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Simple approach to self-energy corrections in semiconductors and insulators
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We have used the Sterne-Inkson [P. A. Sterne and J. C. Inkson, J. Phys. C 17, 1497 (1984)] extreme
tight-binding model for the self-energy corrections to the top of the valence band and bottom of the con-
duction band within the GW approximation. Application of these corrections to both exchange-only
local-density-approximation (LDA) calculations and the LDA with Ceperley-Alder correlation calcula-
tions for five materials C, Si, Ge, GaAs, and ZnSe has been found to result in good agreement with ex-
perimental data and recent theoretical results. The LDA calculations were performed by using the
plane-wave-basis and norm-conserving pseudopotentials.

I. INTRODUCTION

The ab initio calculation of quasiparticle energies in
semiconductors and insulators has proven to be an in-
tractable problem for several years. The powerful local-
density approximation' (LDA) to density-functional
theory' (DFT) has been shown to be inadequate in such
situations despite its success in calculations on a wide
range of metals. It was proved as early as 1971 by Kane
that a local potential would never be sufficient to describe
the electronic properties of semiconductors and insula-
tors, due to the nonuniform distribution of electrons in
such materials. However, further work throughout the
1970s suggested an equally important difficulty due to the
energy dependence of many-body effects, " which is ig-
nored in DFT.

Neglect of these two effects leads to inaccurate predic-
tions of both ground-state and excited-state properties
within the LDA. In the case of the ground-state proper-
ties the problems are small (e.g. , lattice constants are
reproduced reasonably well but cohesive energies are sys-
tematically slightly overestimated ) but the calculated
excited-state properties in semiconductors and insulators
are very inaccurate with band gaps typically underes-
timated by 50%%uo or more. The fault may be traced to the
fact that the DFT is essentially a ground-state formalism,
having its basis in variational arguments with the elec-
tron density of occupied states as the fundamental vari-
able. Thus, although it could be expected to be accurate
for valence-band states, its predictions for excited states
(i.e., conduction bands) should not be considered to be
physically relevant. However, in metals it seems that the
predicted conduction bands do match experiment reason-
ably well whereas in semiconductors and insulators they
do not. '

The surprise is not that the LDA does not work for
semiconductors and insulators, but that it works so well
in metals. The reason would appear to be that the
density-functional formalism involves a single exchange-
correlation potential for all bands, whereas it has been
shown that in systems with a band gap the exchange-
correlation potential ought to be discontinuous across the
band gap. ' In metals there is no problem because there

is no band gap, but in insulators and semiconductors this
discontinuity is missed entirely by DFT, no matter what
improvements upon the LDA are made (e.g., gradient ex-
pansions or weighted density approximation ). The effect
of this discontinuity is thought to be responsible for up to
80% of the error in the LDA band gaps, the other 20%
being due to the local approximation itself.

With this new understanding of the deficiencies in
DFT and the advent in the early 1980s of reliable ab ini-
tio pseudopotential calculations there was a renewed in-
terest in the quantitative discussion of many-body effects
in semiconductors.

The common alternative to the DFT "single-particle"
approach is the self-energy "quasiparticle" approach
based upon field-theory techniques, which had been in-
vestigated throughout the 1970s both in a qualitative
sense and computationally in the context of empirical
pseudopotential calculations. The method accounts for
the many-body interactions by the use of a nonlocal,
energy-dependent "self-energy" operator, X(r, r', co). The
self-energy is defined in full by a self-consistent set of
equations, the Hedin equations, ' '" which led to its ex-
pression as the sum of an infinite series. It is usual to
take only the first term of the series, the GR' approxima-
tion, which has the form

where G (r, r', co ) is the many-body Green's function,
W( r, r', co ) is the screened electron-electron interaction,
and 6 is an infinitesimally small positive quantity. An ac-
curate evaluation of the self-energy is the key to the
band-structure problem. Self-consistent solutions of the
Kohn-Sham equations using the LDA and ab initio pseu-
dopotentials provide a reliable basis set to allow quantita-
tive determination of the energy-dependent and nonlocal
properties of the self-energy. Thus a detailed discussion
of many-body effects in solids is at last possible. A word
of caution is in order. Although it is believed that the
self-energy series is sufficiently well converged that the
first term is dominant and further terms need not be con-
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sidered, and despite the widespread use of this approxi-
mation over several years, little quantitative work has
been undertaken to confirm that it is indeed justified. '

