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We present experimental and theoretical results on bound states in rectangular bent waveguides. Such
bound states can be observed in electromagnetic waveguides and quantum wires. For a class of bent
waveguides one can produce confined TE modes; such TE modes are directly related to bound states of
scalar fields in the curved two-dimensional space from which the waveguides are constructed. For
sufficently sharp bends, one can produce multiple bound TE modes. We calculate the bound-state ener-
gies and field configurations for a particular class of sharply bent waveguides. These waveguides are
constructed, and both bound-state energies and fields are directly measured and compared with theoreti-
cal predictions.

I. INTRODUCTION

The properties of electromagnetic fields in waveguides
have been studied for decades. ' Many features of the na-
ture and transmission of em fields in waveguides have
long been understood. One well-known fact is that bends
in waveguides produce reAection, and that reAection reso-
nances can arise when bends are introduced into
waveguides. To the best of our knowledge, it has only re-
cently been realized that the introduction of bends into
waveguides generally leads to confined states, or isolated
modes which exist below the cutoff frequency for the
waveguide. In such confined states, the E and B fields are
large in the region of the bend and fall off exponentially
down the length of the waveguide.

Such confined states are interesting not only for their
intrinsic applications to electromagnetic waveguides, but
also for their analogs in quantum wires. It is possible to
make a correspondence between solutions of the three-
dimensional Maxwell equations in a waveguide and the
two-dimensional Schrodinger equation in a quantum
channel or wire. By understanding the properties of
the former, we can gain information about the latter.

In this paper we shall examine bent waveguides which
support several bound states. Since the binding energy of
the lowest state, and the number of bound states which
can exist in a bent waveguide, depends upon the size of
the bend and/or the existence of "extra" space in the
bend, we will review the conditions for bound states in
bent waveguides. We will examine this question from
both theoretical and experimental perspectives; we will

calculate energies and fields for such states in bent
waveguides, construct such waveguides, and compare
their experimental properties with theoretical predic-
tions.

We begin by reviewing the properties of bound states
for scalar fields satisfying the Helmholtz equation in two
dimensions, as our understanding of the existence and
properties of such states arose from the relation between
two-dimensional systems and TE modes in waveguides
constructed from such systems. To understand this con-
nection, consider a rectangular waveguide constructed in
the following way (we repeat the argument of Goldstone
and Jaffe ). Produce some two-dimensional surface cr in
the x-y plane, with surface boundary 4, shown schemati-
cally in Fig. 1(a). Then translate this surface normally in
the z direction, as shown in Fig. 1(b), to produce the
three-dimensional region 2). If a scalar field g(x,y )

defined on o. satisfies the conditions

[V' +k ]P(x,y) =0 (x,y) Ho,
g(x,y) ~+=0,

then E and B fields of the form E=ikgz, B=—zX Vg
will satisfy Maxwell's equations and the boundary condi-
tions for TE modes in this waveguide.

Thus for any two-dimensional surface o. containing a
scalar field f which obeys the Helmholtz equation inside
a. and vanishes on the boundary, one can straightfor-
wardly construct TE em fields for the rectangular
waveguide constructed from o. Recently it has been
proven that a large class of such two-dimensional sur-
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FIG. 1. (a) The infinitely long curved two-dimensional sur-
face cr,' the surface is in the x-y plane, with curvilinear coordi-
nates s along the surface and t normal to the surface at each
point. (b) The rectangular waveguide constructed from the sur-
face cr of part (a) by extending the surface upward in the z direc-
tion.

faces, with solutions satisfying the conditions of Eq. (1),
possess bound states. ' ' ' Consequently, the corre-
sponding waveguides have at least one TE mode which is
confined in space; such fields exist below the cutoff fre-
quency for the waveguide, and they fall off exponentially
like the scalar fields from which they are derived.

To review the properties of two-dimensional systems
which possess bound states, consider a curved surface o.

of constant width and infinite length, as shown in Fig.
l(a). Eventually the surface becomes straight with con-
stant width, but it can curve arbitrarily in the middle.
The surface has no potential on the inside but the wave
function is required to vanish on the surface (the
equivalent of infinite potential walls at the edge of the
surface). Goldstone and Jaffe proved that all such sur-
faces possess at least one bound state, except for the sur-
face which is straight everywhere. This result is surpris-
ing: since such surfaces have no "classically forbidden"
region (there is nothing to prevent a classical particle
from moving down the tube), it is not obvious why such
systems should have any bound states; the fact that at
least one bound state exists for a tube of constant width
with a bend anywhere is quite unexpected. In these two-
dimensional systems, bound states do not arise from the
"traditional" picture, where a binding potential creates
classically allowed and forbidden regions. Here the
boundary conditions (vanishing of the wave function on
the waveguide boundaries) give an eff'ective confining po-
tential which produces a minimum (cutoif) energy for
continuum solutions (bands of propagating states).

The easiest system to analyze is an "L-shaped" tube of
infinite length, with a right-angle bend in the middle (al-
though this tube does not in fact have constant width, it
still possesses a bound state; we shall return to this point).
Lenz et al. ' first noticed the presence of a bound state in
such a system, in developing models where confinement

and scattering in multiquark systems were reformulated
as a two-dimensional scattering problem. Schult,
Ravenhall, and Wyld" independently derived this result
and pointed out potential applications to "quantum
wires, " narrow two-dimensional substrates in condensed
matter physics which allow electrons to propagate in the
channels formed by these surfaces, but require their wave
functions to vanish on the surfaces. Such systems have
been used extensively to study quantum interference
effects. The relevance of bound states in such systems,
and the possible applications arising from them, have
been discussed at length. ' ' Exner and co-
workers ' proved that large classes of two-dimensional
surfaces of constant width possessed bound states, and
Goldstone and Jaffe derived a significantly more general
result, and also extended this result to an infinite tube of
constant cross section in any number of dimensions. Sols
and Macucci investigated the properties of bound states
in curved wires. Dunne and Jaffe' have shown that simi-
lar results can be obtained for a tube threaded by an
Aharonov-Bohm' Aux line, namely that such a system
possesses a bound state unless the tube is perfectly
straight.

