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Mixed s-wave and d-wave superconductivity in high-T, systems
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We investigate the nature of the superconducting state of high-T, materials from a microscopic
theory and from a phenomenological analysis of experimental data. The simplest model for a mi-
croscopic electronic mechanism is the one-band Hubbard model, for which the parameters can be
derived from experiment and cluster calculations. For these parameter values and moderate doping
levels, we use the variational Monte Carlo method to show that a mixed s-d Cooper-pair state is
favored. These results are compared to quantum Monte Carlo results on the Hubbard model. This
mixed state is compared with experimental results on nuclear-magnetic-resonance relaxation times
and Knight shifts, penetration depth, and tunneling measurements. The comparison with experi-
ment indicates that a mixed-symmetry state is a strong candidate for the ground state of the system,
comparing favorably to pure d-wave and pure s-wave states.

I. INTRODUCTION

A considerable body of work indicates that the phonon
mechanism of superconductivity can produce only rather
low critical temperatures (T, 's). The high T, 's of the
layered cuprate materials therefore mark them out as
possible candidates for an electronic mechanism. Elec-
tronically generated pairing interactions can lead to un-
conventional (non-s-wave) Cooper-pair states because of
nontrivial structure in momentum or spin space. The su-
perfluidity of He is a concrete example of this. Heavy-
fermion systems are most likely another, and in connec-
tion with the latter case, it has been discovered that
antiferromagnetic fluctuations can give rise to d-wave
pairing. ~ The cuprate materials appear in each case to
be close to an antiferromagnetic instability, and in some
cases strong antiferromagnetic correlations have been di-
rectly observed in the superconducting state. This situ-
ation calls for an investigation of unconventional pairing
states, particularly the d-wave state, in high-T, systems.
We shall define this state and give a general review of
symmetry classification and Ginzburg-Landau theory for
all relevant states in Sec. II.

From a microscopic theoretical point of view, the first
problem to be solved is a choice of model. We take the
one-band Hubbard model as the simplest model which is
at present consistent with all experimental facts. Zhang
and Rice gave a construction of Wannier states which
form a split-off, low-lying, partially filled band start-
ing from an appropriate tight-binding Hamiltonian with
strong on-site repulsion. This results in the t-J model.
Later numerical studies on clusters and comparison with
spectroscopic measurements confirmed that their descrip-
tion is consistent with the known low-lying levels. It
has also become clear that the complex NMR results in
the normal state are explicable in a one-band model. s io

The t Jmodel therefore -gives a reasonable description
of the system energetics on scales of J and t, i.e. , 0.05—1

eV. This does not by any means guarantee that the t-J
model is adequate for the description of superconductiv-
ity. In the phonon case it is a "small" residual interac-
tion which counters the "large" Coulomb interaction and
gives rise to superconductivity. Our philosophy in this
paper, however, is that one should search carefully for
superconductivity in a minimal model before going on to
consider the addition of more bands, excitons, plasmons,
phonons, and so on. An additional complication which is
ignored in our two-dimensional (2D) model is the inter-
layer coupling. If interlayer pairing is operative, then
this is a mistake, but the fact that T, appears to be more
or less independent of uniaxial stress perpendicular to the
planes in fully oxygenated YBapCu307 suggests that the
pairing mechanism should be sought in the plane.

Our Hamiltonian is

+J) (S, S, ——,'n, n, )
(i j)

S)7 g7 )0'