Once the matrix elements of X(r, r', co) are calculated
they can be used to give corrections to the energy eigen-
values calculated in any other simpler scheme (usually
the LDA). The major difficulty lies in the evaluation of
these matrix elements due to the nonlocal and energy-
dependent nature of the self-energy operator. Several
methods of calculation, of varying degrees of complexity,
have been discussed in the literature, and indeed are the
subject of current debate. What is clear is that full self-
energy calculations are extremely computationally
demanding and this restricts the application of this for-
malism to only the simplest cases. There is, therefore,
much interest in simplified versions of the GR approxi-
mation, which may allow more physically interesting
problems to be tackled. One particularly simple ap-
proach is the extreme tight-binding method proposed by
Sterne and Inkson. ' In this paper we present an extend-
ed version of the Sterne-Inkson method which corrects an
error in the earlier paper' ' and includes a more com-
plete discussion of the on-site exchange term C in the
light of comments in the literature. ' Details are given in
Sec. III and the results of our calculations using this
model for the materials C, Si, Ge, GaAs, and ZnSe are
presented in Sec. IV. In Sec. V we compare our results
with those of other workers who have used alternative
G 8'-based techniques.

II. REVIEW OF THE STERNE-INKSON MODEL

In order to evaluate X(r, r';co) in the case of semicon-
ductors and insulators Sterne and Inkson' ' used an ex-

treme tight-binding (ETB) basis set and a two-band model
with constant band gap E . Accordingly we write for di-
amond and zinc-blende structures

ge'" P",(r —R),
R

(2.l)

where v is a bond index (four bonds per atom for
tetrahedral coordination), n is a band index (either u or c
for valence or conduction band), R is a cell index, N is
the number of fcc cells, and P", is a Wannier function
obeying the orthonormality relation

f d r P (r —R)P,.(r —R')=5, 5aa . (2.2)

The Green's function G(r, r';
co ) may then simply be writ-

ten in the standard biorthonormal form' as

P"(r—R)P"*(r'—R)
G(r, r', co)= g

n, v, R co En+l 5
(2.3)

In contrast to G(r, r', co) the evaluation of W(r, r';co) re-
quires careful consideration. It is usually approximated
by some form of generalized-plasmon-pole (GPP) approx-
imation' or more recently it has been represented in a
biorthonormal form analogous to that of the Green's
function. ' ' The approach of Sterne and Inkson was to
simply take the standard random-phase-approx-
imation" form of the dielectric function within the
two-band ETB model

s(r, r';co) =5(r —r') —NQ(co) g f d r"u(r —r")A, (r"—R) A; (r' —R),
R, v

(2.4)

where N0(co) = 4E /(E co ), A—„(r—R)=—P"(r —R)P"„(r—R), and u(r —r') is the bare electron-electron interac-
tion. This simple approach to c allows its inversion in real space ' to give

4E
'(r, r';co)=5(r —r') — g f d r"v(r r")A, (r"—R—)A „*(r'—R),

Eg+(fico ) —co
(2.5)

g (r, r';co)= f d r"e '(r, r";co)v(r" —r'),

which together with (2.5) finally yields

4E
W'(r, r';co) =v(r —r')—

E +(iris') )
—co

(2.6)

X gD (r —R)D (r' —R),
R, v

(2.7)

with Ace representing the plasmon energy.
The screened interaction may then be simply found

since

in which D (r —R)= Jd r'A (r' —R)u(r —r') represents
the dipole moment at r due to bond v in cell R.

It can be noted that this analytical expression retains
the most important properties of the screened interac-
tion, namely, poles at the plasmon energies and a zero
near the band-gap energy. In addition, it is presented in
real space and so application of this approach to surfaces
and interfaces is reasonably straightforward. Indeed, an-
alytic limits based on the Sterne-Inkson formalism have
already been used to discuss the band-gap changes near
heterojunction interfaces and work is in progress to ap-
ply the method outlined in the present paper to these sit-
uations. The results of such calculations will be presented
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in a future publication.
From (1.1) it can be seen that the self-energy is com-

posed of two contributions: one due to the poles in the
Green's function and the other due to the poles in the
screened interaction. Since the poles of W'(r, r'; co)
represent the plasmon energies, it is natural to regard this
contribution as being due to the cloud of virtual plasmons
which constantly surrounds the quasielectron. In a clas-
sical sense this may be regarded as the Coulomb hole
contribution (CHC). We may regard the other contribu-
tion as being due to screened exchange (SX) and so write

r(r, r', co) =Xsx(r, r', co)+XcHc(r, r';cd) . (2.8)