In a previous paper, we demonstrated the presence of
a bound TE mode for rectangular bent waveguides. Mi-
crowaves were pumped into the center of bent
waveguides, and the ratio of reAected to incident power
was measured there. At the frequency of the confined
state, there was a sharp minimum in the rejected power,
representing a resonant absorption of the microwave
power. The power was actually absorbed by Ohmic heat-
ing inside the waveguide bend; since the frequency of this
mode was below the lowest cutoff frequency of the
waveguide, the electromagnetic fields for the confined
state decayed exponentially along the length of the
waveguide, and so very little power "leaked out" the
open ends of the waveguides even for finite-length
waveguides. At other frequencies below cutoff almost
100%%uo of the power was reflected back to the generator.
The frequency of the bound states relative to the cutoff
frequency of the waveguides agreed very well with
theoretical predictions.

The binding energy in such systems goes to zero as the
bend angle goes to zero, and binding increases with in-
creasing bend angle. For su%ciently sharp bends, it
should be possible to produce multiple bound states. The
existence of multiple bound states and their properties is
the focus of this paper. The particular geometry we em-

ploy is the sharply bent rectangular system shown in Fig.
2(a). We shall show that as the exterior bend angle
O, ~m, the number of bound states increases dramatical-
ly. This occurs both because of the bend, and because
there is additional space in the corner of the waveguide (a
"bulge" exists in this region). In Sec. II, we show how
both bends and bulges produce the effective attraction
which produces binding. We review the effective poten-
tials due to bends and bulges in the adiabatic limit, and
for sharply bent systems given by Fig. 2(a) we derive
upper limits for the energies of bound states as a function
of the bend angle.

In Sec. III, we review two numerical methods for cal-
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with ~(s) the curvature of the tube at each point. If K($)
is small and slowly changing, then adiabatically a reason-
able trial wave function for the lowest state of the system
will be

P(s)sin(crt)
s, t =

&1—~(s)t

with this approximation the function $(s) obeys the
differential equation

d + [sr [~(s—)] /4 —k ](f(s)=0 .
ds

(2)

In Eq. (2) the curvature ~ gives rise to an effective local
attractive potential in the one-dimensional equation
satisfied by P. Since any attraction is sufficient to pro-
duce a bound state in the one-dimensional Schrodinger
equation, any bend will give binding. With the width of
the tube normalized to one, the continuum of the system
begins at m, and an eigenvalue k (n denotes a bound
state of the system.

Now take the system of Eq. (2) and make small local
changes in t~"e width of the tube: at large distances re-
quire that the tube become straight with unit width, in
the middle let W(s) denote the width of the tube at point
s. If W(s) is always close to 1 and slowly varying, then
we can again choose a trial wave function

$(s)sin(vrt / W(s) )
s, t =

&1 ~(s)t—
FIG. 2. (a) The sharply bent two-dimensional surface, defined

by exterior bend angle O„orequivalently by interior angle
0=~—0, . The dashed curve is an arc of the circle of the unit
radius and angle O„centered at the interior corner of
waveguide. (b) The bent surface of part (a) with an inscribed
rectangle of length L and width 8'.

culating bound-state energies and fields in these
waveguides. We used a relaxation method which has
been extended to treat states other than the ground state,
and we have also used series expansions for the ground-
state wave functions. In Sec. IV we discuss the construc-
tion of the waveguides, and experimental methods em-
ployed to locate the bound states and to map out fields in-
side the cavities. In Sec. V we give results and discussion,
we compare our experimental results with numerical pre-
dictions, and we present our conclusions and suggestions
for future research in this field.

II. QUALITATIVE DISCUSSION: BOUND STATES
IN BENT TWO-DIMENSIONAL SYSTEMS

In this section, we give a qualitative description of bent
systems in two dimensions, to present a plausible argu-
ment why bends and bulges produce an effective attrac-
tion and hence a bound state. First, consider an infinite,
bent two-dimensional curve o. of constant width, shown
in Fig. 1(a); without loss of generality, normalize the
width of the tube to 1. Define curvilinear coordinates s
along the tube, and t normal to the length of the tube,

where P(s) obeys the differential equation

61 + [[~/W(s)] [K(s)]~/4 ——k2jg(s)=0 .
ds

(3)

Equation (3) again reduces to a one-dimensional
differential equation with an effective potential. As be-
fore, the curvature ~ gives an effective attraction. At
very large distances, where the tube is straight with unit
width, the overall effective potential tends to m . There-
fore a bulge or region with W(s) ) 1 constitutes a local
attractive potential and a constriction W(s) (1 gives an
effective repulsion. Since in one dimension any attractive
potential will produce a bound state, either a "bulge" or a
"bend" is sufficient to produce binding. Equation (3) sug-
gests that a combination of curvature and constriction
satisfying [m/W(s)] —[s(s)] /4=m has zero effective
potential (relative to the straight waveguide). Adiabati-
cally, such a system would constitute a completely
reQectionless bent waveguide, ' as the bend and constric-
tion exactly compensate for one another in this limit.

Although the simple arguments given here are valid
only for very small bends and changes in width, Gold-
stone and Jaffe proved that a tube of constant width with
any bend will support at least one bound state (provided
the tube eventually becomes straight). Furthermore, a
bent tube which has a bulge (a local increase in width)
must also have a bound state. Since the analogous bent
tube of constant width has a bound state, the additional
space due to the bulge will support a bound state (or
states) with lower energy than those for the constant-
width tube.
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772
F- ~ [n+(2n+m )8 + ]4

(4)

Since the rectangle is inscribed in the waveguide, its
eigenenergies provide an upper limit for the energies of
the states of the full problem. For every solution of Eq.
(4) with an energy below the cutoff for propagation (m in
our units), there will be one bound state in the waveguide.

Although the arguments leading to Eq. (4) are very
simplistic, the qualitative features agree with detailed cal-
culations described in Secs. III and V. For sufficiently
small values of 0, multiple bound states occur. From Eq.
(4), the lowest states will have n = 1 and increasing values
of m. The energies of such states have been calculated,
and as predicted we find that all bound-state energies ap-
proach ~ /4 as 0~0. The number of bound states in-
creases rapidly at very small 0, suggesting that the num-
ber of bound states increases without limit, and that the
energy ~ /4 is an accumulation point for such states.
This behavior results from the fact that as 0—+0 these
waveguides have an infinite amount of additional space,
relative to a bent system of constant width.

