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We examine the influence of Coulomb interactions on the integer quantum Hall effect in high-
mobility, wide spacer-layer heterostructures. In these devices, the potential due to disorder is expected
to be smooth on the scale of the spacer-layer thickness, which can be much larger than the magnetic
length. Screening of this potential is accompanied by large fluctuations in electron density and has
dramatic consequences. In particular, the screened potential can be pinned to the Fermi energy in re-
gions of the sample, and these regions can percolate over a range of Landau-level filling fractions. We
present a theory for transport that includes screening within the Thomas-Fermi approximation. Consid-
ering the Hall conductance as a function of filling fraction, we show that risers between quantized Hall
plateaus acquire a finite width in the presence of Coulomb interactions. We also show that, under cer-
tain circumstances, current flows within the sample only along narrow strips, concentrated around par-
ticular contours of the equilibrium electron density.

I. INTRODUCTION

Many aspects of the integer quantum Hall effect can be
satisfactorily explained in terms of a single-particle pic-
ture. ' Quantized Hall plateaus occur when the Fermi en-
ergy lies in a mobility gap of the single-particle density of
states. Disorder plays an essential role in producing local-
ized states between Landau bands, which pin the Fermi
energy in a mobility gap over a range of magnetic field.
In fact, it is commonly accepted that disorder localizes
almost all single-particle states, with the result that bulk
states at the Fermi level are extended only at one singular
energy within each Landau band. Consequently, risers
between Hall plateaus become infinitesimally narrow at
zero temperature. This is most easily visualized in a per-
colation description, appropriate when the potential due
to disorder is smooth. If the magnetic length is much
shorter than the length scale for disorder, electron states
lie on contours of the disordered potential. These con-
tours form closed loops (localized states), except at the
single energy in each Landau level for which the associat-
ed contours percolate through the disordered potential-
energy surface. Correspondingly, at fixed average
Landau-level filling fraction, the sample divides locally
into two kinds of regions: those where the highest occu-
pied Landau level is locally full and those where it is lo-
cally empty.

Although this argument is based on a semiclassical
description, the presence of quantum tunneling does not
seem to alter the most important qualitative feature: the
existence of a single energy at which the localization
length diverges. This idea has been successfully tested in
experiments, using low-mobility samples. The width
(in field) of risers between Hall plateaus is indeed found to
extrapolate towards zero at zero temperature.

Nevertheless, there are a number of phenomena which
demonstrate the importance of interactions. In particu-
lar, the single-particle description cannot account for the
experimentally observed filling-fraction dependence of

the Landau-level width. ' The explanation requires a
discussion of electron-electron interactions and screening
of disorder. Various approaches ' have been used, all
relying essentially on the principle that when the Fermi
level is near the center of a Landau band, electrons are
free to adjust their density and screening is good, whereas
when it lies between bands, they cannot and screening is
poor. Screening of disorder takes on a very different
character according to whether the disordered potential
varies rapidly or smoothly on the scale of the magnetic
length. It is most dramatic in the second case, which
occurs in high-mobility samples in which the two-
dimensional electron gas is separated from ionized donors
by a wide spacer layer. The real-space theory of screen-
ing developed by Luryi' and by Efros' ' provides an
appealing treatment of just this situation. The percola-
tion description summarized above must be revised, since
the screened potential-energy surface is determined self-
consistently with the electron distribution. Within the
Thomas-Fermi approximation, appropriate for a smooth
disordered potential, a third kind of region occurs in the
sample, ' in addition to the local areas of full and empty
Landau level present in the noninteracting system. The
new, "metallic" regions are ones in which the local elec-
tron density is between zero and that of the full Landau
level. At zero temperature the potential is perfectly
screened and pinned at the Fermi energy within metallic
regions. In this revised percolation description, the step
between two quantum Hall plateaus is again associated
with the transition of the Fermi level from above the per-
colating energy contour of the screened potential to below
it. The effect of interactions, however, is that over a
range of magnetic field between these two extremes, a me-
tallic region percolates through the sample and the Fermi
level is an extended contour of the screened potential. It
seems natural to associate this with a nonquantized Hall
conductivity. One therefore expects' ' transitions be-
tween Hall plateaus to have a finite width in filling frac-
tion, even in the low-temperature limit. The conduction
mechanism in this metallic region is, however, rather un-
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clear. In particular, there can be no equilibrium drift of
cyclotron guiding centers in these regions, since the
screened potential has zero gradient.

The purpose of this paper is to elucidate the transport
mechanism within the framework of Thomas-Fermi
screening theory. We find at zero temperature that the
Hall resistance is not quantized when a metallic region
percolates and that risers between Hall plateaus have
finite width in filling fraction. Thus we expect the quan-
tum Hall effect in a smooth, screened potential to be
qualitatively different from that observed in low-mobility
samples. Systematic measurements of the temperature-
dependent width of transitions between Hall plateaus in
high-mobility, wide spacer-layer sam. ples would be of
great interest to test this prediction.

We begin in Sec. II by discussing the disordered poten-
tial of high-mobility devices in which the screening
theory that we use is applicable. In Sec. III we review
this screening theory and calculate for a simple example
the resultant electron-density distribution. The essential
features of our transport theory, based on the Landauer-
Buttiker formalism, ' are presented in Sec. IV, where it is
used to describe a simple device, without disorder and in
which only one Landau level is occupied. Our con-
clusions at this stage apply only to mesoscopic samples,
since (in the spirit of the Landauer-Buttiker approach) we
have assumed that dissipation occurs only in the con-
tacts, and not in the sample. To check the stability of our
results, and to extend them to macroscopic samples, we
next introduce phenomenologically a diagonal com-
ponent to the local conductivity tensor. In Sec. V, these
ideas are applied to the conductance of more realistic
Hall samples, which are much larger than the disorder
length scale and have more than one Landau level occu-
pied. The presence of inelastic scattering introduces a
new scale, the dissipation length, which depends on the
equilibrium density distribution and the strength of in-
elastic scattering. For samples much smaller than the dis-
sipation length, inelastic scattering may be neglected, and
it is straightforward to determine the conductance of the
device from the equilibrium density distribution. For
samples much larger than the dissipation length, trans-
port in the partially occupied Landau level is represented
by a resistivity, similar to that in a model proposed by
McEuen et al. ' on empirical grounds. We discuss this
resistivity and show that under certain conditions it is in-
dependent of the size of the diagonal component of the
local conductivity.

While preparing this work for publication, we learned
of closely related studies by Chklovskii, Matveev, and
Shklovskii' and by Ruzin. ' These authors focus on a
rather different problem —the two-terminal conductance
of a ballistic device —from the one treated here, but their
approach has much in common with the present paper.
Most important, our conclusions in Sec. IV about the po-
tential distribution within a mesoscopic device are in
agreement with those of Refs. 18 and 19.