[Ho(r)+ VH(r)]1(t "(r)+f d r'X(r, r';E„)g"(r')

=E„ ti1(r ), (2.9)

where Hp is the noninteracting Hamiltonian and VH is
the Hartree potential. Sterne and Inkson suggested re-
placing the troublesome nonlocal potential
X(r, r', co=E„) with the simple local but band-dependent
potential

f d r'X(r, r';co=E„)gk (r') = V„",(r)g"„,(r) . (2.10)

After some algebra' ' the local potentials can be ex-
pressed as

1/3

E,p

(9 Eo 1

Eo+ +EO

Vsx —cHc (r ) p
C 2 1/3

1/3
1

1 ——
Cp

(2.11)

In principle, the eigenvalues of the system are then found
by solving

Eo~ ~ (i.e., increasing metallicity) since in this limit the
LDA potential is expected to be accurate. The value of y
thus obtained is

y=2 9
2772

' 1/3

(2.16)

(k. +f,kb)

( 1 +f2)1/2 (2.17)

(f,k. kb )—
(1+f2)1/2 (2.18)

which is, in any case, close to the angular average. It is
important to note that although these potentials do bear
a striking resemblance to the LDA form, they have been
derived entirely within a formalism that recognizes from
the start the localized nature of the electronic distribu-
tion in semiconductors and insulators, a situation quite
unlike that for which the LDA is derived. This may be
taken as further evidence that it is primarily the DFT
that is to blame for the failure of the LDA in such cases
rather than the failure of the local-density-based poten-
tial.

The exchange parameter C, defined in (2.13), is
significant. Sterne and Inkson' ' used the value 2.6 eV
in the case of diamond and scaled this result inversely
with the lattice constant to find estimates for other
group-IV semiconductors, because of the similarity in the
shape of the bond orbitals of these materials. ' ' ' It is
worth considering the physical origin of C in more detail,
however. We denote the sp hybrid atomic orbitals from
a pair of atoms /I and B by g, and gb. The bonding and
antibonding Wannier orbitals of the solid can be written
as

(B Eo 1

eo QEO
(2.12)

where the f, is the fraction of covalent character, or uni-

ty minus the fraction of ionic character f, . In terms of
these hybrid atomic orbitals, we can write C as

where

C = f d r d r'/I*(r —R)v(r —r')/I (r' —R) (2.13)

1 1

(1+f')'

is an on-site exchange interaction and the sum-rule-
derived relation

Eg + ( fico~ )
E,p= E2

(2.14)

has been introduced to relate the model energy gap to the
known dielectric constant of the semiconductor. The
constant y arises as the result of an angular average over
the bonds at a site. Noting the similarity of (2.11) and
(2.12) to the LDA exchange-only potential'

1/3

VLDA(r) — e2 1/3(r)3
X (2.15)

it is natural to choose y such that both the Sterne-Inkson
potentials tend to the LDA potential in the limit as

f gbg ~,
~

gbg dr d r'
r —r'

(2.19)

where, in each term, the first pair of orbitals corresponds
to the electron situated at r and the second pair corre-
sponds to the electron at r'. We have calculated the basic
integrals in the case of diamond by using Slater atomic
orbitals ' with an effectiv nuclear charge of 3.5. The
values of the integrals are as follows:
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a {A) Cp

TABLE I. Parameters used in the present work.

C {eV)

values is accurate and that no further iterations are
necessary. The corrections to the LDA eigenvalues are
then given by

Diamond
Si
Ge
GaAs
ZnSe

3.55
5.43
5.66
5.65
5.66

5.7
11.9
16.0
10.9
5.9

3.94
1.67
1.56
1.61
1.86

AEg =
& 1ttg(r) l

v„",(r) l 1//k(r) )

~E'=&&'( )lv'„, ( )lg'( ))
—&y„'(r)l v„, (r)ly'(r)) .

(3.1)

(3.2)

fg2, g, d3r d r'=18.63 eV,1

1 gd r d r'=10.76 eV,'
lr —r'l

f g, g l,
l

g, g d d '=5. 12 V.1''r —r'

(2.20)

In a plane-wave expansion we express

qn(r) yg (G)ei(k+G) r1

QNOA G
(3.3)

where n is a band index, Np is the number of unit cells, Q
is the volume of a unit cell, and the potentials V„", and
V„, may be written in a Fourier expanded form so that

Making the usual approximation that tight-binding ma-
trix elements scale inversely with the square of the lattice
constant irrespective of ionicity, it is simple to estimate
the values of the basic integrals in other materials based
upon these calculations. Taking values of f; from Ref. 26
we have calculated C for five materials, obtaining the
values listed in Table I.