III. CALCULATION OF BOUND-STATE ENERGIES

We used two separate methods to calculate the bound-
state energies and wave functions for scalar fields inside
the bent two-dimensional surfaces. The first was a relaxa-
tion method which has been extended to treat both the
ground state and excited bound states of the system. The
second method involved expanding the bound-state wave
function in the center of the surface and on the legs, and

In this paper, we study rectangular waveguides with a
sharp bend in the corner, as shown in Fig. 2(a). Such
waveguides will have a confined TE mode below cutoff
frequency no matter how slight the bend. We can discuss
such waveguides in terms of the external bend angle 0„it
will be more convenient for us to use the supplementary
angle O=~ —H„shown in Fig. 2(a), since 6) goes to zero
as 0,~~. We have previously found the confined states
for bent waveguides of this type, when 0=90. In this
paper, we will extend our investigations to examine how
multiple bound states arise as 0 becomes very small.

The energy of the lowest confined state for a bent
waveguide decreases monotonically as 0 decreases. For
sufficiently small values of 0, a second bound state will
appear, and more bound states can be found for small
enough 0. This can be seen intuitively from the following
argument. ' In the interior of the bend, inscribe a rec-
tangle as shown in Fig. 2(b), and consider the energy ei-
genvalues for a scalar field which satisfies the Helmholtz
equation inside and vanishes on the sides of the rectangle
of length L and width O'. The energy of such states will
be F.„=vr [n / W +m /L ] for nonzero integer values
(n, m). For a bent system with interior angle 8, the
length of the inscribed rectangle is related to the width by
L =csc(8/2)[1 —Wcos(8/2)/2]. For a given angle 8,
we can calculate the dimensions of the inscribed rectan-
gle with the lowest ground-state energy; using these di-
mensions, we find that as 0~0, the eigenenergies of the
box states approach the limiting form

then matching the wave function and its first derivative
at the boundaries. We describe each of these techniques
in this section.

A. Relaxation method for 6nding bound states

Here we will outline a relaxation method for obtaining
the bound states for a bent waveguide. This involves
finding a number of low-lying eigenvalues and eigenvec-
tors of some Hamiltonian operators &, using a method
developed by one of us. ' As this method is a generaliza-
tion of the power method used to find the lowest eigen-
value of an operator, we first review this process.

Consider the differential equation

(5)

where the operator & has eigenvectors q&k with eigenval-
ues ek. If we take an initial state g' ~ to be a vector with
randomly chosen elements, then in general

q(0) —y g (O)

k

(6)

q( + ) —q( ) gtgf'q( ) (7)

Equation (7) will converge provided the time step bt
satisfies the relation

1 Ate, „~& 1—Ate, , — (8)

where e,„(eo)is the largest (smallest) eigenvalue for the
discretized Hamiltonian. If e,„)0 and e,„))E'p then

At& 2

~max
(9)

It is easy to find the largest eigenvalue e,„.Starting with
the random eigenfunction g' ' of Eq. (6), repeatedly
operating with & and renormalizing effectively multiplies
each eigenfunction yk by a factor proportional to its ei-
genvalue ek. Repeated applications of & and renormal-
ization rapidly leaves the resulting wave function dom-
inated by y „,the eigenvector with the largest eigenval-
ue. From p,„wedetermine e,„,and then Eq. (9) gives
an upper limit for the value of At to use to iterate Eq. (7).

The one additional parameter of interest is the rate of
convergence g, determined by how fast the second-lowest
eigenfunction y, dies off relative to the lowest eigenfunc-
tion yp, g is given by

1 —Ate, =1 2ht(e, —eo) . —
1 —Atop

To speed up convergence, we choose the time step At to
be as large as possible subject to the restriction of Eq. (8).

with all ak 'WO. The solution of Eq. (5) can immediately
be written as

y(t)= yak"e '"'q„.
k

If Eq. (5) is discretized, then, using the index i for the ith
time step and solving for P'+",
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We now wish to extend this method to find the eigen-
value of & that is closest to some arbitrary A, . To do this
we produce some operator A. which has the same eigen-
vectors as &, but which has a minimum eigenvalue ak(A, )

for some eigenvector yk. We can then use the relaxation
method on the operator A. to find yk, then yk will also
be the eigenvector of & with its eigenvalue closest to A, .
We repeat the iteration process as before with

1000

CO
CO

500

10
I

q( ) —y( ) gr~ q(i)

with time step ht satisfying

(10)
100 200/

which has a local minimum at A, . However, we also wish
to minimize a,„.We may do so by choosing a higher-
order polynomial in &, for example

(&—k) (&—e,„)
2

~max
(12)

since A defined in Eq. (12) has a significantly smaller
maximum value a,

„

than Eq. (11). This results in much
faster convergence since the convergence factor g for Eq.
(12) has the value

(&) +( —&k)
2

9=1-
16@

„

We may generalize this to higher-order polynomials in
In Fig. 3, we show a plot of various polynomials in

&, demonstrating how rapidly we can reduce a,„,there-
by increasing the convergence rate. The price we pay for
more rapid convergence is that we must multiply by
larger powers of &. However, in our case & is an ex-
tremely sparse matrix, so this is relatively cheap. The ad-
vantage of this method is that we never diagonalize or in-
vert JY.

We now apply this method to the problem at hand.
We approximate the two-dimensional wave function with
one evaluated on a discrete set of points. These points are
on the interstices of a rectilinear mesh with sides parallel
to the boundaries of the waveguide. In our calculation,
the length of the arms of the waveguide were six times
their width, and the mesh size was taken to be 4', of the
width. On this mesh we approximate the Hamiltonian
with a discrete Laplacian. We then numerically solve Eq.
(7), normalizing after each time step, until the energy ap-
proaches its asymptotic value, E'p.