II. IMPURITY POTENTIAL

We are concerned in this paper with the transport
properties of Hall devices characterized by long-range

e "D L
ln

EEp 8&
(2.I)

where e is the relative permittivity, nD is the average real
density of ionized donors (which is close to the density of
the electron gas), and L is the system size. With values of
the system parameters appropriate for typical quantum
Hall samples, this energy can be very large and may even
exceed the spacing between Landau levels. The impor-
tant simplifying feature, however, is that despite such
large energy fluctuations, the root mean square of the
potential-energy gradient,
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can be small compared to A'co/l, the ratio of the cyclotron
energy to the magnetic length. In this case it is possible
to neglect Landau-level coupling, so that locally the
single-particle density of states is ideal, and the effect of
the random potential is just to bend the Landau levels on
a length scale larger than d.

Correlations in the positions of the ionized donors'
reduce the amplitude of these fluctuations, but do not al-
ter the qualitative picture. In subsequent sections we will
consider a bare potential of the form described above, but
for simplicity will assume that the amplitude of the Auc-
tuations is less than the cyclotron energy, so that Landau
levels do not overlap.

III. EQUILIBRIUM BEHAVIOR
OF AN INTERACTING 2DEG

A. Introduction

Our treatment of linear response in quantum Hall sys-
tems takes account of electron-electron intractions within
Thomas-Fermi screening theory. Thus we combine the
Hartree approximation with the additional assumption
that the length scale d is much larger than the radius of
cyclotron orbits at the Fermi energy. This simplification
has been used in a series of papers by Efros. ' ' The

potential fluctuations. Such a potential is typical of high-
quality modulation-doped heterostructures, in particular,
GaAs/Al Ga& „As devices, in which the electrons lie at
a clean interface and scattering is predominantly due to
ionized donors separated from the two-dimensional elec-
tron gas by a thick spacer layer.

To see how a long-range potential arises in such de-
vices, consider the case of a 5 layer of ionized donors, a
distance d away from the plane of the electron gas. A
fluctuation of wave vector k in the density of the charged
donors sets up an electrostatic potential proportional to
(exp —kd)/k in the plane of the electron gas. As a result,
short-wavelength Auctuations are exponentially damped
and the random potential is smooth on a length scale d.
It seems reasonable to assume that the positions of the
ionized donor impurities are uncorrelated, in which case
it' has been shown' that the root mean square of the
potential-energy fiuctuation for an electron in the elec-
tron gas is

1/2
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p f—n(r)d r k~T f—n(r) ln
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equilibrium behavior of the full Hartree problem has
been studied both analytically and numerically ' for
potentials that are translationally invariant in one direc-
tion.

If d ))l, then an area of size d, over which the poten-
tial is roughly constant, contains many electron states. In
this case it is possible to describe the electron distribution
in terms of a local electron number density, which is
determined by the position of the chemical potential rela-
tive to the Landau bands at that point. If the amplitude
of the bare potential fluctuations is not large enough to
cause adjacent Landau bands to overlap, then in the bulk
of the sample the chemical potential lies within a single
band, and only the electrons in this partially filled level
are free to adjust their density, all other levels being fully
occupied or completely empty. The free energy of the sys-
tem is a functional of the density of these electrons:

P[n]= f Ws(r)n(r)d r+ —,
' f n(r)I(r r')n(—r')d rd r'

of three types:

n, (r) =0, Ws(r) )p ("empty")

n, (r) =no, Ws(r) & p, ("full" )

0 & ns(r) & no, Ws(r) =p ("metallic" )

with Ws(r) depending on ns(r) according to Eq. (3.3).
In general, this self-consistent problem for the electron

distribution must be solved numerically, but for the pur-
pose of this paper it is sufficient to gain a qualitative un-
derstanding of how the electrons adjust to the presence of
the disordered potential. In the noninteracting problem,
the electron gas would be divided into full regions and
empty regions with a sharp boundary at the intersection
of the bare potential with the constant Fermi level. The
presence of interactions introduces metallic regions
which smooth the transitions between full and empty.
We shall see that there are effectively two regimes of
behavior: "interaction dominated, " where the metallic
regions are large, and "potential dominated, " where the
distribution is similar to that in the noninteracting case.

—no ln
no

(3.1) B. Qualitative features of screening

n, (r)=
I+exp

no

Ws(r) —p
(3.2)

Ws(r) = W~(r)+ fI(r r')n (sr') dr' —. (3.3)

We shall restrict attention to the case T=0, ' when
the Fermi function is a sharp step and the problem be-
comes to divide the plane of the electron gas into regions

where Ws(r) is the bare disorder potential energy, I(r) is
the interaction energy between two electrons separated
by the vector r (which, neglecting the thickness of the
two-dimensional electron gas (2DEG), is simply
e l4meeo~r~ ), no =eB/h is the Landau-level density, ks T
is the thermal energy, and p is the chemical potential.

Additional terms may be introduced in (3.1) to model
nonideal behavior of the electron gas due to finite thick-
ness effects or electron correlations. ' In the following,
however, we ignore local many-body correlations and,
specifically, the dependence of energy on density, charac-
teristic of the fractional quantum Hall effect. This ap-
proximation should be justified at temperatures high
compared with fractional-state energy gaps. Since gap
energies are much smaller than the potential-energy Auc-
tuations discussed in Sec. II, we simplify much of our
presentation by setting T=O. The approach has been
used recently to calculate the positions and widths of
edge states neglecting disorder. We concentrate, in con-
trast, on the bulk of the sample, where the Landau bands
are bent only by the impurity potential.

Minimization of the free energy with respect to varia-
tions in the number density leads to a coupled pair of
equations for the screening electron distribution n, (r)
and screened potential Ws(r):

The series of diagrams in Fig. 1 show how a weak po-
tential is screened as a function of filling fraction. At first,
electrons are confined to wells of the bare potential, ar-
ranged in such a way that in these areas the screened po-
tential is flat and pinned to the Fermi level [Fig. 1(a)]. As
more electrons are added, these regions grow, at first
joining to form a percolating metallic region and eventu-
ally to cover the whole sample. This is the case ofperfect
screening where the electrons acquire a density modula-
tion which exactly compensates for the bare potential,
leaving the screened potential completely flat [Fig. 1(c)].
As the filling fraction increases further, the density
modulation remains fixed, while the average density in-
creases, until in some areas the density saturates at no to
form localized full regions, which grow in size and join
[Fig. 1(d)] to finally cover the sample when the filling
fraction of the level is 1 [Fig. 1(e)]. The bare potential is
now unscreened as the full level is unable to adjust its
density. The characteristic behavior of this interaction-
dominated regime, therefore, is to have a range of filling
fraction over which the metallic region covers the whole
saInple, with a density modulation that is a linear func-
tion of the applied bare potential. Linear screening arises
from a nonlinear problem as long as the whole sample is
metallic and Ws(r)=p, so that it is possible to neglect
(3.2) and simply invert (3.3) to obtain ns(r). Clearly, this
condition cannot be achieved if the electrons are unable
to adjust their density sufficiently, that is, if the level is
close enough to integer filling fraction that the perfect-
screening density modulation would require the electron
density to either be negative or larger than no at any
point in the two-dimensional electron gas. At these
values of filling fraction, perfect screening fails' and the
screening is necessarily nonlinear.