This approach has a much firmer physical basis than
the simple approach taken by Sterne and Inkson. It is
clear that a full calculation of C would be much more
preferable to this estimation scheme, but in the context of
the approximations already made, the method we have
proposed seems to be quite adequate to enable reliable
calculations to be made.

III. DETAILS OF THE CALCULATION

Our approach lies in using the Sterne-Inkson potentials
to evaluate the corrections to the eigenvalues produced
within the LDA. For calculating LDA eigensolutions we
use the plane-wave basis and ab initio, norm-conserving
pseudopotentials. ' Plane waves up to the kinetic-energy
cutoff of 14 Ry were considered for all the materials ex-
cept diamond, for which a 50-Ry cutoff was required for
well-converged results. No relativistic effects (e.g. , spin-
orbit interaction) were included. LDA results were ob-
tained for both pure exchange (referred to as LDA/EX
further in the paper) and exchange plus Ceperley-Alder
correlation (referred to as LDA/CA).

The calculation of the self-energy corrections to the
eigensolutions should involve a first-order estimate based
on the LDA results, followed by an iterative procedure to
achieve a self-consistent solution. However, the work of
Hybertsen and Louie' shows that if this approach is fol-
lowed the eigenfunctions found after the first iteration
overlap 99.9%%uo with the LDA eigenfunctions. The impli-
cation is that although the LDA eigenvalues are in-
correct, the LDA eigenfunctions are, for all practical
purposes, identical to the true eigenfunctions of the sys-
tem. Thus, since the matrix elements of V„',(r ) and
V„',(r) depend only on the eigenfunctions and the elec-
tron density (itself a functional of the eigenfunctions) we
may safely say that our first-order estimate of the eigen-

V„,(r) =g V„,(G)e'
G

(3.4)

Substituting the exchange-only LDA potential from
(2.15) and the Sterne-Inkson potentials given in (2.11) and
(2.12), we find that we must evaluate

1/3
3 1

AEk = —eU 2

E,p

X g A„*I,(G')A„I,(G)p' (G' —G)
G, G'

(9 eo 1

Eo+ Qsp
1/3

2 3 1AE' =+ek
7T Ep

X g A„*q(G')A„q(G)p'~ (G' —G)
G, G'

E, 1p

Eo QEO

(3.5)

(3.6)

for each band using the electron density and Fourier
components of the wave functions generated by the LDA
program. This reformulation in terms of p(G) allows us
to perform more complete calculations than those of
Sterne and Inkson, ' ' who used only the average elec-
tron density p. Our approach ensures that proper ac-
count is taken of the differing electron densities sampled
by the valence- and conduction-band wave functions and
so allows us to be more confident in applying these
corrections to all the valence bands and a number of the
conduction bands. Sterne and Inkson' confined their
discussion to the highest valence and lowest conduction
bands, while Sterne' applied the same corrections to all
bands. To compute corrections to LDA calculations that
go beyond the exchange-only approximation (e.g., includ-
ing correlation effects) one must simply substitute the
correct form for the potential V„", in (3.1) and (3.2) and
then continue as above. On this basis we have calculated
the Sterne-Inkson corrections to both LDA/EX and
LDA/CA band structures for a selection of semiconduc-
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tors and an insulator. Finally, in performing the double
summations in (3.5) and (3.6) we terminated each sum at
113 reciprocal-lattice vectors, which is found to be
sufficient to give well-converged results.

IV. DISCUSSION OF PRESENT RESULTS

As it has been described in the preceding sections, the
Sterne-Inkson model has no remaining adjustable param-
eters. The quantities a and co are taken from experiment
while C is estimated in the manner proposed in Sec. II.
The values we have used in our calculations are set out in
Table I.

