can be shown' that the temperature at
which the zero-frequency solution occurs is the same as
the one at which lattice deformations begin to appear. In
this case, the double roots for t & t, are probably not
physically significant, since in this range of t one should
take into account the effect of the deformed lattice. We
therefore interpret this as a discontinuous jump at t,
from a nonzero to a zero-frequency mode, and denote
this by the dashed line in Fig. 2.
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X(l,y, t, ) =—1 (gi g2) y2

2g, t,
(23)

E (20) we obtain that there will be two rootsand using Eq. , we
of Eq. (16) for x =1 if

—4.0
0.00 0 20 0.40 0.60 0.80 1.00 2/s +g +g2

c )6.40e (24)

y/cx

FI . 1. graphical depiction of the solut' ion of E . (21), forq.
.3 10 ~ For these parameters,

(1 ) D h d l'
=0.17, and 0'=2. X

t =3.8X 10 . Solid lines: y, y,
c . For this low t„~g~ has developed an acute
=0 b 1 t there are two solu-maximum at y =0,=0 so that at and e ow, e

h t e uation. If t, were higher enoug, y, y, ,h (1, , t, ) would
and onl one solution for

Eq. (21) would result, for all t ) t„and none for t & t, .

It would be interesting to verify w..ethether in this case
eter for the deformed lattice (the ampli-the order parameter or e

um s discontinuous-tude of the lattice deformation) also jumps iscon
'

t to a nonzero value or if it1 from a zero value above, o
illg

'
m zero' in any case, we wiS 1 gt'll grows continuously rom

s a first-order transition
~ ~refer to the discontinuous pump as a firs-

ous softening as a second-order transi-and the continuous
The resent result seems to imp y t a, i

ne could see the ap-ro riate parameters are chosen, one c
pearance of the density uc u
the complete softening of the 2kF phonon mode.

We can obtain e cb
'

th conditions for the existence o a
hat there is (not) a double root adiscontinuity by noting t-at er

=0t if the curvature of g( l,y, t, ,~ as a function of y at y =
C

1.00

g =4, c =1.94+1+g2/g (25)

if ( the transition is allowed, theQuite generally, i gz (g,
Even when t e ran '-ee'ective coupling being g&

—g2. h t e ran
ed it will occur by a continuous softening otion is allowe, i wi

te Fph 2k honon as the temperature is owere
d b ) is largee ectron-p onon- honon coupling (measure y g,

b c) isenough or t e are ph b honon frequency (measured y
low enough.

10o—

g2 ——10g
=02

I I I I I llii I I I I lillj I I I I I I II

y t =0) otherwise.

'
n where the transition is continuous (that is,

ly a zero-frequency so ution at t, , an a ir
where the transition is discontinuous (

y =,) Te condition expressed infre uenc at t =t, . e
-c diagram where24 is re resented in Fig. 3 in a g-c

=g —g . For each value o gz g, ef /, the curve separating
the two regions has a maximum at

0.80—
M = 0.005
a = 0.05

1st Dryer er

0.60— 102=

0.40—
10 3

I I IIIIIII (

10-2 10-~ 10o
I I I I I Ill

101 102
0.20—

0.00
10 7

i a»&l t t »»&rlI I II»» I I I»

10 5 10 3

tc

I I I »&&I

10—j- 101

s of E . (21) for the same parameters as in Fig.FICx. 2. Roots o q.
1. The dashed line indicates the temperature a w ic
frequency [y(1)=0] solution appears.

g(=gg —g2)

distinct

ble roots of Eq. (21), as in the example o ig.'
d h ----.f'.-1,'-."second-order regionion corres on s to e

othl to zero as thonon frequency going smoot y o zeroot and the 2k+ p o q
indicated the regionapproac es, rh t f om above. We have also in ica e

where (g, c) for KCP would fall.



4556 Das SARMAJ. R. SENNA AND S.

1.00and dePends Pn y pn theis uite general, a
osition abput

sul q
h t any supp

dependence o g j '
h the conductio

f

i e
consider KCP in whic

ut a precise estimate o
Let us

DE~ I~ Even w&tho

24) is higger
behave as a

'
ht-hand side o q.

f KCP
we see tha

. d the estimate
t the rig

pfg or
d

g2~
'th g2 =0 anthan its value w'

0 4 Therefpre, o
~ ] c is

f 15) are from O ' '
In&5 9X 106.4 xp( &~g)g

Cp learly f»is '"
8X10 &

0 4. SoK3X10—
to 4X o

t to see a con-
in the ra g

"region, and one P
hich is con-

t eh "second-order' g
- honon mode (wtinuous s

ental finding)
'

h the experimen asistent wit

R UANTUM WIRESIII. SEMMICONDUCTOR Q

0.80

0.60

0.40

0.20

0.00
10

nc
t j.o'

nc

I I

102

b.(co ) y (1)
2 C2 g2CO

(26)

0.20

he articulareneral results to the p

'g po
f a particular c oicsionless den

'
ysit i7, or

d A, becomes nege ative.
nd in

&g2 an
ibed before, an i

e,
6rst effect descri e

d' t th' 'l"tit correspon s os of 1D
ortant as the density is

term
beco min

is a m
' =, the density=n,

r aherefore sets an uppehis feature t ere
l arameters. igiven w'ire wi

ion, one sefor
h d f(13) that no matter

rbitrarily large A,

t q

=0nded by its value athan 1, and is boun e

honon frequen y,c forion to the 2kF p o
lues of

. R lative correction
for several value

as described in Fig1t For I &8', thedou er

sit at lown e reaches 1 for any den
'

yn he co ec ion eac
h t, with no eing

erature. For t &,h t possible tempp t ih ig
escribed in ec.

n uc-
hich increases as

xtrernely sIt turns out th

i l s obtained f „n
es

f 10y
bservation of a Peier s

'
out an obse
conducto q

cerning the or e o on
turn wwires using Eqs.