H is understood to act on a square lattice on which dou-
ble occupancy is forbidden. We will generally concentrate
on the case of J/t = 4, which is roughly the ratio deduced
from the spectroscopic experiments and cluster calcula-
tions. When this ratio is fixed, all energies may be quoted
in units of t, which is about 0.5 ev. The Hamiltonian
(1) follows from the Hubbard model with U/t )) 1. The
final term in H is the three-site term. It is often ignored
because of its complexity and because it is proportional
to J times the hole density per site b. We find that for
ti ) 0.1 it becomes quantitatively important, and so it is
always kept in what follows.
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We use the variational Monte Carlo (VMC) method~4
to determine the ground state of H. We describe this in
some detail below. This approach contrasts with other
methods, among which we mention two because of the
similarity of the input physics. The quantum Monte
Carlo (QMC) method has been used extensively in stud-
ies of possible superconductivity in the Hubbard model.
The results of these studies have on the whole been taken
as evidence against superconductivity in the model. We
argue in Sec. III that rather large lattices and strong
coupling must be used to establish superconductivity in
this model and QMC has not yet reached these sizes and
coupling strengths. The spin fluctuation (SF) method~s
is based on ideas similar to those put forward here and
in earlier papers, namely, that spin Buctuations are re-
sponsible for unconventional pairing. The Hamiltonian
used in the SF method is not microscopic as ours is; on
the other hand the phenomenological input (the wave-
vector- and frequency-dependent susceptibility) is taken
from experiment and should therefore be reasonably ac-
curate. The method also has the advantage that stan-
dard approaches may be used to compute experimentally
measurable finite frequency and finite temperature quan-
tities. The VMC method cannot do this at present. The
Hamiltonian of the SF method needs a coupling constant
approaching 1 eV to produce high T, 's. Whether such a
Hamiltonian can be derived from the t-J model we use
is an open question. Our conclusions about d-wave su-
perconductivity in Sec. III below are mostly in agreement
with the SF method, but there are crucial differences at
high doping levels. The SF method produces only d-wave
pairing, but we find that mixed s- and d-wave pairing also
has a region of stability. We also note that SF calcula-
tions have generally been restricted to computation of
the highest T, among the different representations on a
square lattice. This approach cannot find ground-state
mixing.

The phenomenological part of the paper focuses on
mixed s-wave and d-wave states, since the pure s- and
d-wave states have been considered extensively in recent
work. The comparison of d-wave states to experiment has
recently been reviewed. Generally, it appears that
the d-wave state does somewhat better than the s-wave
state. We will argue in Sec. V that mixed s- and d-wave
states can improve on d-wave states.

The rest of the paper is organized as follows. In Sec. II
we discuss the symmetry and the Ginzburg-Landau the-
ory in the tetragonal and the orthorhombic lattices. We
present the results of our VMC study of the t-J model
on 2D square lattices of various sizes using a trial wave
function for the d-wave pairing state in Sec. III. We show
that the d-wave state has lower energy than the "normal
state" on a large enough lattice () 100 sites). We de-
vote Sec. IV to the VMC studies of other pairing states.
We find that a mi~ed s- and d-wave state is preferred
over both the pure d-wave and the pure s-wave pairing
states. In Sec. V we calculate the density of states for
various pairing states and compare the theory with exper-
iments, especially the magnetic penetration depth mea-
surement. We phenomenologically analyze the nuclear-
magnetic-resonance (NMR) data in YBa2Cu307 using

various pairing states in Sec. VI, which lends further sup-
port for the mixed s- and d-wave state. We conclude
the paper with some discussions in Sec. VII. Some of
the work presented here has been published previously
in short communications.

II. SYMMETRY PROPERTIES

The high-T, materials are generally orthorhombic.
This is true of the Bi-based materials, which have a
superlattice modulation which distorts the tetragonal
structure. The orthorhombic distortion is usually small,
with a difFerence between the a and b axes of about 270
in YBa2Cu307, for example. For this reason we treat
the simpler case of tetragonal symmetry first, and then
modify this for the actual orthorhombic case.

A. Tetragonal symmetry

The s-wave and d-wave states considered in this paper
belong to the Aq and Bi representations of the tetrago-
nal point group C4„, corresponding to gap functions such
as cos k~a+ cos k&a and cos k~a —cos k&a, respectively. 3

These representations are one dimensional, meaning that
pure ordering in either state would be characterized by
the growth of an order parameter which is a single com-
plex number. Also note that s-wave and extended s-
wave states are not distinguishable on symmetry grounds
and therefore we defer discussion of this distinction to a
later section. This B& d-wave state for high-T, systems is
quite difFerent from the d-wave states proposed for heavy-
fermion systems such as the E& state of hexagonal Upt3.
The Eq representation is two dimensional and therefore
has a pair of complex order parameters.

Mixed ordering in Aq and Bq in the tetragonal system
would produce two order parameters. This is not forbid-
den in general; however, the two components would have
different critical temperatures. The Ginzburg-Landau
free-energy density in the absence of external field reads

This expression shows a second-order transition at T =
max(T„T~) and may show a second second-order transi-
tion to a mixed phase if T, and Td, are sufIiciently close.
There is no convincing experimental evidence for the oc-
currence of two transitions in the specific-heat measure-
ments so far carried out in high-T, systems (again in con-
trast to UPts). This apparently presents a problem for
certain mean-field theories of superconductivity of the t-
J model and for the mixed Aq Bq state we examin-e later.
In these theories the s-wave and d-wave states are degen-
erate near half-filling and might be expected to be nearly
degenerate at experimental doping levels. We shall argue
below that considerations of the orthorhombic distortion
of real systems removes this problem.