The time taken for calculation of the Sterne-Inkson
corrections was negligible compared to the time needed
for the self-consistent LDA/EX and LDA/CA calcula-
tions. The results of our calculations for C, Si, Ge,
GaAs, and ZnSe are given in Tables II—VI where they
may be compared to those of a number of other workers
and to the experimental data. Figure 1 shows the calcu-
lated LDA/EX and Sterne-Inkson-corrected band struc-
tures for the five materials and clearly reveals the "scis-
sors" nature of the self-energy corrections within the
Sterne-Inkson model: the valence bands are hardly al-
tered, while the conduction bands are raised by an almost
constant amount regardless of energy or wave vector.
This of course reAects the view that the LDA results are
likely to be fairly accurate in predicting ground-state
properties (i.e., those connected with the valence-band
states) and that the error in predicting the conduction

bands is largely due to a discontinuity in the exchange-
correlation potential at the band gap. It should be
stressed that the rigid nature of the corrections is not en-
tirely due to the constant terms in the potentials (i.e. ,
those terms involving C). The contribution from the
nonconstant terms is just as large as that from the con-
stant terms and it is the difference between these two con-
tributions that results in the near rigid shift of the con-
duction bands. In fact the C-dependent terms alone
would cause a narrowing of the band gap and it is the
nonconstant terms that cause the opening of the gap. It
is also interesting to note that the results obtained using
the LDA/EX as our starting point and those obtained us-
ing the LDA/CA as our starting point are remarkably
similar. This is entirely to be expected since the only
sense in which the initial LDA calculation should
inhuence the final result is in the closeness of the LDA
eigenfunctions to the actual eigenfunctions of the materi-
al. Any difference in the LDA eigenvalues is unimpor-
tant since the relevant LDA exchange-correlation energy
is subtracted from the eigenvalues in (3.1) and (3.2). Both
LDA/EX and LDA/CA produce similar eigenfunctions
and should, therefore, be expected to yield similar results
after correction by the Sterne-Inkson potentials.

Comparing our results with the experimental data we
see that good agreement is achieved in diamond, Si, and
GaAs whereas in Ge and ZnSe the improvement over the
LDA is less conclusive. In a number of ways Si and
GaAs are ideal materials for the application of the
Sterne-Inkson model. First they have relatively smooth,

TABLE II. LDA and quasiparticle band structures of Si in eV. LDA/EX =LDA with exchange
only. LDA/CA= LDA with Ceperley-Alder correlation. n is the band index. Energies have been ad-
justed to ensure agreement at the top of the valence band.

LDA/EX LDA/CA Present Hott' I-ILb ZL' Expt. '

8
5 —7
2 —4

1

3.24
2.49
0.00

—11.97

3.27
2.54
0.00

—11.93

4.06
3.32
0.00

—11.97

3.55
3.68
0.00

—12.38

4.08
3.35
0.00

—12.04

4.32
3.43
0.00

—12.30

4.15
3.35
0.00

—12.5+0.6

X 7,8
5,6
3,4
1,2

9.99
0.55

—2.87
—7.80

10.02
0.66

—2.84
—7.78

10.80
1.39

—2.87
—7.79

11.67
1.33

—2.99
—8.15

1.44
—2.99

1.47
—3.02
—8.15

1.13
—2.9

8

6,7
5

3,4
2
1

7.39
3.26
1.44

—1.21
—7.02
—9.62

7.57
3.33
1.50

—1.20
—6.97
—9.60

8.22
4.08
2.27

—1.19
—7.06
—9.60

8.90
4.38
2.06

—1.15
—7.39

—10.04

4.24
2.27

—1.27
—7.18
—9.79

4.30
2.36

—1.28
—7.28
—9.98

3.91
2.04+0.6

—1.2+0.2
—6.8+0.2
—9.3+0.4

E, I —0.85X 0.41 0.50 1.25 1.21 1.29 1.32 1.17

'Reference 33.
Reference 17.

'Reference 36.
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TABLE III. LDA and quasiparticle band structures of dia-
mond in eV.

LDA/EX Present Hott' HL Expt. '

8
5 —7
2—4

1

13.24
5.46
0.00

—22.04

15.65 15.53 14 8 15
7.87 8.84 7.5 7.4
0.00 0.00 0.00 0.00

—22.09 —22.77 —23.0 —21

X 5,6
3,4
1,2

7
5,6
3,4

2
1

4.19
—6.51

—13.10

8.61
8.24

—2.91
—13.85
—16.08

6.67 7.86
—6.52 —6.51

—13.13 —13.43

11.07
10.62

—2.88
—14.00
—16.05

11.66
11.85

—2.78
—14.19 —14.4
—16.72 —17.3

6.0
—5

—13

—3
—13
—16

E... r —07X

'Reference 33.
Reference 17.