0.10— 10.0

0.000

—0.10—

I
I
I8.0 -I

I

I

6.0 ",
I

I

10 2

—0.20
1OO 101

n

102

4.0 —
~

I

I

I

2.0—

10 3

built from contriri utionsconstant A, , bui
as a func-

. 4. The coupling
electron-electron, a- honon) and g2 (e ec r

ess carrier conce
'

e
(electron-p ono

ntration S. e
'

n of dimension ess cation o ess ca
only possible
value, equal to ko.

0.0 1.00 2.00
a

(right axis),8 (left axis), and A,o ( ge uantities $„80 ( e aFIG. 6. The q 5 (e a
lotted as a undefined in Fig. 5, p



ELECTRON-PHONON INTERACTION, KOHN ANOMALIES, AND ~ ~ ~ 4557

TABLE II. For the same materials as in Table I, numerical values of the u

effective width a =100 A.
o e quantities of interest for phonon softening, for an

Material

Ge
Si (v=1)
Si (v=2)
GaAs
GaAs

a
(a =100 A)

0.48
1.5
1.5
0.58

n,
(10 cm ')

1.6
1.4
2.8
1.6
1.2

np

(10 cm ')

2.2
2.0
3.9
2.2
1.8

c ( 8'p )

=c*/n p

6.1X10-'
1.7X10—'

3.2X10-'
3.9X 10

g&(np, a)

1.4X10-'
9.5 X 10

1.6X 10
6.9X 10

g2(np a)

1.7X10-'
1.2X10-'

2.0X 10
9.8X 10

A,p(a)

6.3 X10-"
4.1X10

7.2X10-'
3.0X 10

10.0
(a)

8.0— M = 0.05
c = 0.1218

6.0—

those phase diagrams into a dependence on the wire a-
rameters a, n, and c and material parameters M*, c*,and
n*. T is is shown in Fig. 7, where in addition to the

'
n an transi-n, a curve separating the "no transition" d "

tion" regions, there is a curve, obtained from the "first-
order" or "second-order" regions.

It is unlikely that in real semiconductor quantum wires
the
lead to a

p onon anomaly can ever become large h t
ea to a complete softening. There can, however, be

significant corrections to the phonon frequency (Kohn
anomaly) which may aff'ect te electronic transport proper-
ties. We show numerical results for GaAs quantum
wires. Because of the uncertainty in the literature con-
cerning the value of the electron-LA phonon deformation
potential, we present numerical results for ==7.0 eV, a
conservative estimate. (Results for other values of:" can
be obtained by a simple rescaling. ) The normalized pho-
non frequencies are given by the solution of Eq. (16). In
Figs. 8(a) and 8(b) we show the relative corrections for
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pling constant. The dashed curve represents the frontier be-
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e so i curves wereelectron-electron interaction is set to zero th l'd

obtained with V for GaAs material parameters. (b) Detail.

0.002
0.90 1.00

q/2kF

1.10

FIG. 8. (a) Kohn anomaly for GaAs quantum wire of
effective width a = 100 A, for several temperatures. (b) Detail.
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temperatures between 10 and 0.1 K. Because of the
smallness of the phonon renormalization one can write
the approximation

10 2
I I I I I I

2
Ref(x, cx, t) . (27)

So, the shape of the relative correction, as a function of
x, is similar to that of the polarizability at the bare pho-
no n frequency. Correspondingly, there is a double-
peaked structure noticeable at lower temperatures, and
smeared at higher temperatures. The peaks are located
approximately at x =1+c/4, and disappear when the
temperature is comparable to the splitting. It is worth
noting that it is not, in general, a good approximation to
replace y on the right-hand side of Eq. (26) by its static
value as is sometimes done in the context of higher di-
mensional systems. In this case, not only that the peak
structure is lost, but referring back to Fig. 1, one sees
that the static approximation may give a large overesti-
mate of the correction. Since for a 1DEG, electronic
transport at t ((1 can only be limited by 2k~ (x = l)
scattering, it is important to use the correct form of the
renormalization.

The magnitude of the correction can also be calculated
for a given x as a function of carrier concentration n and
width a. We expect a maximum as we had for A, . Some
representative results are shown in Fig. 9. It is important
to notice that these results are given for a constant tem-
perature T (and therefore varying t =k~ T/Ez) instead of
a constant t as in Fig. 6.

IV. SUMMARY AND CONCLUSIONS

We have shown that the simple picture of a phonon
softening-driven Peierls transition in 1DEG has some in-
teresting consequences in the presence of the electron-
electron interaction: the existence or not of a transition
is controlled by an effective coupling corresponding to
the quantitative difference between electron-phonon and
electron-electron interactions, and the competition be-
tween the strengths of the effective coupling and the bare
phonon frequency controls whether the softening is con-

3
1P~3

10~
105 106

n (cm ~)

107

FIG. 9. Relative phonon frequency correction at 2k+ for
GaAs quantum wire, as a function of carrier concentration, for
constant temperature T. The magnitude of the correction in-
creases approximately with (width), rejecting the dependence
of the coupling g& on a.
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tally observable Peierls transition. There may very well
be significant renormalization of phonon frequencies in
quantum wires and we have calculated the magnitude of
this Kohn anomaly for realistic system parameters. We
have neglected the effect of static disorder arising from
random impurities in the system. In general, the Kohn
anomalies will be weaker in strongly disordered systems.
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