We find the next eigenvalue by choosing a polynomial
in & with zeros equally spaced between A, and e,„.In
practice we choose a twelfth-order polynomial with six
zeros. A small linear term is added to this polynomial to
ensure that A, is an absolute minimum. We then choose a
value of A, & co, and iterate Eq. (10); we increase A, until
we leave the basin of attraction of ep and instead asymp-

ak+a~»
Choosing A to be a polynomial in & ensures they have
the same eigenfunctions. For example, we might use the
operator

M =(&—
A, )

200 400 600 800 1000

totically Aow to e&. We may increase A, still further to
find e2, etc. Once we have found an eigenvalue, it is sim-
ple to calculate it as a function of 0, since to find
e„(0+b.8) we may use e„(9)as A, .

B. Series-expansion method

We have also used a series-expansion method to calcu-
late the bound-state wave functions. This approximation
is essentially that of Tang, Kleinman, and Karplus' and
Eyring, Walter, and Kimball, who used it to solve a
simple model for chemical reactions which could be re-
duced to our bent waveguide problem. In this method we
first note that the bound-state wave functions for the bent
waveguide must be symmetric upon reAection across the
diagonal (the dashed line in Fig. 4), since the Hamiltonian
is symmetric upon reAection of the coordinates about the
diagonal in the waveguide. ' Thus we search for solu-
tions on half the waveguide, with Neumann boundary
conditions on the diagonal (vanishing of the normal
derivative there). We divide the channel into (contigu-
ous) regions labeled I and II in Fig. 4. Region I defines
the straight right-hand section of the waveguide, defined
by the relation x ~ cot(H/2), where 0 is the opening angle
of the waveguide. We expand the wave function gi in
Cartesian coordinates, where 1()i(x,y) satisfies
( V' +k )Pi =0 with boundary conditions

g, (x, 0)=g, (x, 1)=0, g, (x,y) ~ 0 . (13)

FIG. 3. Polynomical in & that can be used in the relaxation
method to isolate the eigenvector of & with a given eigenvalue.
For convenience, we assume a minimum value a(A, ) =0, and we
search for an eigenvalue near A, =100. The dashed line is the
function a(E)=(E —

A, ), the dotted line is
(E)=(E A, ) (E embox) /@max~ a d the solid line is

(x(E)= (E ~) (E @max/2) (E @max) /@max Note the sub-
stantial decrease in the maximum value of the function a(E) by
going to higher-order polynomials. Inset: the same functions
plotted on a magnified scale near A. = 100, showing the same par-
abolic behavior for each function near E =A, .
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G„(y)=—G„(p,g)
x =cot(0/2)

BG„
H„(y):—

BX —
( 0/2)

I

I

I
I

I

I

Then write

aG„aG„„„~
cosP—

rip 8 P x =cot(sy2)

x=cot 6/Z
G„(y) = g b„sin(m ~y ),

FICs. 4. A figure showing half of the bent waveguide of Fig.
2(a), divided into exterior section I and interior section II.

The final boundary condition in Eq. (13) is required by
the confined nature of the bound-state wave function.
Separation of variables in Cartesian coordinates then
gives the series solution

H„(y)=g d„sin(miry) .

The matching conditions for the wave functions and nor-
mal derivatives at the boundary

III(x y) =II(x y)
x =cot(0/2) x =cot(0/2)

Pi(x,y)= g E„sin(nary)e
n=1

(14)
aq,

7

x =cot(0/2) ~+ x =cot(0/2)

where a„=+nvr k-
Region II is defined by x ~cot(9/2), y ~xtan(9/2).

We expand the wave function in this region in two-
dimensional polar coordinates (p, g), since the boundary
conditions are most easily expressed in these coordinates.
In region II, the boundary conditions are

give the relation

(d„+ab„)8„=0,
n=1

so defining the matrix

Cnm nm + mInm

(18)

(19)

Wii
't'ii(p 0)=0

P= 0/2

P»(R, O/2) =0, R —=csc(8/2) .

Full solution of the problem is obtained by matching the
wave functions and normal derivatives at the boundary of
regions I and II, i.e., x =cot(0/2), 0~y ~ 1.

It is straightforward to show that the following wave
functions satisfies the boundary conditions of Eq. (15) in
this region:

Ai(p 0)= X &)G, (p 0»
j=1

GJ (p, P ) =Jp (kp)sin [P P]

Jp (kR)
+ '

Jp (kp)sin[P +,P],
j+1

(16)

where the J's are cylindrical Bessel functions and
p~—:(2j —1)ir/8. The coefficients E„and B are deter-
mined from the conditions that itt and its derivative be
continuous at the boundary between regions I and II, and
that ltj be normalized.

To apply the continuity conditions for the wave func-
tions lt, and i)'j„atthe boundary between regions I and II,
it is useful to expand the wave functions and normal
derivative in a Fourier series, defining

which is a function only of k, a nontrivial solution to
Eq. (18) exists only if det C(k ) =0.

We truncate the (infinite dimensional) expansion Eq.
(18) at N terms, making C an N XN matrix, and search
for values of k for which det~C(k )~ =0. Having found
the relevant values of k, the coefficients E and B can
be found and we can reconstruct the wave functions 1tj

(and hence the electric and magnetic fields in the
waveguide) for each bound state. In our calculations we
have truncated our expansion at N=4. We find that
both the bound-state energies and wave functions are
stable and relatively accurate with this small number of
expansion coefficients. As we want to calculate bound-
state energies for very sharply bent waveguides (very
small values of 0), the coefficients p of Eq. (16) become
extremely large, so that we need to calculate cylindrical
Bessel functions of very large order and small argument.
To evaluate J (x) in this calculation, we generally use the
IMSL routine DBJS; however, we sometimes encounter
cases where the VAX double precision routine DBJS re-
turns a value of zero. In this case we substitute a cylin-
drical Bessel function algorithm from Ref. 22. We will
show bound-state energies and expansion coefficients in
Sec. V.

IV. EXPERIMENTAL MEASUREMENTS

To observe the lowest bound state in an electromagnet-
ic waveguide bend for different bend angles, we con-
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structed a simple realization of the variable-angle bend
geometry shown in Fig. 2(a). With this system we can
measure the microwave bound-state frequency as a func-
tion of bend angle 0 between 60' and 120. To search for
multiple bound states, which are predicted to occur in
bends with smaller interior angles, we also made a bend
with a fixed internal angle (8=22. 5 ). The fixed-angle
bend offers increased mechanical stability, which we
found to be crucial in mapping out the electric- and
magnetic-field distribution for each of the bound states.