3.76 6.22 7.16 5.6 5.48

the I point of Ge is well known. ' ' It may be that this
unphysical aspect of the LDA calls into question, at least
at the I point, the assertion that the LDA wave func-
tions are a sufficiently accurate zeroth-order approxima-
tion to the true wave functions. One obvious avenue for
further study would be to investigate Sterne-Inkson
corrections to calculations carried out beyond the LDA,
such as the modified LDA [(M)LDA] of Bylander and
Kleinman, in which the collapse may be less severe.
Furthermore, our decision to neglect relativistic effects,
while probably justified for the other materials con-
sidered, is rather more suspect when we are dealing with
Ge. Given these difficulties we feel that our results for
Ge are quite reasonable and do not cause us to question
the validity of the Sterne-Inkson potentials.

In diamond the Sterne-Inkson corrections improve the
gap at the I point from 5.46 eV in the LDA/EX calcula-
tion to 7.87 eV, in fairly good agreement with the experi-
mental figure of 7.4 eV. Similar improvements are ob-
tained across the entire Brillouin zone. Although these
results are fairly good, we would like to note in passing
that in calculating the basic integrals (2.20) for C we have
used an effective nuclear charge of 3.5, which is probably
a quite acceptable figure for most group-IV semiconduc-
tors. However, in view of the more compact distribu-
tion of valence electrons in diamond it may be reasonable
to argue that reduced screening of the nucleus would
favor an effective nuclear charge of approximately 4.0 in
this case. This would yield a value of C =5. 1 eV in dia-
mond, which in turn would lead to corrected results in
excellent agreement with experiment. In particular, the
gap at the I point would become 7.34 eV, while the fun-
damental indirect gap would be 5.69 eV, as compared
with experimental values of 7.4 and 5.48 eV, respectively.

Finally, we note that our results for ZnSe are rather
poor, with the band gap overestimated by —1 eV, but
this may have less to do with the limitations of the
Sterne-Inkson model than with the electronic structure of
ZnSe itself. The difficulty here may lie in the fact that Zn
has a d band with energy very close to the valence bands
of ZnSe. There is, therefore, likely to be significant hy-
bridization of the valence states with these d-band states
so that the plane-wave approach used in our LDA pro-
gram becomes less appropriate. We have treated Zn as a
divalent element by assuming the 3d electrons to be in-
cluded in the core and have used the appropriate pseudo-
potentials. ' This allows us to take only a 14-Ry cutoff
for reasonably converged results but it is not clear if this
assumption that the d-band electrons are inert is justified
or not. ' It may also be that our simple method for es-
timating C, outlined in Sec. II, has broken down in the
case of a material whose electronic structure is so far re-
moved from that of diamond.

TABLE IV. LDA and quasiparticle band structures of Ge in eV.

LDA/EX LDA/CA Present Hott' HLb Expt. b

6—8
5

2—4
1

2.49
—0.19

0.00
—12.8

2.54
—0.18

0.00
—12.80

3.03
0.34
0.00

—12.82

3.60
0.06
0.00

—13.16

3.04
0.71
0.00

—12.86

3.01
0.89
0.00

—12.6

X 7,8
5,6
3,4
1,2

9.40
0.52

—3.03
—8.91

9.43
0.64

—3.00
—8.90

9.94
1.07

—3.03
—8.91

10.96
1.31

—3.26
—9.31

1.23
—3.22
—9.13

1.3+0.2
—3.15+0.2
—9.3+0.2

8

6,7
5

34
2
1

6.80
3.61

—0.03
—1.37
—7.61

—10.72

7.00
3.69
0.04

—1.36
—7.57

—10.71

7.35
4.14
0.51

—1.37
—7.64

—10.71

8.30
4.73
0.59

—1.36
—8.06

—11.12

7.61
4.33
0.75

—1.43
—7.82

—10.89

7.8+0.6
4.3+0.2

0.744
—1.4+0.3
—7.7+0.2

—10.6+0.5

Eaav I —L —0.03 0.04 0.51 0.59 0.75 0.744

'Reference 33.
Reference 17.
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TABLE V. LDA and quasiparticle band structures of GaAs in eV.

LDA/EX LDA/CA Present Hott' ZL' Expt. '
6—8

5
2—4

1

3.70
0.61
0.00

—12.59

3.76
0.65
0.00

—12.56

4.52
1.43
0.00

—12.59

4.72
0.93
0.00

—12.94

4.55
1.42
0.00

—13.06

1.22
4.716
1.522
0.00

—13.1

7,8

6
5

3,4
2
1

10.14
1.50
1.26

—2.62
—6.76

—10.15

10.18
1.61
1.41

—2.589
—6.72

—10.149

10.96
2.32
2.10

—2.63
—6.78

—10.13

11.79
2.24
1.99

—2.89
—7.64

—10.28

11.06
2.26
1.98

—2.82
—7.12

—10.33

2.58
2.08

—2.80
—6.70

—10.75

8
6,7

5
3,4

2
1

7.52
4.53
0.97

—1.10
—6.60

—10.91

7.718
4.62
1.048

—1.09
—6.54

—10.90

8.35
5.35
1.78

—1.11
—6.63

—10.89

8.95
5.63
1.40

—1.13
—7.41

—11.14

5.40
1.72

—1.21
—6.87

—11.29

1.85
—1.30
—6.70

—11.24

'Reference 33.
Reference 35.