The free-energy density of a pure s-wave system in a
field is, as usual,
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f. = ~.(T —&.) IO. I'+ P. l +.I'
+K.*"(Ip*@.l'+ Ip &.I') + K:IpA. I'

where p = —i —
&,*, etc. The free energy of the

d-wave system is precisely isomorphic:

fs, = ~~(& —&~)IXI'+ PsI AI'
+Kd."(Ip*@dI' +

Ipr ied I') + Kd Ip.A I'.

In fact all one-dimensional representations have exactly
the same free energy. This is a general result not spe-
cific to C4„. All elements of finite groups are of finite
order; if the representation is one dimensional, all ele-
ments are therefore represented by a phase, the phase of
a given element depending on the representation. Any
term in the free energy of a superconductor must be
invariant with respect to changes in phase because of
gauge invariance to start with. Therefore the transfor-
mation properties of any term do not depend on the rep-
resentation. To give a specific example relevant here,
the term K,*"(p~@,p'g;+p„Q, p„*g;) from Eq. (3) above
transforms to K,*"[( p„Q,)(—p„*@;)+—(p g, )(p"g,*)] =
K,*~(lp @,I~+ Ip&@,I2) under a 90' rotation. The same
term in Eq. (4) transforms as

Kd" (p*4'dp" 0d, + pyMdp„Md)

K~"[(—py) (—A) (—p;) (-4~)
+p.(-O:)p:(-4.*)]

= Kd."(Ip*@~I'+ lpyAI').

called the s+ id state. We are thus using this term in a
slightly extended sense.

B. Orthorhombic symmetry

We now turn to orthorhombic symmetry with point
group Cq„. C2„ is obtained from C4„by deleting 90' ro-
tations about the c axis and refiections in the x = +y
lines. These are precisely the operation under which the
d-wave state transforms nontrivially, i.e. , with change of
sign. Under all the operations of C2„, the d-wave (Bq
in C4„) state is invariant, meaning that it transforms as
Aq, the identity representation, or the s-mare represen-
tation. In orthorhombic symmetry, s wave and d nave
are the same from the point of view of symmetry. Thus
there is only one order parameter. There is only one
critical temperature, in agreement with experiment. The
Ginzburg-Landau free energy is

f = ~l@f'+&I&l'+).K'Ip'@I'

where i = 2:, y, z and K~ g Kz g K, . This free en-
ergy governs thermodynamics near T,'. Any anisotropy
in the state is crystalline anisotropy —not unconventional
superconductivity. See Fig. 1 for an illustration of this
point. Also note that the peculiar gradient term in the
mixed s-d state in tetragonal symmetry goes over into,

Terms invariant in Aq are guaranteed to be invariant in
Bq and conversely. This theorem has an important con-
sequence for d-wave theories of high-T, systems: There
is no way to distinguish s-wave and d-wave theories by
experiments whose results depend only on the form of
Ginzburg-Landau theory. If high-T, materials are d wave,
the whole phenomenology of Aux lattices, pinning, creep,
etc. , may be taken over without modification except that
the calculation of the parameters appearing in f from
microscopic theory would be different in s- and d-wave
cases.

If s-d mixing is allowed, there is an additional, rather
strange-looking gradient term in the free-energy density:
f,~ = K,d(p @,p*Qd —p„Q,p„'Qd + c.c.). Thus, a mixed
phase can have modi6ed H„curves, as discussed in Ref.
22, The existence of gradient terms in mixed states from
the general group-theoretical point of view is also dis-
cussed in this reference. What we term the "s+id" state
in this paper is any state of the form

ky/4

kx

k /y

(b)

(e)

ky /4

kx

k /4

k„

A(k) = g, (cos k~ + cos k„) + iQd(cos k —cos k„), (5)
k„ k

4(k) = g, [(1 + i) cos k, + (1 —i) cos k„]
= (1 + i)@,(cos k~ —i cos k„),

(6)
(7)

and 4'(k) = (1 —i)Q;(cosk~ + i skc&o). This gap is
the same as that found originally by Kotliar. ~4 It is often

where the relative phase of Q, and @~ is e' ~~. We assume
lattice constant a=1 throughout this paper. For the case
when @, = @g, we have

FIG. 1. Symmetry properties of s-wave and d-wave states
in tetragonal and orthorhombic crystals. The thick line is
the Fermi surface. The curve enclosing the shaded region
represents the gap function. (a) s-wave state in tetragonal
lattice; (b) d-wave state in tetragonal lattice; (c) s + d state
in tetragonal lattice; (d) s-wave state in orthorhombic lattice;
(e) d-wave state in orthorhombic. (d) and (e) are identical
from the point of view of symmetry.
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in effect generates, the difference between the gradient
terms in the x and y directions in orthorhombic symme-
try.