For the variable-angle bend, parallel brass plates serve
as the top and bottom of the bend structure. The plates
are held apart by milled pairs of aluminum bars. The
bars define the sides of the straight waveguide sections,
and their thickness (b =0.953 cm) and length (20 cm)
determine the height and length of the waveguides, re-
spectively. The inner pairs of bars contact at the sharp
inner tip of the waveguide bend. The outer pair of bars,
machined to overlap, form the complementary angle at
the outer point.

In an ideal structure with walls of infinite conductivity,
propagating waves with frequencies below c/b (=15.75
GHz here) can only have a nonzero component of the
electric field perpendicular to the large plates in order to
satisfy the boundary conditions on those conducting sur-
faces.

During construction of the structure, aluminum paral-
lels (1.905 cm wide and 0.94 cm thick) facilitate keeping
the inner and outer sides of the waveguides parallel. The
parallels give the waveguides a nominal width, a =1.905
cm, which implies a nominal TED, cutoff frequency
f„=c/2a=7.87 GHz. The actual cutoff frequency can
be determined experimentally by using a similar pro-
cedure to construct a rectangular cavity with the same
nominal width and a relatively better-known length
I ))a, and then measuring the frequencies of the first few
TEoi„modes, f„.A linear fit to the data:
f„=f„+n( /c21), gives f„=(7.780+0.015) GHz.

Since the bound-state frequencies are typically well
below the cutoff frequency of the waveguide, it is imprac-
tical to send microwave power directly into the bend re-
gion through the straight waveguide sections. Instead we
send the microwaves into the bend region through a
0.141 in. semirigid coaxial line that passes through a —„-
in. clearance hole in the top brass plate. The center con-
ductor of the coax protrudes five millimeters beyond the
outer conductor in order to radiate into the wave guide
structure. We adjust the amount of coupling of the coax
to the waveguide by varying the length of the protrusion
that extends into the waveguide. With a Hewlett-
Packard 8510B network analyzer we measure R (f), the
ratio of the microwave power refIected from the end of
the coax to the incident power as a function of frequency.
A bound state appears as a sharp decrease in rejected
power, that is, as a resonant absorption of power, for mi-
crowave frequencies below the cutoff frequency. To
determine the bound-state frequency, we decrease the
coupling of the coax until (1) it is much less than critical
coupling (when all incident power is absorbed at reso-
nance), and (2) further decrease does not affect the reso-
nant frequency or bandwidth of the resonance.

Once we can measure the resonant frequency, we can
map out the field distribution for each resonance. The
simplest two-dimensional mapping procedure is a tech-
nique which has been known for some time, and which
has been investigated in some detail by Sridhar. In this
method the resonance is perturbed with a small steel ball
( —,-in. diameter) located at a known position within the
waveguide bend and then we measure the change in the
resonant frequency of the mode as a function of position,
bf(x, y). We locate the steel ball (with a precision of
about 1 mm) on the vertices of a 0.5-cm two-dimensional
grid with a small magnet, so that we do not need to
disassemble the waveguide structure during the mapping
procedure.

Since the radius r of the ball satisfies the inequality

6«r «A, , (20)

where 6 is the skin depth for the ball and X is the mi-
crowave wavelength, the surface charges (or currents)
effectively force the ac electric field (or magnetic induc-
tion) to be zero inside the ball, and the resulting induced
electric and magnetic polarization of the ball can be cal-
culated easily. For example, for fixed sources the pres-
ence of the ball in the unperturbed field, Eo, will lower
the stored electric-field energy by —

—,'poEO, where the in-

duced electric dipole moment is po =4vrr v+0. The
change in resonant frequency produced by the perturba-
tion, b,f =f „,fo, can be re—lated simply to the time-
averaged electric- and magnetic-field energy densities of
the unperturbed resonance (u„and u, respectively) at
the position of the ball:

bf (x,y) 4mr [u„(x,y) —
—,'u, (x,y)],

o
(21)

where U„,is the total electromagnetic energy at reso-
nance.

In a cavity at resonance, we expect comparable max-
imum values for u„and u, , and so the maximum posi-
tive and negative frequency shifts for a given mode
should be the same order of magnitude. Therefore, Eq.
(21) differs from similar formulas found in Ref. 24, which
asserts that the frequency shift is proportional to the
electric-field energy density with a correction of a few
percent due to the magnetic-field energy density. While
Eq. (21) is certainly correct if the sources of the fields in-
teracting with a small metal sphere are fixed, it is reason-
able to ask if this assumption is realized in the experi-
ment.

In this experiment the diameter of the sphere is 0.315
cm, and it rests on the bottom plate of the structure (the
top plate is only 0.953 cm above the base plate), so the
presence of the sphere will certainly affect the surface
charge distribution and surface current-density distribu-
tion, especially on the bottom plate. In fact there is good
evidence, in the form of the effect of the sphere on the Q
factor of the resonance (discussed below), that the current
sources are not fixed. Nevertheless, the positive frequen-
cy shifts that we measure are consistent with the values
calculated by Eq. (21) with theoretical predictions for the
electric- and magnetic-field energy density.
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As discussed in Sec. V, however, our measured nega-
tive frequency shifts are about twice as large as predicted
by Eq. (21). Therefore, we need to drop the assumption
of fixed surface charge density on the inner surfaces of
the waveguides; this greatly increases the difficulty of cal-
culating the effect of the sphere on the stored electric en-
ergy. We want to calculate the change in electric-field
energy caused by placing a conducting sphere on a con-
ducting plate in the presence of a parallel sheet of charge.
This problem is equivalent to calculating one half the
change in electric energy produced by inserting two iden-
tical touching spheres into a uniform electric field (point-
ing along the symmetry axis) produced by fixed sources.
To apply the calculation to the experiment, we still need
to assume that the charges on the top plate of the
waveguide structure are fixed, which is a much better ap-
proximation than assuming that the charges on both
plates are fixed.