'Reference 36.

0.61 0.65 1.43 0.93 1.42 1.22 1.522

V. COMPARISON WITH PREVIOUS WORK

One of the most successful applications of the self-
energy concept to the problem of band-structure calcula-
tion is the following method due to Hybertsen and
Louie. ' The static dielectric matrix EGG.(q, co=0) is
dependent only on ground-state properties of the system
and so can be accurately calculated within the density-
functional theory. The resulting matrix is then extended
to the finite frequency case by means of a generalized-
plasmon-pole model (GPP) in which the dynamic struc-
ture of the dielectric matrix is modeled by a pair of sim-
ple poles for each element of the matrix. The precise na-
ture of these poles is then fixed by requiring that the
dielectric matrix satisfies the Kramer-Kronig relation

LDA/EX LDA/CA Present Expt. '

6—8
5

2 —4
1

6.20
2.21
0.00

—12.27

6.30
2.33
0.00

—12.26

7.77
3.77
0.00

—12.26

7.33
2.82b

0.00
—12.25

relative speed of the calculations that we have made. The
results generated by Hybertsen and Louis using the GPP
model for C, Si, Ge, and LiC1 match the experimental re-
sults very closely. In particular, we note that the figures
quoted for Ge and diamond are much better than our
own, although in the case of Si there is quite close agree-

TABLE VI. LDA and quasiparticle band structures of ZnSe
in eV.

2 ~ 1
ReEGG. (q, co =0)=5Go.+—P de —ImEGG (q, co)

7T 0 CO

(5.1)

and the generalized f-sum rule

d co co Im EGG ( q, co )
0

8
7
6
5

3,4
2
1

11.69
11.40
3.66
2.99

—1.69
—4.33

—10.79

11.79
11.51
3.79
3.19

—1.66
—4.27

—10.99

13.27
12.93
5.22
4.59

—1.71
—4.37

—10.95

5.17
4.54

—1.96
—4.96

—10.72

2 (q+Cx) (q+Cx') p(Cx —Cx')

2 ~ ~q+A[~ p(0)
(5.2) L 8

6,7
5

3,4
2
1

Earp

'Reference 40.
Reference 30.

Energy-dependent expressions for the screened exchange
and Coulomb hole contributions to the self-energy are
then obtained within the GR' approximation and the
eigensolutions of the system are evaluated, using LDA
eigenfunctions as a starting point. Note that this involves
the numerical evaluation of the frequency integration
from (1.1), a step that is performed analytically within the
Sterne-Inkson model. This is part of the reason for the

8.88
6.51
3.19

—0.62
—4.54

—11.35

2.21

9.07
6.64
3.31

—0.61
—4.47

—11.35

2.33

10.47
8.05
4.70

—0.62
—4.63

—11.32

3.77

7.72
3.96

—0.76
—5.08

—11.08

2.82'
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ment. Additionally there is good agreement between our
figures for GaAs and those produced by Wang, Gu, and
Li, who have performed calculations using the GPP
model for both GaAs and GaP. Recently Zhu and
Louie have obtained good results using the GPP ap-
proach but starting with a model static dielectric matrix.
Use of a model in evaluating the static matrix simplifies
the most time consuming step of their calculation, but
their results for Si and GaAs are not as close to experi-
ment as ours. The ability of any simple GPP model to
accurately represent the dynamic effects in the dielectric
matrix has recently been questioned, ' ' but nevertheless
the excellent results obtained by these workers strongly
suggest that a complete self-energy calculation of some
sort is indeed the correct approach to the solution of the
band-structure problem.