Theories of d-wave symmetry for high-T, systems be-
come s-wave theories in the real orthorhombic systems.
This does not change the fact that there may be nodes
of the gap, etc. It does mean that d-wave gap functions
such as A(k) cos k~ —cos k„will inevitably mix with
s-wave gaps such as A(k) const, for all T & T, .

Since the orthorhombic distortion is small, it is also
interesting to treat it as a perturbation of C4„, by adding
a small effective field to the C4„ free energy. Then we find

~ = ~ + ~~ + ~ ~ + "(&:&d+ & &d.).
If this free energy is minimized, we find that at T,
a combination of Q, and Qd, arises. The combination
may be obtained by diagonalizing the quadratic form
~.(& —&.) lq. '+ ~d(& &~) lqd—,

'+ ~(q.*yd + q.qd) and
finding the smallest coeKcient. T, is determined by set-
ting this coefIicient equal to zero. The eigenfunction cor-
responding to the lowest coefIicient gives the 8-d mixing
near T, . The lower transition then turns into a crossover,
with the specific-heat jurnp smoothed out. What this
theory describes is the temperature dependence of crys-
talline gap anisotropy below T, . This gap anisotropy may
be very important for calculation of microscopic proper-
ties, as we shall see in the later sections.

This simple expression already makes an experimental
prediction. r must be proportional to the deviation from
orthorhombic symmetry. In the tetragonal system r = 0
and there are two sharp transitions. As r increases, the
lower transition broadens and is pushed down, but the
upper transition is pushed further up; i.e. , T, should in-
crease as the system becomes more orthorhombic. This
is in contradiction, superficially, to experimental results
on YBa2Cu307, where T, increases as the length of the
a and 6 axes are made closer by uniaxial stress. 2' s

However, even when they are equal, YBa2Cu~07 is not
tetragonal because of the Cu-0 chains, and T, may well
be affected by compressing the chain because of charge
transfer to the planes. In doped I a2CuO4, on the other
hand, T, does apparently decrease as (true) tetragonality
is approached. 25

III. VMC RESULTS FOR THE d-YVAVE STATE

Recent QMC calculations of the two-dimensional one-
band Hubbard model have shown no evidence of d-wave
pairing at finite temperatures for square lattice systems
of finite size. This lack of d-wave pairing has led the
QMC investigators to conclude that the Hubbard model
may not support superconductivity. In this section we
present results of VMC calculations conducted on two-
dimensional square lattices of finite size. Assuming a
d-wave state for the t-J model, we have calculated that,
for certain hole densities and lattices above a certain size,
the energy of the d-wave pairing state is less than the
normal-state energy, thereby showing evidence of super-
conductivity in this model, . In addition to presenting our
VMC results, we offer comparisons to QMC in order to

understand why it apparently does not find superconduc-
tivity.

In brief, the VMC method is a random-walk
importance-sampling technique which estimates expec-
tation values of operators in given variational wave
functions. Our variational wave function is

I 0) = &~+r (up+ vkcI, t.c &i)10)

Ag(k) = 'lj/(g (cos k~ —cos ky) (12)

is the d-wave gap function, where @~ is a variational gap
parameter. (It is to be stressed that Qg is a parameter in
our wave function. It is not the gap which would be ob-
served in a tunneling or photoemission experiment. This
is seen particularly clearly by noting that the "gap" @&
may be finite even at half-filling, when the order param-
eter for superconductivity vanishes. ) Assuming a certain
gap parameter Q~, hole density per site 6, and lattice size
N, the ground-state energy EG. for this particular set of
parameters is found by using the VMC technique to com-
pute the expectation value of the Hamiltonian given in
Eq. (1). Comparison of this energy with the energy of the
"normal state" (Q~ = 0) shows whether the d-wave pair-
ing reduces the energy for that particular hole density
and lattice size.