For two touching spheres, we can calculate the in-
duced dipole moment in response to the electric field Ep
produced by two distant equal but opposite charges locat-
ed on the symmetry axis by employing an infinite series of
image charges inside each sphere. The net dipole mo-
ment p„„ofthe two spheres is

oo

p„„=ED(4vrEor)4 g =4.808 po, (22)
n

where pp is the induced dipole moment of a single sphere
of radius r in a uniform electric field Ep.

The change in the electric-field energy for one sphere
on a conducting plate will be one half the change in ener-

gy for the two-sphere problem: —,'p„„Ep.This model pre-
dicts that the frequency shift follows a form similar to
Eq. (21), but with the electric-field energy density u„
multiplied by a constant 2$(3)=2.404. . . , where g(z) is
the Riemann g function of argument z. We estimate that

the error in assuming that the charges on the top plate
are fixed is on the order of the attractive potential energy
of the induced dipole moment, p„„=4.808pp to its image
on the top plate. This produces a correction to the
change in electric-field energy of order

AU elec

3
2 2

3
=2(4. 808) ( —,'poEo),

(2b)3 2b

In our experiment (b =6r), the correction is roughly 5%
of the change in the electric energy produced by an iso-
lated sphere. Therefore a better estimate of the constant
mentioned in the previous paragraph would be 2.46.

We have assumed that b,f (x,y) « fo and we have ig-
nored the penetration of the fields into the sphere: since
5«r the correction to the stored magnetic-field energy
produced by the penetrating field is small compared to
the change in magnetic energy produced by the presence
of the sphere, and the resulting Ohmic losses are small
compared to Ohmic losses in the rest of the waveguide
structure. Of course, these assumptions can be verified
experimentally for a ball with a given radius. In our ex-
periment the maximum frequency shift is always on the
order of 2% offo (always less than 0.1 GHz), and no per-
ceptible change in the Q factor occurs during the map-
ping procedure, with one significant exception. When the
ball approaches the inner point of the bend, the Q factor
actually increases. The presence of the ball screens the lo-
cal magnetic field, which reduces the magnitude of the lo-
cal surface current density (and associated Ohmic losses)
in the vicinity of the point.

Our mapping technique measures a combination of the
electric- and magnetic-field strength that has no simple
analog for the quantum bound state. We can generate a
theoretical prediction for the quantity that is equivalent
to Eq. (21):

af (x,y) 4~r'
2

BQ(x,y)
Bx

aq(x, y)
Bp

2

(23)

where we assume that the wave function P is normalized,
and the constant c =2.46 was derived from Eq. (22).

We can also compare the measured position of an-
tinodes for the electric-field amplitude with theoretical
predictions for antinodes of the bound-state wave func-
tion. Even though we do not directly measure the
electric-field amplitude, since we are measuring the fields
of effectively two-dimensional modes (the fields have no
dependence on z), antinodes of E, correspond to nodes of
the transverse magnetic field, H, =[H +H ]'~ (the re-
verse is not always true, as antinodes of II, do not neces-
sarily coincide with nodes of E, ). Therefore, the posi-
tions of the ball that produce local minima in the reso-
nant frequency of a mode also correspond to antinodes of
the electric field for that mode, and positions that pro-
duce local maxima in the resonant frequency correspond
to antinodes of the transverse magnetic-field strength.

Note that positions where bf =0 have no spec&»
significance as nodes or antinodes of the electric or mag-
netic field, except when both the electric- and magnetic-
field amplitudes are small.

V. RESULTS AND CONCLUSIONS

In Fig. 5(a), we show the bound-state eigenvalues (di-
vided by vr ) as a function of the interior bend angle 8 of
the waveguide. We show the first five bound states as a

function of 0. The numerical eigenvalues and expansion
coefficients E~ and BJ [from Eqs. (14) and (16)] are also
listed in Table I, for selected angles 0. The eigenvalues
are identical whether we use the series-expansion method
or the relaxation method. First, note that all bound-state
energies tend toward ~ /4 in the limit 0~0, as we ar-
gued previously. Second, the number of bound states in-
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creases rapidly with decreasing angle 0, for very sharply
bent waveguides. %'e have previously argued that the
number of bound states should increase without limit as 0
goes to zero. For example, for bend angles 0)27.5' there
is only a single bound state; below this angle there are at
least two bound states. A third bound state appears at
0=18', followed by a fourth around 11' and a fifth at
about 9 .

Figure 5(b) shows the experimental R (f) for the
8=22. 5' bend with the lowest degree of coupling
strength between coax and waveguide that allows both
modes to appear in the same frequency sweep. The
ground state appears as the prominent minimum in R (f )

close to the small-coupling resonant frequency,f,=5.666 GHz [equivalent to a bound-state energy of
(0.530+0.002)m. , indicated by the leftmost arrow], and
the first excited state is close to the low coupling resonant
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frequency, f,„=7.305 GHz [indicated by the central ar-
row, equivalent to a bound-state energy of
(0.882+0.004)m. ]. Both resonances occur well below the
measured cutoff frequency for the waveguide, f„=7.78
GHz (equivalent to a quantum energy of vr ), indicated by
the right arrow.

In our Sec. I, we discussed the role of both "bends"
and "bulges" in producing bound states in bent systems.
In the sharply bent systems under discussion here, the
bound states arise from a combination of bend and bulge.
In Fig. 2(a), we compare the sharply bent waveguide to a
curved waveguide with no bulge (i.e., a sector of a circle
with unit radius centered at the inner point of the
waveguide). Because of the additional space present in
the sharply bent waveguide, its bound-state energies will
always be lower than the energy eigenvalues for the
curved constant-width waveguide at the same angle. To
demonstrate this we show the bound-state eigenvalue for
the curved waveguide (the dashed curve marked [C] in
Fig. 5(a) ), and compare this with the binding energies for
the sharp-cornered waveguide of the same opening angle.