When potential fluctuations are strong, the Landau-
level density may be too small to allow the modulation
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necessary for perfect screening, even when the level is
half-full on average. We demonstrate in Sec. IIIC that
this occurs when the scale for the Coulomb force,
noe /2meeo, is smaller than the typical bare potential
gradient Q ( ~

V Wz ~ ), and disorder dominates interac-
tions. It is shown in Fig. 2 how the electrons are distri-
buted in this case. Full regions are formed over the mini-
ma of the bare potential, much as would be expected if
the electrons were noninteracting, but the Coulomb
repulsion causes the edges of these areas to spread out to

form metallic rings. Close to one-half filling fraction,
these rings join to form a percolating metallic region,
which is present over a range of filling fraction until the
full regions percolate.

For typical Hall samples, both regimes arise, with a
crossover from interaction dominated at high magnetic
field, when the electrons occupy only low Landau levels,
to potential dominated at lower magnetic field, when the
electrons fill higher Landau levels. In both regimes there
is a transition from a percolating empty region (electrons

(a) (a)

(b)

(c)

(c

(e)

FIG. 1. The electron density distribution (shaded region)
and screened potential (solid line) as the filling fraction of the
partially occupied Landau level increases from 0 to 1 in the
interaction-dominated regime: (a) At first, the electrons sit as
metallic regions in the wells of the potential; (b) these grow to
form a percolating metallic region around localized empty re-
gions; (c) over a range of filling fraction, the metallic region cov-
ers the sample, giving perfect screening; (d) full regions appear,
which grow in size and percolate, leaving localized metallic re-
gions; and (e) eventually, the full regions cover the sample and
the bare potential is unscreened.

FIG. 2. Screening in the potential-dominated regime: (a) The
electrons form full regions in the minima of the bare potential
with narrow metallic regions at their boundaries. When viewed
from above, it can be seen that, as the average filling factor in-
creases, the screening distribution changes character from (b)
percolating empty to (c) percolating metallic and, finally, to (d)
percolating full. Areas in which the Landau level is locally
empty, partially occupied ("metallic" ), and full are denoted by
E, M, and F, respectively.
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localized), to a percolating metallic region which lasts
over a range of filling fractions, and finally to a percolat-
ing full region. It is the percolating metallic region that
we will show to be associated with dissipative behavior
and steps between Hall plateaus. We note finally that this
screening theory breaks down in low magnetic field, when
the width of the metallic regions is no longer much
greater than the diameter of a cyclotron orbit in the
highest occupied Landau level.

C. Quantitative analysis

boundary between full and empty at the other.
Following the approach used by Chklovskii,

Shklovskii, and Glazman, we solve a two-dimensional
electrostatics problem (in the x-z plane, perpendicular to
the strip of charge) with boundary conditions on the line
z=0,

0, x & —wM/2;:; )WF+wM/2

n(x)= . (empty regions) (3.4)

no, w~/2&x & wF+w~/2 (full region),

In Sec. V E we shall focus on behavior in the
potential-dominated regime, in which the metallic re-
gions occupy a small fraction of the sample. It is of in-
terest to know how the density varies across the metallic
regions. The mathematical difficulties associated with
the solution of the self-consistent pair of equations limit
analytic work to simplified geometries. We consider a
strip of electrons in the x-y plane, held in a confining po-
tential which varies only in the x direction, with a con-
stant gradient at one edge and an infinite step at the oth-
er. This creates a metallic region at one edge and a sharp

aw —e
Bx

—wM/2&x & w~/2 (metallic region),

(3.5)

for the electrostatic potential energy W'(x, z), set up by
the electron distribution, so that in the metallic region a
bare potential of constant gradient —a is screened [Eq.
(3.5)].

We find that the density distribution in the metallic
edge, —wM/2&x &wM/2, is

=2n (x)= no arcta—n
wF+wM/2 x +Q(wp+ wM/2) wF

Q(wM /2) —x

wM /2 —x 1/2

—arctan
WM /2+x (3.6)

The boundary condition that BW/Bx ~0 for ~x~ ~ oo

requires
IV. NONEQUILIBRIUM ELECTRON FLOW

AND TRANSMISSION COEFFICIENTS

npe 2

2&EEp

2WF
ln + 1+

2
2WF +1 —1
WM

1/2

(3.7)

27TCEp
WM =4WF exp —o.

npe
(3.8)

which fixes the ratio of the width of the metallic strip to
the width of the full region, in terms of the bare potential
gradient and the interaction strength.

For the potential-dominated regime, WM/wF —+0, and
Eq. (3.7) can be simplified to find

A. Introduction

To describe transport phenomena within this frame-
work, it is necessary to extend the model to allow non-
equilibrium distributions. The approximations used
above (valid for d ))l and A'co/1 ))Q( ~

V Ws ~
) ) allow

the electron distribution to be represented by the electron
number density n (r, t) and the electron motion by a num-
ber current density j(r, t) At equilibr. ium, the number
density is uniquely determined' and time independent,
but in general any distribution may be specified, which
will then evolve according to the How equations

Similarly, the density becomes

np
ns(x)= arccos

7T
(3.9)

ej ( r, t ) = —o. [n ( r, t ) ) V W( r, t ) /e,

Bn(r, t)
at

W(r, t)= Wii(r)+ J I(r r')n(r', t)d —r' .

(4.1)

(4.2)

(4.3)

Note that for noe /2vreeo) a, the size of the metallic re-
gion is comparable to the size of the full region and the
system is in the interaction-dominated regime where the
metallic regions are large. This provides a justification of
the criterion for perfect screening quoted in Sec. III B.

Thus we assume that currents Aow in response to the
total potential gradient according to a local conductivity
tensor cr(n). In the first instance, we ignore inelastic
scattering, in which case the electrons travel at right an-
gles to the field gradient:
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0
o(r, t)=n(r, t) e y'8

e—/B
0

n(r t)
no 0 (4.4)

with o.~=+e /h, according to the sign of the magnetic
field.

We shall look for time-independent solutions of the
above equations, V.j=0, which leads to the condition

(Vn XVW), =0 . (4.5)

n(r) =ns(r)+5n(r),

W(r) = Ws(r)+5W(r) .

(4.6)

(4.7)

Since Ws(r) is constant in a metallic region and nz(r)
is constant in full and empty regions, the linearized form
of (4.5) with respect to the small changes 5n(r) and
5W(r) becomes

This requires that the potential gradient at any point be
perpendicular to the density contour through the point,
ensuring that currents How along density contours and
that the electron distribution and the potential are time
independent.

Equation (4.5) is a general condition for steady-state
distributions and makes no reference to the equilibrium
state described in Sec. III. To make use of this equilibri-
um density distribution, we shall consider small changes
away from it:

(b)

FIG. 3. (a) Electron distribution near a single saddle point in
the equilibrium density. Arrows indicate the How of diamagnet-
ic currents. E, M, and F denote empty, metallic, and full re-
gions. (b) When the potentials at the inputs are raised to p& and
p2, the potential difference falls as a sharp step along the density
contour crossing the saddle point; arrows indicate the addition-
al current Aow. A current I, =v, o.H(p&

—p2)/e crosses the sad-
dle point from channel 4 to channel 3.

(Vns X V5W), =0

in metallic regions and

(V5n X VWs ), =0

(4.8)

(4.9)

in full and empty regions.
We shall see that any change of the charge density in

an empty or a full region is confined to its boundary with
the metallic region, where the screened field gradient falls
to zero. As a result, (4.9) will always hold, and only (4.8)
will restrict the potential 5 W(r).