We have conducted a VMC study of small, Bnite-sized
systems with lattice sizes of 16, 26, 36, 50, 64, 82, and
100 sites with periodic boundary conditions. The "tilted"
lattices of 26, 50, and 82 sites are also used in our calcu-
lations, in which case the period vectors are not along the
(0,1) and (1,0) directions. The variational gap parameter
Qg was varied from 0.0 to 1.0t. The hole density 6 was set
to 0.125, 0.250, and 0.375. These values of 6 are the only
choices available for the 16-site lattice if the constraints
of no-doubly-occupied sites and no net magnetization are
to be met. The corresponding 6 values used for some of
the larger lattice sizes were only approximately the same
as these three values since they had to be altered slightly
to meet these two constraints. In this section we con-
centrate on d-wave order parameters because we want
to compare with QMC calculations which calculate the
d-wave pairing susceptibility.

In Fig. 2(a) we show the VMC results for the d-wave
state energy as a function of g& for systems of 16, 26, and
36 sites and a hole density of 0.125. It is clear that the
lowest energies calculated for the 16- and 26-site lattices
are those corresponding to the normal (@g = 0) state.
The 36-site results also show no conclusive evidence of d-
wave pairing since the minimum of the energy at finite gg
is well within statistical uncertainty. Figure 2(b) shows

Here P~ is the projection onto the N-particle subspace
and PD is the Gutzwiller projection onto the subspace of
no-doubly-occupied sites. uk and vk are the usual BCS
coefIicients for a momentum-dependent gap function and

vg Ag(k)

(k + Q(~2 + 6g (k) 2

where (g = —2t(cos k +cos k„)—p, p is the Fermi energy,
and
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the results of the same calculations performed on the 50-,
64-, 82-, and 100-site lattices. The upward concavity of
the 26- and 50-site energy plots and downward concav-
ity of the 16-, 36-, and 64-site curves indicate that these
small-sized systems are greatly affected by finite-size ef-
fects. Here again there is clearly no finite-gap minimum
in the 50-site results and there is no conclusive evidence
of d-wave pairing outside of statistical noise in the 64-
and 82-site systems. However, the 82-site results do not
show that same downward concavity seen in the plots of
the energies of the other tilted lattices, and this may indi-
cate that the 82-site lattice is large enough or nearly large

enough to suppress the finite-size effect. Indeed it is only
the 100-site lattice which conclusively shows a minimum
ground-state energy corresponding to a variational gap
parameter value of approximately 0.2t. The same VMC
calculations were performed on an even larger lattice of
226 sites, and the results are shown in Fig. 2(c). Again
it is clear that a d-wave state with @g —0.2t is preferred
over the Qg = 0 normal state.

Figures 3(a) and 3(b) show further energy calculations
for 8 0.250 on lattices of 16—64 sites. Figure 3(c) shows
the same calculations for b' 0.375. Here again there is
no evidence of d-wave pairing outside of statistical uncer-

—0.46 ~

I
s —0.48

D WAVE

~

I
~ s

I
~ ~

I
s s s

—0.48
—0.50

—0.50 s ~ ~ ~ I \ s ~ I ~ ~ ~ s I s
s ~ s ~

I
s s s s

I
~ \ s s

I
s s

I . s

I

~ s s s

—0.52
O

&~ -0.54
CD

CD

C4
U

C4

I, . . . I. . . . I. . . . I
s s s s s s s

I
s ~ ~ ~

I

s s s ~

I
s s s ~

—0.52

—0.54

O

~ W

—0.50
CD

CD

~ —0.52

s

I
s ~ ~ s —044

—0,38

—0.40

I
~ s

I
s s ~ ~

I
s s s ~

I
s s

' -g —0.58 0 54, s s ~ ~

I
s ~ ~ s

I
~

I, . . . I

I
~ s s ~

I
\ ~

——0.44

—0.42
0 0.2

s ~ I s ~ I I s s s I ~

0.4 0.6 0.8

@d (units of t)

s ~ ~ ~ I s s s s I s ~

0.2 0.4

gq (units of t)

I ~ s ~ ~ I ~ ~ ~ ~ I 0 46
0.6 0.8 1

~ s ~ ~

I
s s ~ ~

I
~ s s s

- D WAVE (C)
($ = 0.125

~ ~ ~ s

I
~ s

o —0.53

CD

~ W

—0.54
CD

G4

—0.55 s s ~ ~ I ~ s s ~ I ~ s ~

0 0.2 0.4

N = 226-
I s ~ ~ s I s ~ ~

0.6 0.8 1

gq (units of t)