By comparing the bound-state energy for the sharply
bent and the curved waveguides, we can see the relative
effects of the curvature and the "bulge" in producing
binding. The curved waveguide of constant width has
been studied by Sols and Macucci and by Jackson.
The curved waveguide does not obtain a second bound
state until the bend angle 0, =5.047~. The dominant
effect on binding energy, and the number of bound states,
comes from the additional space present in the corner of
the sharply bent waveguide. The proliferation of bound
states (which increase without limit) occurs because as
0—+0 this additional area becomes infinite.

As discussed in Sec. IV, we can measure and calculate
the shift in frequency from insertion of a steel sphere into
the waveguide. We display the experimental measure-
ment of the field distribution of the ground state for
0=22.5' in Fig. 6(a) as a contour plot of bf (x,y). The
underlying grid of data had a spacing of about 4 of the
waveguide width. Regions of negligible (less than
0.00005 GHz) frequency shift or negative frequency shift
are unshaded. Positions with positive frequency shifts
(regions of relatively large magnetic-field energy density)
are shaded gray.

The labeled positions correspond to extrema of the
measured frequency shift. The point marked "E1"
represents the maximum measured negative frequency
shift; it is the antinode of E, [local minimum of
bf (x,y)], and points "Hla" and "Hlb" are the an-
tinodes of H, [local maxima of bf (x,y)]. Table II sum-
marizes the locations of the extrema and the values of the
frequency shift for those points, and the corresponding
quantities calculated by the series-expansion method.

In Fig. (b), we plot the calculated value of the quantity
given in Eq. (23) for the lowest bound state. In the inner
band region, the experimental and theoretical plots
resemble each other strongly, especially in the vicinity of
point El, the antinode of E, (or the wave function). The
pockets of largest positive frequency shift (large magnetic
field energy) occur at the waveguide walls on either side
of the antinode of E, and around the inner tip of the

H1b

(a) (b)

FIG. 6. (a) Experimentally measured contour plots of fre-

quency shifts for lowest-frequency bound-state wave functions
for a sharply bent waveguide with an interior angle 0=22.5.
The frequency shift measured as a function of position for a
small metal sphere inside the waveguide. Shaded areas denote
regions of positive frequency shift (relatively large magnetic
field energy density); unshaded areas signify negligible or nega-
tive frequency shift (negligible or relatively large electric-field
energy density). Point E1 denotes the maximum negative-

energy shift (antinode of E, ); points H la and H 1b denote points
of the maximum positive-energy shift (antinodes of H, ). Nu-
merical values of these quantities are given in Table II. (b) Cal-
culations of the same quantity shown in (a), using Eq. (23).

bend; similar features appear in the calculated plot.
Away from the bend region, especially down the

straight waveguide sections and toward the outer tip of
the bend, the resemblance of the two plots significantly
decreases. In these areas, the measured frequency shifts
become significantly smaller and quickly reach the exper-
imental noise level, which accounts for the rough appear-
ance of the contour line between the shaded and unshad-
ed regions.

As seen in Fig. 6 and Table II, for the ground state the
measured and calculated antinode positions agree within
experimental uncertainty, which represents an overall
+0. I cm (or +0.05a, in units of the waveguide width) un-
certainty in the position of the ball relative to the struc-
ture. The experiment and calculation do not agree as
well for the magnitude of the frequency shift values at the
antinodes. The measured frequency shift at the antinode
of E, is only 75% of the calculated value. In contrast,
the calculation gives a remarkably close estimate of the
frequency shift at the antinodes of H, . We have not tried
to compare the experiment to the theory close to the
inner point of the bend, where we expect a diverging
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TABLE II. Experimental and theoretical antinodes of fields in a waveguide with 22.5' bend. Antinodes for ground state, shown in
Fig. 6, and first excited state of Fig. 7. Letters refer to corresponding points shown on figures.

Antinode type
Field Location Frequency

shift (GHz), +l%%uo

Experiment
Distance from outer

point (a)+0.05a

Calculation
Distance from Frequency
outer point (a) shift (GHz)

Ground state
(5.666 GHz)
El
H la
Hlb

H
H,

(See Fig. 6)

Symmetry plane
Right wall

Left wall

4.18
4.05
4.05

—0.0692
0.0133
0.0129

4.217
4.072
4.072

—0.0925
0.0133
0.0133

Excited state
(7.305 GHz)
E2
E3
H2
H3a
H3b
H4a
H4b

E,
H,
H,
H,
H,
H,

(See Fig. 7)

Symmetry plane
Symmetry plane
Symmetry plane

Right wall
Left wall

Right wall
Left wall

3.27
4.70
4.13
3.04
3.14
4.78
4.88

—0.0969
—0.0426

0.0094
0.0161
0.0158
0.0053
0.005

3.257
4.716
4.072
3.134
3.134
4.815
4.815

—0.1220
—0.0544

0.0094
0.0177
0.0177
0.0057
0.0057

transverse magnetic-field energy density. In fact, we do
measure a positive frequency shift for sphere positions
close to the inner point; however, the region of the diver-
gence must be localized enough that, as averaged over the
volume of the perturbing sphere, the resulting positive
frequency shift is not even as large as it is for the posi-
tions on the side walls that are close to the antinode of
the electric field.

In Fig. 7, we show contour plots of the frequency shift
for the first excited state; in Fig. 7(a), we show the experi-
mental results (the mode at 7.305 GHz) and in Fig. 7(b)
the calculation. Once again we find good overall agree-
ment between calculations and measurement in the bend
region. The major feature is the prominent antinode of
E, on the symmetry plane, which is labeled as "E2."
Another antinode of E„labeled "E3" is closer to the
inner point and smaller in magnitude. Between these
points on the symmetry plane, we find an antinode of H,
marked "H2". On the side walls, additional antinodes of
H, seem to be associated with the nearby antinodes of E,.

We summarize the positions and frequency shift values
for the excited state in Table II. The measured and cal-
culated positions of the electric-field antinodes agree
within experimental error, but the measured frequency
shifts at those points are again about 75 —80% of the cal-
culated values. We measure the ratio of the shifts at the
two antinodes as 2.27+0.03, which compares favorably
with the calculated ratio of 2.24.