B. Linear response of a single saddle point
in the equilibrium density

The Landauer-Buttiker approach to conductance cal-
culations' regards currents as the driving force and
determines potentials from the charge redistribution due
to elastic scattering in the sample. We are now ready to
apply this approach to the linear response of the equilib-
rium screening distribution described in Sec. III.

Consider a bare potential which consists of a single
saddle point and has the screening density shown in Fig.
3(a), where the contours indicate the local filling fraction
v(r) =n (r)/no. We shall assume for the present that this
is the only Landau level occupied, and later introduce the
lower levels. At equilibrium the metallic region carries no
current, as the screened potential there is constant, but
the full regions carry circulating diamagnetic currents
along the contours of the screened potential. For a po-

tential gradient of ~VWz~, there is a perpendicular local
current density [see Eqs. (4.1) and (4.4)j along the equipo-
tentials, of size cr

H~ V Ws~ /e, where o H is the Hall con-
ductance for a single full Landau level and is independent
of the magnetic-field strength. For definiteness, from here
on we shall assume that the direction of the magnetic
field is such that o-H is a positive quantity. The arrows in
Fig. 3(a) indicate the directions of current liow and serve
to identify the channels marked 1 and 2 as inputs and 3
and 4 as outputs.

In the spirit of the Landauer-Biittiker approach, we
consider connecting the input channels to ideal reservoirs
at chemical potentials p& and p2, which fixes the input
currents. Due to elastic scattering in the bulk of the sam-
ple, we expect to find nonequilibrium distributions of
electrons in the outgoing channels. Inelastic proceses in
the leads from these channels relax the distributions to
local equilibrium at some intermediate values of chemical
potential. In this way the current and chemical poten-
tials of each channel are determined, and the conduc-
tance of the system is fully defined.

Local equilibrium of channel 1 at a (small) chemical
potential pi (relative to the Fermi level) means that the
metallic region of that channel lies in a uniform potential
of p&. In linear response, the current in the adjacent full
region is increased by o.Hp, /e. Similarly, the potential p2
injects an additional current o.Hp2/e through channel 2.
The microscopic model must now provide a way of con-
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necting these two channels with a steady-state potential
distribution and hence specify the current distribution in
the outgoing channels. The condition under linear
response for a steady state, Eq. (4.8), requires that the
field gradient, which must somehow occur in the metallic
region of the saddle point, is restricted to be perpendicu-
lar to a contour of the equilibrium screening density. The
only way to achieve this is to have a sharp step in the po-
tential from p, to p2 along the density contour which
crosses the saddle point, as indicated by the shading in
Fig. 3(b). A similar conclusion has been reached indepen-
dently by Chklovskii, Matveev, and Shklovskii, ' follow-
ing a different approach.

To generate this step, there is a redistribution of elec-
trons, 6n(r), which is required to satisfy (4.9) and is fur-
ther restricted to be negative in full regions and positive
in empty regions. To find this distribution, imagine cal-
culating the equilibrium screening distribution for a po-
tential which is Wz(r) —5W(r) in the metallic regions
[and arbitrary but close to W~(r) in the full and empty
regions]. For small enough 6W(r), this distribution will
be similar to ns(r), with the boundaries of full, empty,
and metallic regions slightly displaced. If this distribu-
tion is placed in a bare potential W~(r), there is a resul-
tant potential 5 W(r) in the metallic regions which
satisfies (4.8). The changes of density in full or empty re-
gions are confined to their edges where VR +~0 and
(4.9) is satisfied. This distribution is therefore the re-
quired ns(r)+5n(r), demonstrating that a small step
5W(r) can always be generated.

The potential step occurs in a region where the filling
fraction is that of the percolating contour of the equilibri-
um density v„and causes a current I, =v, crH(p, —pz)/e
to flow from lead 4 to lead 3. The currents in each of the
channels are, therefore,

C. Transmission coefBcients and the conductance

T=1—R =v, , (4.12)

where v, is the filling fraction on the density contour that
crosses the saddle point.

For this one Landau-level device, the longitudinal and
Hall resistances are found to be

P& P3
e (I, I4)—h R

e2 T
(1—v, )

e
(4.13)

Pi P4

e(I, I4)—e2
(4.14)

The longitudinal resistance behaves as expected:
RL =0 when v, = 1 and the saddle point is covered by full
region (quantum Hall plateau); Ri rises as v, decreases,
to diverge when v, =0 and the two sides are disconnect-
ed. The Hall resistance is necessarily always quantized
for this device, as it is measured across a portion of the
system where current flows in a fully occupied region.
Model devices with separate current and voltage contacts
(Sec. V) do not share this behavior.

The results of Sec. IVB may be conveniently reex-
pressed in the language of transmission coefficients. Fol-
lowing Streda, Kucera, and MacDonald, transport in
this four-terminal device may be described by the
transmission and reflection probabilities T and R of the
single occupied level. These are defined, respectively, as
the probability for an electron incident in channel 1

(channel 2) to leave through channel 3 (channel 4) and
the probability of reflection from channel 1 (2) into 4 (3).
Current conservation requires R = 1 —T, so that the
four-terminal device is characterized by a single parame-
ter T. From Eq. (4.10), we can immediately write

1 ~Heal ~e

I2 =o HP2/e

I3 =o Hpz/e +v, o'H(p& —pz)!e =v, I& +(1—v, )Iz,
I4 =o Hp &

/e v, crH (p, —
pz ) /e =—

( 1 —v, )I
&
+v, Iz .

(4.10)

V3=Vz+, (C i
—Vz»

94=pi vs(pi pz) .
(4.11)

Channels 3 and 4 are clearly not in local equilibrium,
so at present do not have well-defined chemical poten-
tials. In order to associate a chemical potential with each
of these channels, inelastic processes are assumed to
occur far from the saddle point. These relax the density
distribution in each to a local equilibrium, in which each
metallic region is at a constant potential and all current
flows in the full regions. Using current conservation in
each channel, the chemical potentials of the output leads
must be

D. Transport in the presence of dissipation

So far, we have assumed that electron motion in the
bulk of the device is ideal, in the sense that it is described
by a purely off-diagonal, local conductivity (4.4). Inelas-
tic scattering was assumed to be present only in the leads
to the device, and was necessary to relax the distribution
to local equilibrium. This led to the conclusion that a
simple model device supports a sharp step in the chemi-
cal potential when driven out of equilibrium. It is not
clear whether such a potential distribution is stable
against the presence of a small amount of inelastic
scattering in the bulk of the device, represented by a
small diagonal component in the local conductivity ten-
sor (4.4). Such dissipation could arise, for example, from
scattering by acoustic phonons. It is the purpose of the
rest of this section to show that the results do remain val-
id, provided inelastic scattering is not too strong. Similar
questions have been investigated recently for different
geometries by Ruzin. '

More generally, the electron flow should be described
in (4.1) by writing

The conductance of the system is now implicitly deter-
mined. We discuss its behavior below.