FIG. 2. Shows the calculated energy expectation value vs variational gap parameter @q for b 0.125 on lattice sizes of (a)
16, 26, and 36 sites, (b) 50, 64, 82, and 100 sites, and (c) 226 sites. All ground-state energies in Secs. III and IV are given in
units of t per hole; all gap parameters are in t. Accepted Monte Carlo steps per site range from approximately 50 x 10 for the
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tainty for these small lattice sizes examined. Again, this
supports our conclusion that finite-size eKects are domi-
nant in these systems. Earlier VMC work has shown for
larger lattice sizes that d-wave pairing is still preferred

over the normal state for even larger hole densities,
but clearly that is not the case here for lattice sizes of 64
sites and less.

These results of the d-wave energy calculations on lat-
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FIG. 3. Shows the calculated energy expectation value vs variational gap parameter gg (a) for 6 0.250 and lattice sizes
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tices of various sizes indicate that a minimum system
size of about 100 sites is necessary for d-wave pairing to
overcome finite-size effects. The results further indicate
that the t-J model can support d-wave superconductivity
at that minimum size of 100 sites for a hole density of
around 0.125. The question then arises, do these VMC
results of the existence of superconductivity for certain
parameter values contradict the QMC conclusions of no
d-wave pairing in Hubbard model? We believe our re-
sults are not necessarily at odds with the QMC work
cited above for three reasons. First, the QMC calcu-
lations were done on the one-band positive-U Hubbard
model in the intermediate-coupling regime, typically at
U/t = 4, whereas our VMC investigation was on the t J-
model, a large-U limit of the Hubbard model. Our value
of J/t =

4 corresponds to U/t = 16, but as stressed in
Sec. I, this strong-coupling value is suggested by experi-
ment. A second reason for these differing results between
our work and QMC investigations could simply be due
to the fact that the QMC calculations cited above were
performed at finite temperature T, whereas our VMC
work is restricted to calculating ground-state energies at
T = 0. The QMC calculations become more and more
computationally restricted as the temperature is reduced,
and results are available only for k~T/t ) O. l, where pa-
rameter values, are typically U = 4t, 6 = 0.125, 0.5, and
N = 16, 64. s k~T, /t is certainly less than 0.05 in
high-T, systems, and is probably closer to 0.02.

A third possible reason for the difFering conclusions
of VMC and QMC investigations is the size of the sys-
tems studied. We have shown that at least 100 sites were
needed to conclusively show a preference of d-wave pair-
ing over the normal state in these systems. With our
VMC technique we find that lattice sizes greater than
100 sites are necessary only above this do ground state
energies begin to level off. QMC investigations of su-
perconductivity are usually done on 16-site lattices. We
have not been able to find work on systems larger then 64
sites. We believe there is an inherent problem in study-
ing superconductivity, particularly d-wave superconduc-
tivity, in these smaller systems. Figure 4 shows the 16
allowed k vectors for the 16-site system. Shown above
each k vector is the value Ag(k)/gd. Note that of the 16
values shown for each distinct A, vector, 6 (or 37.5%) have
the value 0, corresponding to node points in the d-wave

gap function. If one concentrates on the Fermi surface,
the situation is even worse, 4 out of 6 (i.e. , 66.7%) of
the states on the Fermi surface have A(k) = 0. For
the 64-site system, only 14 (or 21.9%) of the 64 values
of the d-wave gap function are 0, and this fraction of
d-wave node points continues to decrease as the size of
the system increases, where the increasing number of al-
lowed k vectors better models a continuum of k states as
1V —+ oo. In other words, with so few A: vectors and elec-
tronic states available in the smaller-sized systems, the
d-wave gap function vanishes over a large fraction of the
allowed points in k space. In addition to this problem,
the differences in kinetic energy between neighboring A:

states is so large that a gap would have to overcome quite
a step in kinetic energy to form; i.e., shell effects in mo-
mentum space are very important.

Q o

0

FIG. 4. Shows the 16 allowed k vectors in k space for the
16-site lattice. The black spots indicate the allowed A: vectors,
and the white spots, each corresponding 2' periodically to one
of the 16 allowed A: vectors, are only shown as a guide for the
eye and to balance the figure. Shown above each A: vector is
Aq(k)/gq in units of t. The node lines are shown where the
d-wave gap function, Eq. (12), is zero.