The theoretical calculation accurately predicts the po-
sition of the antinode of H, located on the symmetry
plane ("H2"), and also gives the measured frequency
shift. The experiment and the calculation di6'er more
significantly for the antinodes located on the outer walls;
the positions agree fairly well (not as well as for the other
antinodes) and the frequency shifts differ by about
10—12 %.

For both pairs of antinode positions on the walls, the
measured values share two similar asymmetries: (l) the

antinodes on the right wall seem to be about 0. 10a closer
to the outer point than the corresponding antinodes on
the left wall, and (2) the frequency shifts are a few percent
greater for the antinodes on the right wall. This
di6'erence probably represents the degree of asymmetry in
the original construction of the structure. If there is a

H4b

H3b

(a) (b)

FIG. 7. Experimentally measured contour plots for the fre-
quency shift for the first excited state of a bent waveguide with
an interior angle 0=22.5'. The notation is that of Fig. 6.
Points E2 and E3 denote maximum measured negative frequen-

cy shifts; points H2, H3a, H3b, H4a, and H4b represent local
maxima in the frequency shifts. (b) Calculations of the frequen-
cy shift for the same quantity shown in (a).
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systematic error due to the asymmetry in the current ex-
periment, it is slightly greater than the random error, and
so it is probably not productive to try to greatly improve
the sensitivity of the measurement without also improv-
ing the precision of the construction of the structure.

Overall, the measured positions of antinodes of E, and
H, match the calculated values quite well. The calcula-
tions for the positive frequency shift values at antinodes
of the transverse magnetic field are often surprisingly
close to the experimentally measured values. We con-
sistently measured negative frequency shifts that are
about 75 —80%%uo of the calculated values.

In Fig. 8, we show equal amplitude contour plots of
calculations for the amplitude of the wave function, for
0=13', where there are three bound states. The lowest-
energy state has a single maximum along the diagonal,
roughly 70% of the way along the diagonal. The first ex-
cited state has a node in the frequency shift which corre-
sponds quite closely to the maximum of the correspond-
ing quantity in the ground state. If we define the sign of
the wave function to be positive near the center of the
waveguide, then the second bound-state wave function
would have negative values along the "arms" of the
waveguide, indicated by the shaded regions of the con-
tour plot. The qualitative conditions for the third bound
state in the 13 waveguide are identical, with this state
having two nodes where the wave function vanishes.

In conclusion, we have shown how multiple confined
states arise in sharply bent waveguide systems. Both
bends and bulges in such systems produce effective at-
traction and hence binding. For the sharply bent

(b) (c)

FIG. 8. A figure showing calculated contour plots for the
wave-function amplitude of the three bound states for a bent
waveguide with 0=13 . (a) Ground state; (b) first excited state;
(c) second excited state. Shaded regions denote negative values
for the wave function; unshaded regions are positive values of
the wave function.

waveguide shown in Fig. 2(a), the number of bound states
increases without limit as the internal angle 0~0. Fur-
thermore, the energy of each of these states approaches
m /4 in this limit, while the continuum begins at ~ . We
demonstrated this by calculating the number of bound
states and their energies as a function of L9. Two different
methods of calculation, a relaxation method and a series-
expansion method, give agreement on both the bound-
state energies and electric field in such waveguides.

Waveguides of this type were constructed, and the lo-
cation of the confined states was experimentally demon-
strated by measuring the ratio of reflected to incident
power R (f) as a function of frequency f for microwaves.
The bound state appeared at that frequency where a
sharp minimum in R (f) was observed. The field distri-
butions inside these waveguides were measured by mov-
ing a small metal sphere inside the waveguide and observ-
ing the shift in resonant frequency as a function of the
position of the sphere. Although this process measures a
combination of the E, and H, fields, the maximum and
minimum frequency shifts correspond to antinodes of H,
and E„respectively.

We also derived a simple formula which related the
resonant frequency shift to the electric- and magnetic-
field densities in the waveguide. Qualitatively we ob-
tained good agreement between theory and measure-
ments. Quantitatively, we found very good agreement be-
tween theoretical predictions of the maximum frequency
shifts (antinodes in H, ); however, theoretical predictions
of the minimum frequency shifts overpredicted experi-
mental results by 25 —35 %.

The presence of confined electric and magnetic fields
inside bent waveguide structures is not in itself particu-
larly interesting. In most waveguides the practical in-
terest is in the transmission and reflection well above the
cutoff frequency, and the presence of confined states
below cutoff frequency will have an influence on
transmission properties of states above cutoff. Perhaps
the most interesting thing about such states in bent
waveguides is that they do not seem to have been predict-
ed or measured before recently, despite decades of
research on such systems.

The generality of the prediction of bound states in bent
hollow waveguides suggest the possibility of finding simi-
lar states in other classes of waveguides. For example, al-
though the boundary conditions are different, a bound
state located at a bend in a dielectric waveguide would be
more accessible to experimentation.

Because of the direct relation between scalar fields in
curved surfaces in two dimensions, and electric fields in
the rectangular waveguides constructed by translating
the surface into the third direction (see the discussion of
this point in Sec. I), electrons moving in curved quantum
wires will also have bound states whenever a constant-
width system has a bend. Similar bound states may have
already been observed in experiments that observed a
pair of resonant transmission peaks, for energies below
the lowest propagating band through a quantum wire
with two right-angle bends. The presence of a bound
electron at a bend in such a system can affect the flow of
current, since it alters the local potential in the vicinity of
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the bend. If the binding energy is small, then the hop-
ping of electrons into and out of the bound state (due to
thermal fluctuations) will introduce a dichotomic noise
into the current. In addition, if the quantum wire is
sufficiently short, such bound states can act as "impurity
sites, " through which electrons can resonantly tunnel.

As our investigations have focused on mapping out
such states in waveguides, direct measurements of such
bound-electron states in quantum wires have not been
carried out. It would be extremely interesting to measure
such states and compare or contrast them to the corre-
sponding states in bent waveguides. In addition, a calcu-
lation of the transport of energetic electrons past a bound
electron in a bent quantum wire could then be compared
with experiment.

One additional property which could be measured in
bent waveguides is the adiabatic relation which suggests

that bends and constrictions in a waveguide could be
correlated in such a way as to produce a reAectionless
waveguide, at least over some range of frequencies.
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