cr [n(r)) =
o [n (r)] cr [n (r—)]
cr, [n(r)] cr„[n(r)] (4.15)
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which includes a (positive) density-dependent diagonal
conductivity o [n (r)], due to inelastic scattering of the
electrons. In a Drude theory, cr and o. are both sim-

ply proportional to n (r) with a coefficient related to the
inelastic scattering time r (Ref. 26):

e~ en n
cr „(n)= =oo

1+(cor) & np

(cow) en n
o (n)=:—oH

1+(cor) & np

1 e n

co~ h no

e n

h no

(4.16)

(4.17)

to first order in I/cur, where cp is the cyclotron frequency.
We expect this to be valid close to n =0. However,

when n is close to no, there are few empty final states for
scattering and o. must decrease with increasing n,
becoming zero at n =no, while o. is still given by
o Hn /np. Between these two extremes, cr„(n) varies
smoothly, and the conductivity tensor can be written as

cr (n) o Hn /np

, Xyo „(x,y)=o +cr'
S

(4.22)

where o. and o' depend on n„but lie in the ranges
0&cr &op, —crp&o'&op. For this situation, Eq. (4.20)
becomes

an~ a6w
o P58+ y +x

S

H ann a6w
ay Bxy —x =0.

We now rotate to new coordinates,

/~x+ [+1+(oH lo') —(o.H/o. ')]y

P ~ —[+1+( o H /o' ) —( o H /o. '
) ]x +y,

(4.23)

(4.24)

so that the g (P) axis lies at a (small) angle g to the x (y)
axis, with

0 Hn lnp o.„„(n) (4.18)

where o (n) falls to zero at n~0 and n ~np.
With this form of conductivity, the (nonlinear) steady-

state condition (4.5) becomes

Q=arctan[+I+ (crH /o ') —(oH /o') ] =—
2 oH

With this change of variables, 5W(g, P) satisfies

(4.25)

o„„(n)V W+Vo, (n) VW
oH

(Vn XVW), =0 .
no

(4.19)

~'+oH a5W a5W
ar ae

(4.26)

Linearizing with respect to small deviations from the
equilibrium distribution, Eqs. (4.6) and (4.7), gives

o (ns)V 5W+Vcr„(ns) V5W—
no

(Vns XV5W), =0

(4.20)

in the metallic regions.
In the following, the ratio o.o/o~ will be used as the

small parameter which determines the strength of dissi-
pation. From the discussion above, o-o/o-H = 1/co~,
which is much less than unity for we11-defined Landau
levels. Even if Drude theory is inappropriate, this ratio is
still a measure of the local dissipation, and will be small if
inelastic scattering is not to destroy the Landau bands.

d:- 1 +o +crH=A exp
S

(4.27)

dN
dP

(4.28)

This represents an error function step in 58 of width

[(cr ) /(cr' +crH)] I, ='l/cr loHI, , '

which allows solution by the separation 5W(g, g)
=:-(g)+(p).

As boundary conditions, we require that the potential
tend to constant values far from the origin (in the regions
of local equilibrium). The only solution of (4.26) is then

E. EfFect of dissipation on transport across a saddle point
in the equilibrium density

Near a saddle point in the equilibrium electron density,
the density distribution varies as

at a small angle f to the density contour. The width of
the step increases with o. , but provided

o. /crH-o plcrH = 1 leer« 1,

ns(x, y) =n, +np Xy
I2

(4.21)

where n, is the density of the contour which crosses the
saddle point and I, is the length scale on which the densi-

ty varies. Linearizing the variations in the diagonal con-
ductivity with respect to the small changes in nz near the
origin gives

it is much narrower than the length scale on which the
density changes. For a smooth saddle-point density distri-
bution, therefore, inelastic scattering does not affect the
qualitative feature that the chemical potential falls in a
narrow step along a contour of filling fraction v, =n, /no.
The nonequilibrium current fIow from lead 4 to lead 3 is
still I, =v, crH(pi —pz)/e, so the transmission coefficient
of the device remains equal to v, .
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F. Equilibration of the output channels

B Bnmo.„„(x)
0 H dna =0
n p dx By

(4.29)

We next address the question of how a nonequilibrium
potential distribution relaxes in the output channels.
Consider the case of an edge channel which is transla-
tionally invariant in the y direction, with n (x)=0 for
x ( —w~/2 and n(x)=no for x )w~/2. The steady-
state equation (4.20) becomes

b.y ) 1/K, (crH/cro)WM,

where K] is obtained from the eigenvalue of the first excit-
ed state, the potential has decayed to 5 W(x, ~ )

=aoXO(x). For all cr (x) and ns(x), the eigenfunction
associated with the eigenvalue zero, Xo(x), is simply a
constant, and we find

~ Jy(x~O)
5W(x, ~)=5W(wM/2, 0)+ f e'

wM/2 g

where we have neglected the second derivative with
respect to y, which we expect to be small for o o/o ~ «1.

This can be separated by writing 5W'(x, y) =X(x)F(y)
to obtain the pair of equations,

=5W(w~/2, 0)+ I~,a (4.37}

oH dna
o (x) +rc X =0,

dx dx np dx
(4.30}

dY +KY=O .
dy

(4.31)

The requirement that V.j=O leads to the boundary con-
dition

( )
c}5W

x =+w /2
(4.32)

Equation (4.30) is an eigenfunction equation with a Her-
mitian operator for the space of functions on ~x ~ wl/2
which satisfy (4.32). The eigenfunctions of such an
operator, X;(x), form an orthonormal basis for the space
with respect to the inner product

where the approximation in (4.37) neglects a second-
order term in o.p/o. H.

This shows that the potential distribution decays to a
constant potential at such a value that the excess currentI, which was Rowing in the y direction in the metallic
edge at y =0, all Bows in the full region as y~ ~. An
approximation was necessary in the final step of Eq.
(4.37) due to our earlier neglect of the c) /c)y term in
(4.20), with the result that current is conserved only to
first order in o.p/0 ~.

Although this final conclusion does not depend on the
shape of the edge distribution or the specific form of the
diagonal conductivity, it is of interest to solve the prob-
lem in a particular case to obtain quantitative length
scales for decay. We assume that ns(x) has the form
given in Eq. (3.9). A reasonable choice for the diagonal
conductivity is

WM /2 dn&f X, (x)Xi(x)dx =5;i,—wM/2 dX
(4.33} cr, (n) = Op

sin
np

n (4.38)

where we assume dn&/dx )0 for ~x~ ~ wM /2.
The input to the channel is the potential distribution

5W(x, O), which in the case of interest is a narrow step.
This may be expressed as a sum over the eigenfunctions

which ensures that, if the Landau level is, respectively,
close to empty or full, the scattering rate is proportional
to the density of electrons or holes, as discussed at the
start of this section. In this case,

5W(x, O) =pa X (x), (4.34) 20p
o (x)= Q(w~/2) —x

&MM
(4.39)

dna
a = f 5W(x, O)X (x)dx .—

wM /2
(4.35) and the eigenfunction equation (4.30) may be written

The y dependence is Y (y) ~ exp( —Ic y), so we obtain
m

the full solution:
1 —z +m X =0,dX

dz dz 1 —z2
(4.40)

5W'(x, y) =pa X (x)e ™y. (4.36)

Since o„(x))0 on ~x~ ~ w~/2, the (discrete) eigenval-
ues K o.~/np are positive semidefinite and all eigen-
modes with a WO are exponentially damped in the posi-
tive y direction (the "output" direction). Note that from
dimensional arguments, K ~ (cro/o H )1/wM, so that
B /By ~K is negligible compared to the other terms
due to the smallness of cro/crH, justifying our neglect of it
earlier.