In addition, there is an important differenc between 8-
wave and d-wave superconductivity which arises in finite-
size systems. It is crucial to have a large system if one
wishes to locate the d-wave instability. The linearized
gap equation is

in a finite-size system. Here Vk k is an effective interac-
tion, and the ~„are Matsubara frequencies. A d-wave
solution arises from the part of summation where k and
k' are at or near the Fermi surface, and Vk k is large.
This will be unlikely to occur when there are only 6 k
points on the Fermi surface and at 4 of these A(k) = 0,
as is true on the 16-site system. s-wave solutions can
more easily be found in small systems for short-range in-
teractions. In such a case Uk k = const, A(k) —const,
and all k points contribute. It is not necessary to build
up the kind of constructive interference which d-wave so-
lute. ons require.

In conclusion, our VMC calculations show that d-
wave superconductivity can be supported in the two-
dimensional t Jmodel for squar-e, finite-sized systems as
long as the lattice size is large enough. The d-wave pair-
ing state does conclusively minimize the ground-state en-
ergy for lattice sizes on the order of or greater than 100
sites for a variational gap parameter Qg of 0.2 + O. lt.
Results of calculations done on a 226-site system confirm
that, for b = 0.125, assuming a lattice size of 100 sites was
large enough to "lock into" this gg = 0.2t result. We wish
to point out here that this result is physically reasonable.
As cited in Sec. I, experiment suggests that t —400 rneV
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in YBa2Cus07, which would make Q~ = 80 + 40 meV.
Furthermore, the condensation energy from Fig. 2(c) is
E, = E~(gs = 0) —E~(gs = 0.2t) = 0.005 + 0.002t
per hole, and this would be E, = 2.77 x 10is eV/cms
assuming two Cu02 sites per unit cell and t = 400
meV. Now, a simple estimate of E, = H, iH, 2/8n yields
E, = 1.99 x 10 s eV/cms for the approximate experimen-
tal values of H, » ——100 G and H, 2 ——5 x 105 G. These
values of the condensation energy are certainly in rea-
sonable agreement with one another. Comparison with
the QMC investigations suggests that the contradiction
between the QMC results and our VMC results may be
due to differences of model and limitations of tempera-
ture and lattice size of the QMC study. We believe that
for the restricted task of determining whether there is a
superconducting ground state for the minimal model in
the experimental range of parameters, VMC is superior
to QMC. The latter is restricted to rather high temper-
atures, moderate interaction strength, and small lattice
sizes.

IV. VMC RESULTS AND COMPARISON
OF OTHER PAIRING STATES

In addition to the d-wave calculations presented in the
previous section, further VMC calculations were made
assuming different pairing states in the t-J model. The
purpose of investigating other pairing states was three-
fold. First, we want to find which state best minimized
the energy, thus showing which of the pairing states is the
best candidate ground state of the group. Second, using
the same finite-sized lattices as before, we were interested
in seeing at what system size this best candidate ground
state was able to overcome finite-size effects and minimize
the energy expectation value for some nonzero variational
gap parameter, thus showing a favoring of that pairing
state over the normal state. Third, previous calculations
had indicated that at hole densities 6 ) 10%, mixing of s-
wave and d-wave states might be preferred. 2» The pairing
states investigated are the extended s, s + d, and s + i d
waves. The corresponding gap functions are defined as
follows:

A@s(k)—:@@s(cosk~ + cos k„), (14)
6,+g(k) =—@,(cos k~ + cos k„) + gg(cos k —cos k„),

(»)
4,+,g(k) = @,(cos k~ + cos ky) + if'(cos k~ —cos ky).

(16)

Here Q@s is a variational gap parameter, which varied
from 0.0 to 1.0t for the extended s-wave state just as Qz
was varied for the d-wave state. For the mixed s+ d and
s+i,d states, the parameters g,+g and @,+,~ (both de-
fined as gQ~ + @&2) were varied from 0.0 to 1.0t. In most
calculations we set g, = Qg. The same hole densities
and lattice sizes were used as described in the previous
section.