An alternative to the GPP technique is the dielectric
band-structure (DBS) approach developed by Baldereschi
and Tosatti. In the context of G8' calculations this
method has been used by von der Linden and Horsch
and by Hott. In essence the crucial step is the diagonal-
ization of the dielectric matrix, yielding a set of eigenvec-
tors and eigenvalues. There are an infinite number of ei-
genvalues for each point in the Brillouin zone, forming an
infinite set of dielectric bands lying in the range (0,1). In-
version of the dielectric matrix is simply achieved by in-
verting the eigenvalues and the energy dependence of the
screening is then introduced by means of a plasmon-pole
function for each eigenvalue. As before, the parameters
for the pole structure are found through the f-sum rule,
but there are fewer parameters required than in the GPP
model in which every matrix element was parametrized.
Certainly the analytic structure achieved in this way is
different from that of the GPP method but it is not clear
which may be considered to be closest to the actual struc-
ture. In computing the self-energy within this model a
sum over the dielectric bands must be performed instead
of the sum over reciprocal-lattice vectors involved in the
GPP method. The sum over dielectric bands is expected
to converge more rapidly and this is another advantage
of the DBS technique. However, the quasiparticle ener-
gies obtained by Hott using this method are not as im-
pressive as those of Hybertsen and Louie. Indeed, the re-
sults of our own much simpler calculations match those
of Hott fairly closely for Si while they are markedly
closer to the experimental data for GaAs, Ge, and dia-
mond. The root of the problem may lie in the partition
of information between the eigenvectors and eigenvalues
in the dielectric band-structure formalism. In the GPP
model it is clear that every element of the dielectric ma-
trix satisfies the f-sum rule, yet in the DBS model it is
only the eigenvalues which satisfy it. Although the eigen-
values contain much of the information about the dielec-
tric matrix, they do not completely describe it and so
merely considering the pole structure of the eigenvalues
does not guarantee that the pole structure of the full ma-
trix will be reproduced. The GPP model evidently pro-
duces better results but the drawback is the need to cal-
culate a large number of parameters compared to the
DBS method. Additionally, the use of empirical pseudo-
potentials in Hott's method is not entirely satisfactory as

it does not allow truly ab initio self-energy corrections to
be evaluated.

Recent calculations have been made by Bechstedt
et al. using a simple static model for the dielectric
function and introducing dynamic screening and local-
field effects through two parameters. Their results are
comparable with ours for Si, GaAs, and ZnSe. However,
although their scheme vastly reduces the computer time
required to calculate the self-energy, their LDA calcula-
tions are based upon empirically obtained local pseudo-
potentials and so their work does not have the same firm
basis as our own.

Finally, we must mention the work of Hanke and
Sham. ' The model that they have proposed is of a very
similar nature to the earlier work of Sterne and Inkson, in
that it is based upon a pair of tight-biding bands and
leads to a pair of local potentials dependent upon p'~ (r).
In this model the screened interaction is represented by a
very simple plasmon-pole-type expression. Performing
the frequency integration in the finite temperature form
they partition the self-energy into three contributions: a
bare exchange term, an antibonding correlation term, and
a bonding correlation term. Local expressions for the
valence- and conduction-band self-energies are then
found through a number of approximations and their ma-
trix elements are evaluated using wave functions obtained
from a LDA calculation. Full quasiparticle band struc-
tures were not presented, but their matrix elements
varied significantly from those which Hybertson and
Louis give. ' Nevertheless, the value of 5, the discon-
tinuity in the DFT exchange-correlation potential (also
known as the gap correction), is accurately reproduced
by their model when compared to first-principles calcula-
tions by Godby, Schluter, and Sham for both diamond
and Si. However, the quantity 6 on its own is of little
practical use since it does not represent the correction to
be applied to a LDA calculation but rather to a "true"
DFT (Ref. 9) calculation, which was not attempted
within this model.

VI. SUMMARY

In this paper we have reviewed the tight-binding model
proposed by Sterne and Inkson' ' for the evaluation of
the self-energy operator and have presented the results of
calculations based on this model for a range of materials
from the narrow-gap semiconductor Ge to the insulator
diamond. We have found that the results from this sim-
ple scheme for diamond, Si, and GaAs are particularly
impressive, while those for Ge and ZnSe have been less
so. We believe that we have shown this model to be use-
ful in providing a simple method for calculating many-
body effects in semiconductors and insulators whose ex-
tremal bands are relatively Hat and which exhibit a fairly
constant optical band gap. At its best, the Sterne-Inkson
model provides results that are at least as good as those
of any other more detailed calculation, but at a consider-
ably lower computational cost. Having shown that the
present scheme gives the correct bulk limits, we will ex-
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pect it to be very valuable in large-scale applications to
situations where a real-space self-energy description
would be beneficial (e.g., low-dimensional systems).
%'ork on such applications will be presented in a future
publication.
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