After a distance

where we have introduced the dimensionless variables,
z =2x/wM, and m'=~ (oH/~o)wM/2

This is easily solved by making the change of variable,
z =cosO, to obtain the eigenfunctions

X (x) ~cos[m arccos(2x/w )],
Ic =(era/cr 0 )(2/wM )m

(4.41)

where nz is an integer, which are the type-I Chebyshev
polynomials of order m.

It is now straightforward to find the full evolution of
any potential, though we are primarily concerned with
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the equilibration length. As the first excited state has ei-
genvalue a., = (o.o/a. II )(2/wM ), then after a distance
by =(oH/oo)(wM/2), all modes above the zero mode
have decayed and the potential is effectively constant.

This completes the analysis of the dissipative Aow
equations for a device with a single saddle point in its
equilibrium electron density. Since the potential still falls
as a sharp step in the bulk of the system, the results of the
Landauer-Biittiker approach remain valid in the presence
of a small amount of dissipation. Furthermore, the pres-
ence of a diagonal component in the local conductivity
tensor explicitly causes equilibration in the output chan-
nels, and we no longer require the separate assumption of
dissipation in the leads. Inclusion of a diagonal com-
ponent in the Aow equations provides a complete phe-
nomenological theory of transport in the Landau level.

partially) occupied in the bulk of the sample. When the
disorder is not strong enough to cause Landau bands to
overlap, the (N —I ) lower bands are full in the bulk of
the system and have density distributions of the form
shown in Fig. 4(b), with a metallic edge where the density
falls to zero (the "edge channel" of that layer). The edge
channels of the different Landau levels are spatially
separated (with the lowest level extending the furthest
out), causing equilibration between Landau levels to be
suppressed. Experiments on selective population of the
different levels ' show that in high-mobility samples,
the partially occupied level can remain in disequilibrium
with the other levels. This has been explained by
Chklovskii, Shklovskii, and Glazman within the screen-
ing theory described in Sec. III. They have calculated the
positions and widths of the edge channels for a particular

V. CONDUCTANCE OF HALL BARS

A. Introduction

In Sec. IV we have presented a theory for electron
transport in a single Landau level and have used it to de-
scribe a simple device. In the following we apply these
ideas to more realistic Hall-bar geometries, which have
separate voltage and current contacts, are much larger
than the length scale of disorder, and have many Landau
levels occupied.

Two simple limits arise. First, for samples much small-
er than a dissipation length (defined below), the efFect of
inelastic scattering is negligible: The potential difference
falls in sharp steps along contours of the equilibrium
screening distribution, in the manner of the single
saddle-point device discussed in Sec. IV. The longitudi-
nal resistance is almost zero. The Hall resistance mea-
sured between voltage contacts has a value related to the
density of the percolating contour, and is not quantized
when a metallic region percolates the sample. Second,
for samples much larger than the dissipation length,
transport in the partially occupied level can be character-
ized by a resistivity. Then, when a metallic region per-
colates, the Hall resistance is not quantized, and the lon-
gitudinal resistance is nonzero. We show in particular
that, in the potential-dominated regime, this resistivity
depends only on the equilibrium density distribution and
is independent of the strength of local dissipation, over a
range of values of o.o/o H.

'888
ILNI—:'.

RIR "
R I IP

RIRRR5 I

Rl I
8RIIR
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= I2

B.Conductance calculations
and the quantum Hall eSect

Consider a conventional Hall bar, in which a current is
passed between two current contacts while voltage mea-
surements are made across and along the device at
separate contacts which draw no current. Figure 4(a)
shows a screening density distribution for the partially
occupied level of such a device in the interaction-
dominated regime, with ideal leads attached to the sam-
ple, in such a way that in each lead there is always a full
region which can support a current without dissipation.

In general, N (spin-split) Landau levels will be (fully or

FIG. 4. (a) Equilibrium electron distribution in the partially
occupied level of a Hall bar, in the interaction-dominated re-
gime. The six terminals are attached to ideal leads. (b) The
electron distribution for a full Landau level; the nonequilibrium
current Rows without backscattering. (c) When the inputs of
the partially occupied level are held at p&, p2, . . . , p6, the poten-
tial falls in sharp steps crossing saddle-point contours; shading
indicates the regions of constant potential.
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IoUt. —IIII —~ p /e

Iaut Iin

I'U' =I'"=o. p /e

I0Ut —I1Il —~ p /e

IOUt IIIl + /e

(5.1)

Note that the edge channels of these Landau levels are al-
ways in local equilibrium with each other, so that it is un-
necessary to restrict the rate of equilibration between
them in order to consider them as effectively indepen-
dent.

Next consider the transmission behavior of the Nth
level. If it has a percolating full region, then it behaves in
the same way as the other Landau levels (5.1), and the re-
striction that 3 to 6 are voltage probes leads to
P ] P3 P4 Ps jll6 P2 and I = NcrH (P3 —Ps ) /e. There
is no longitudinal resistance drop, and the Hall resistance
is in the Nth quantum Hall plateau. Similarly, if the Nth
level has a percolating empty region, so that all probes
are disconnected for this level, then no net currents How
in it (I "'=I "), and the device shows a plateau for
(N —1) levels.

This argument simply establishes quantization of the
Hall conductivity as a consequence of there being no
backscattering' (or complete backscattering) of the elec-

confining potential and shown that the spatial separation
of the partially occupied level from the edge channels of
the other levels is so large that it is effectively decoupled.
It is consistent with the screening theory for these de-
vices, therefore, to treat electron Aow in this highest level
independently of the lower levels.

We now follow Biittiker' and use transport theory to
calculate the currents which flow (independently) in each
of the X levels when contacts 1,2, . . . , 6 are attached to
particle reservoirs at chemical potentials p&, p2, . . . , p6.
This imposes local equilibrium on the input side of each
ideal lead and causes a transport current of I "=o.Hp; /e
to flow into the device through contact i (in each Landau
level) in addition to the equilibrium diamagnetic current.
The output currents in each lead are determined by
scattering in the sample. The requirement that the four
voltage contacts (3, 4, 5, and 6) draw no net current
leaves only two of the potentials arbitrary (P, and Pz,
say). One of these sets the zero of energy, while the other
fixes the overall current I. As a result, the potential
difference between any pair of contacts is determined
only by the current I, and the conductance of the sample
is known.

The problem, therefore, is to find the output currents
in each Landau level for a set of chemical potentials
Pt, Pz, . . . , P6. This is straightforward for the (N —1)
full Landau levels in which there is no backscattering,
and currents flow around the edge of the sample in a
clockwise direction (with our choice of sign for trH), as
indicated in Fig. 4(b). The output currents in each of
these full Landau levels are simply given by'

trons in each level. The important feature of the present
theory is that between these two extremes, the Xth level
has a percolating metallic region. The remainder of this
paper addresses the determination of transmission prop-
erties of the percolating metallic region within various re-
gimes. We demonstrate that risers between Hall plateaus
have a finite width (in filling fraction) and in certain cases
are accompanied by a corresponding peak in the longitu-
dinal resistance.

C. Transmission coefficients and conductance
without local dissipation

Ii"'=o'HIPi+v (Ps Pt)]/e

trH [P2+ v (P4 P2) ]«
I3"'=o'H [P3+vp(Pt P6)+ v, (P6 P3) ]/e-
I4"' =uH [p4+ v&(p3 p2)+ v, (p2 p4) ]/e, —

Is""=~H[ps+vp(p6 pi)+v (pi ps)1«

I6 ~H I p6+v5(p2 p'3)+ v, (p3 p'6) ]«

(5.2)

where the first term in each is due to the complete
refIection of the input current in the full region and
v, v&, . . . , v, are the filling fractions of the saddle points
marked in Fig. 4(c).

Each of the saddle-point contours must extend a mac-
roscopic distance through the bulk of the device. For
samples much larger than the scale of the disorder Auc-
tuations, the filling fraction of each saddle point must be
close to that of the percolating contour for an infinite-
sized bulk region v, and (5.2) becomes

We showed in Sec. III that the equilibrium screening
distribution has two distinct regimes: interaction dom-
inated and potential dominated. The dissipationless
behavior of both of these regimes is the same and depends
only on the densities corresponding to certain saddle
points of the screening distribution.

Consider the density distribution in a sample with six
ideal leads attached. Each probe must have a density
contour which connects to another probe through a sad-
dle point. In general, the contours between different
pairs of probes will have different densities, which leaves
five possible ways of connecting the probes together. Fig-
ure 4(c) shows (schematically) the relevant contours for
one particular way this can occur. This is the case we
shall consider in detail, but we will show that the other
ways lead to the same results.

When the local conductivity of the metallic region is
purely off diagonal, the steady-state condition under
linear response (4.8) requires that any potential gradient
must be perpendicular to a contour of the screening den-
sity. In Sec. IV we demonstrated that for a single saddle
point, this requires a sharp step in the potential along the
percolating contour. In the same way, Fig. 4(c) can be di-
vided into regions of different chemical potential separat-
ed by sharp boundaries which cross the five saddle points.
The output currents in the partially occupied layer are
then
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v, (Ps P—, ) ]le,
I2 oH[P2+vp(P4 P2)]/e

=oH[Ps+&z(Pi —Ps)]/e,
4 = H[P4 (Ps —P )]/e,

Is =oH[Ps+v, (P6 Ps)]/e

6 oH[p6+v (p2 p6)]/e

(5.3)

cal exponent p may differ from that for the conventional
percolation problem because of the long-range force in-
volved, but must lie in the range —,

' &p &1). This deter-
mines the dissipation length,

ld;„= [(oH /era)(lSns/no)]~d

which is the maximum distance a sharp step in the poten-
tial can be sustained across an interaction-dominated
sample. The results derived above are valid in samples
smaller than this dissipation length.

Ps P4
L eI 7

Ps Ps 1 h

eI (N —1+v& ) e2

(5.4)

(5.5)

The voltage drop driving the current occurs as a sharp
step along a contour of density v which passes from con-
tact 1 to contact 2, giving zero longitudinal resistance
and a Hall resistance corresponding to the electron densi-
ty on this contour. The behavior of this dissipationless
regime is fully specified by the density of the percolating
contour of the infinite system, which is a property of the
equilibrium screening distribution alone. The Hall con-
ductance is not quantized over the range of filling frac-
tions for which a metallic region percolates and v is
noninteger.

In deriving these results, inelastic scattering has been
neglected. It was shown in Sec. IV that it is correct to do
so for a device with a smooth screening density, provided
oo/o H «1. The only efFect of a diagonal component to
the local conductivity is to broaden the potential step
slightly. In a large, disordered sample, the condition for
the validity of the dissipationless results becomes more
restrictive. Consider an interaction-dominated partially
occupied level, for which the density distribution has a
perfect screening modulation of amplitude 4nz, which
varies on a length scale d. For devices much larger than
this disorder length scale, the percolating contours are
highly convoluted paths (the perimeters of percolation
clusters) which can come within a distance =d of them-
selves. The dissipationless theory requires a potential
step of width less than d to follow this contour through
the system. Imagine trying to impose such a step in the
potential. Treating the contour as a straight path, the di-
agonal component in the conductivity tensor causes the
step to spread to a width d over an arc length

hl ~ (crH Io.o)(hnsjn() )d

(since b, ns/d is the typical number density gradient). Be-
cause the contour is actually the boundary of a percola-
tion cluster, one expects the end-to-end distance to scale
with arc length as (b, l/dgd (where the value of the criti-

It is this condition which leads to the equivalence of the
five possible connectivities.

Combining the behavior of the Nth level with the
transport in the lower levels, (5.1) determines the conduc-
tance of the whole device. We find p&=p3=p4 and
ps=p6=p2, with the longitudinal and Hall resistances
given by

D. Consequences for transport of local dissipation

For samples larger than the dissipation length, varia-
tions in potential are spread over the whole of the device,
according to the steady-state condition in the presence of
inelastic scattering, Eq. (4.20). One expects that trans-
port in the bulk of a partially occupied level should be de-
scribed by a resistiuity p; on scales large compared with

ld;„. In these circumstances, a transport model can be
developed, which is similar to that proposed by McEuen
et al. on empirical grounds, ' but with p;. a function of
microscopic parameters.

The central problem, then, is to calculate p; . There
are several different regimes, according to the relative
size of ld;„and d, and according to whether the equilibri-
um density distribution is potential or interaction dom-
inated. We consider only the simplest of these, in which
ld;„&&d and the potential dominates.

E. Transport in the potential-dominated regime

The potential-dominated electron density distribution
near half-filling, as described in Sec. III, consists of local-
ized full and empty regions, with rings of metallic region
of width wM at their boundaries which connect to form a
percolating metallic region. This width defines the length
scale over which the density varies, and the path length
for dissipative spreading is then of order (o.H/oo)w~.
We shall treat the situation in which the distance d be-
tween saddle points of the equilibrium density is much
larger than the equilibration length (o.H/o. o)wM, and
complete equilibration occurs between saddle points.
This condition will always be realized far enough into the
potential-dominated regime (strong enough disorder or
high enough Landau level) since w /d~0. Note, how-
ever, that (depending on the sample) the screening theory
of Sec. III may break down before this occurs.

It was shown in Sec. IV that Aow in the vicinity of a
saddle point is unaffected by dissipation provided
oo/o. H «1. If wM/d «oo/oH «1, there is complete
equilibration between saddle points and the system may
be represented by a network of ideal saddle points, with
the outputs from one saddle point determining the poten-
tials at the inputs of adjoining saddle points. Transport
in a partially occupied level may now be studied by solv-
ing for the potentials at the nodes of the network, with
the voltage characteristics of each saddle point deter-
mined by its filling fraction through Eqs. (4.11).

To demonstrate the behavior of this model, consider
the array of saddle points shown in Fig. 5(a). The saddle
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1 —v,

h
P

N
1 —v,

vs

(5.7)

Hence, the longitudinal and Hall resistivities of the array
are simply equal to the longitudinal and Hall resistances
of the unit saddle point.

One can also study current Aow in a finite network.
Consider a device made from a rectangular section of the
square array. There are many inputs and outputs at the
edges of the section; a confining potential will direct
current from one to the next, leaving two inputs and two
outputs at the four corners of the array [Fig. 5(b)j. Thus
the two ends of the network are connected to ideal leads
(as the voltage drop here only occurs across full regions),
while the top and bottom edges represent boundaries
with empty regions. In this case we find by explicit solu-
tion of the associated resistor network (after some alge-
bra) that there are no end or edge sects associated with
either the connections to the ideal leads or the boundaries
to the empty regions. The network is characterized by a
single resistivity, leading to the sample result that for any
size of network of this type, the resistances (if only one
Landau level is occupied) are

FIG. 5. (a) Translationally invariant square array of identical
saddle points. A unit cell of the network contains two orienta-
tions of saddle points. (b) A four-terminal device may be con-
structed from this array by connecting adjacent nodes at the
edges of a rectangular section.

R network h 1 —T""
2 Tnetworke

R network =Rh
H 2 H ~

e

L h 1 v L RL, (5.8)8' e2 v,

(5.9)

e 1

h v, +(1—v, ) v, (1—v, )

where v, is the filling fraction of the unit saddle point.
Thus o. is symmetric in filling factor about a maximum
at v, =

—,', and o. is antisymmetric about its value at
v, =

—,', varying from 0 to e /h as v, increases from 0 to 1.
Of course, over the ranges of average filling fraction for
which the partially occupied level has a percolating emp-
ty or a percolating full religion, v, is strictly 0 or 1; it is
only in the transition between these regimes that a metal-
lic region percolates and v, is noninteger.

Inverting (5.6), we find that the resistivity of the array
of Fig. 5(a) is

points are assumed all to have the same filling fraction, so
that the network is periodic with a unit cell which con-
tains two saddle points (the two orientations). Because of
translational invariance, a potential gradient E may be
imposed across the network in such a way that the poten-
tial difference between nodes separated by a lattice vector
R is E-R. It is then straightforward to solve for the po-
tential differences between nodes within a unit cell in
terms of E. The resultant net current is found to be relat-
ed to the potential gradient by a conductivity

v, (1—v, ) —v,
2 (5.6)

vs

where RL and RH are the corresponding quantities for
one of the saddle points and L /8 is the ratio of the num-
ber of saddle points in the length to the number in the
width.

Finally, we consider samples in which more than one
Landau level is occupied. If the partially occupied level
remains in local equilibrium with the full Landau levels,
the same electric field is felt by all levels. The conductivi-
ty of the device is then simply the sum of the conductivi-
ties of the N levels.

If there is no such equilibrium, we need to distinguish
voltage probes from current probes, as described earlier.
To demonstrate how the conductance of a device varies
with filling fraction, we follow ideas developed in the
study of conduction by edge states, ' ' ' ' and, for illus-
tration, use the model introduced by McEuen et al. ,
which divides the partially occupied layer into several
sections (Fig. 6). In view of Eq. (5.8), each of the sections
may be replaced by a single device with a longitudinal
resistance determined by the filling fraction of the unit
saddle point and the length-to-width ratio of the section.
As before, transport in the partially occupied level is
combined with that in the (1V —1) full levels, and it is re-
quired that probes 3 to 6 carry no net current. Figure 7
shows the variation in the Hall and longitudinal resis-
tances of the device as a function of the filling fraction of
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FIG. 6. The dissipative partially occupied level of the Hall
bar may be represented by seven resistive sections.

the saddle points of the partially occupied level, v„ for
the case in which all seven sections have a length-to-
width ratio of unity.

When the highest Landau level has a percolating emp-
ty or full region, v, is 0 or 1, giving zero longitudinal
resistance and a quantized Hall resistance; the device ex-
hibits a quantum Hall plateau. Over the range of field for
which a metallic region percolates, the filling fraction of
the saddle points sweeps between 0 and 1, and the Hall
resistance is not quantized. Thus, the Hall resistance
steps between quantized plateaus over a finite range of
filling fraction, with a simultaneous peak in the longitudi-
nal resistance.

This qualitative behavior remains the same for all sam-
ples with a dissipative partially occupied level. Over the
range of field for which a metallic region percolates, p„
is nonzero (necessarily, since dissipation is significant)
with the consequence that the Hall resistance is not quan-
tized and the longitudinal resistance is finite. Differences
arise only in the detailed variation of p; with average
filling fraction, which affects the shape of the steps be-
tween quantized values, but not their width.

1
2

1.0
verage VI. SUMMARY

1
3
1
4

1
2

1
2

FIG. 7. Variation of (a) the Hall resistance and (b) the longi-
tudinal resistance of a Hall bar with a partially occupied level
represented by a saddle-point network. N Landau levels are oc-
cupied and v, is the filling fraction of the saddle points of the
partially occupied level. The inset to (a) schematically shows
the variation of v, with average filling fraction: v, is equal to 0
over the range of average filling fraction for which an empty re-
gion percolates and equal to 1 when a full region percolates; be-
tween these plateau conditions, a metallic region percolates and
v, sweeps from 0 to 1.

Screening of a smoothly varying disordered potential in
a strong magnetic field involves dramatic inhomo-
geneities in the charge density. There is a range of mag-
netic field over which a metallic region percolates in the
partially occupied Landau level of the sample. We have
presented a theory for transport including screening and
have investigated the linear response of Hall samples un-
der various regimes.

When the electrons suffer no inelastic scattering, we
find that current Aow is accompanied by a sharp step in
the chemical potential within the sample, which follows a
contour of the equilibrium density distribution. We have
also studied transport in the presence of weak inelastic
scattering and find that a sharp step in the potential
remains in samples smaller than a dissipation length. The
conductance of a small sample depends only on the filling
fractions at saddle points of the density distribution. A
Hall bar which is much larger than the disorder length
scale, but smaller than a dissipation length, shows very
small longitudinal resistance, and a Hall resistance which
is related to the filling fraction of the percolating density
contour, and is not quantized when a metallic region per-
eolates.

In samples larger than the dissipation length, transport
in the highest Landau level is characterized by a resistivi-
ty, which depends on microscopic parameters and leads
to results resembling earlier empirical models. In the
potential-dominated regime, where is a range of values
for o-o/o. H over which equilibration occurs between sad-
dle points in the equilibrium density distribution. The
resistivity can be calculated for a network of connected
saddle points and depends on the equilibrium density dis-
tribution alone.



4544 N. R. COOPER AND J. T. CHALKER 48

In all cases, over the range of Ailing fraction for which
the equilibrium density distribution of the highest Lan-
dau level has a percolating metallic region, the Hall resis-
tance is not quantized. For dissipative regimes there is a
corresponding peak in the longitudinal resistance. This
finite width for transitions between quantum Hall pla-
teaus is a consequence of the electron-electron interac-
tions and their effect on the low-temperature screening
behavior.
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