Figures 5(a), 5(b), and 5(c) show the energy vs gap
parameter calculations for the 16-site lattice at hole den-
sities of 0.125, 0.250, and 0.375, respectively. Included

are the previous d-wave results along with s-, s+ d-, and
s + id-wave calculations. The most striking feature of
these curves is that for the b = 0.125 and 0.250 cases, the
various wave states do not converge to the same normal-
state energies as Q —+ 0. It is expected, as properly
shown in the b = 0.375 case, that as Q —+ 0, the various
gap functions should also go to zero, and the normal-state
energy calculated should be the same for all states tested.
This discrepancy demands some elaboration. It can be
seen in Eq. (11) that there is some ambiguity in how a(k)
is defined when A(k) = 0 and (i, & 0. This problem is
magnified when the gap function vanishes over a large
fraction of the points in k space. This has already been
demonstrated by A~(k) in Fig. 4 for the N = 16 case. As
a result of this arbitrariness in defining a(k) at certain
node points, some of the energy curves shown in Figs.
5(a), 5(b), and 5(c) have differing normal-state limits and
are shifted with respect to one another. It will next be
shown that these discrepancies neither cause qualitative
problems nor persist as the system size is increased and
the fraction of node points decreases.

It turns out that this problem of different normal-state
limits does indeed go away as the size of the lattice in-
creases. Figures 6(a), 6(b), and 6(c) show the energy
vs gap parameter results for a 64-site lattice, assuming
the same parameters used in the 16-site calculations. The
discrepancy of normal-state energies for certain hole den-
sities is still apparent, but it is clea~ that the curves are
converging much better than they did in the 16-site case.
The discrepancy in energies becomes still smaller for even
larger systems, and in fact, this investigation was the first
time we even noticed this particular problem resulting
from the ambiguity of a(k) when A(k) = 0 and (g & 0.
Our previous investigations have been typically done on
lattice sizes of 82 sites or more. Until now, any discrep-
ancies in normal-state (@ ~ 0) calculations have been
within statistical noise.

Similar calculations as those already shown for the 16-
and 64-site systems were done on 26-, 36-, 50-, 82-, and
100-site lattices as well. There are three results impor-
tant to this investigation which are presented in the fol-
lowing remarks. First, the s+ id energy calculations are
consistently lower than those of the pure s and the pure
d waves for most hole densities and lattice sizes inves-
tigated. This is consistent with earlier VMC calcula-
tions which showed that for hole densities above 0.10,
the s+ id-wave state was preferred over the d-wave state,
and the d-wave state was preferred for b & 0.10.' The
second result of note from these various wave-state VMC
calculations is that the s+ id-wave calculations show a
conclusive preference of a superconductive pairing state
over the normal state for even smaller systems than the
100-site lattice result for the d-wave state. Figures 7(a)
and 7(b) show the ground-state energy vs variational gap
parameter results for the s+id wave for all the finite sizes
used and at a hole density of approximately 0.125. For
the s + id wave, the minimum for the 36-site calcula-
tions corresponds to a gap parameter g,+,~ of 0.2 + O. lt,
where comparison with Fig. 2(a) shows that at 36 sites,
the minimum is at Qg = 0 for d-wave states. Figure 7(c)
shows the s+id-wave results for 6 = 0.25. Here it can be
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FIG. 5. Shows the calculated energy expectation value vs variational gap parameters for the s-wave (dotted line) the
d-wave (dashed line), the s+ d (dot-dashed line), and the s+id states (solid line), where g,+q and Q,+,q = A/2 + A&2. These
calculations were done on a 16-site lattice with (a) b = 0.125, (b) 6=0.250, and (c) 8 = 0.375. 'Note in (c) that all four states
converge to the same normal-state energy as their respective g's ~ 0, whereas there are different limits for (a) and (b). For
the s+ d and s+id waves Q, = @q.
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FIG. 6. Shows the calculated energy expectation value vs variational gap parameters for the s-wave (dotted line), the
d-wave (dashed line), the s + d (dot-dashed line), and the s+id states (solid line), where g,+q and vP, +,q = gg~ + A&2. These
calculations were done on the 64-site lattice for (a) 6 = 0.125, (b) 6 = 0.250, and (c) 6 = 0.375. Note the varying Q ~ 0 limits
for each hole density 6 are much closer than in the 16-site cases of Fig. 5.
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for any of the lattice sizes investigated, the s+ id state is
preferred at this size of 64 sites (and above). According
to our VMC calculations, the s+ id state not only is pre-
ferred over the d-wave state at these hole densities, but it
is also able to overcome finite-size effects at even smaller
lattice sizes than the d-wave state. This is in agreement
with the discussion of the previous section.

The third and final result of this investigation is that,
for the cases where there were no normal-state discrep-
ancies in energies for a given configuration, or where such
discrepancies were negligible, the s + d- and 8+ id-wave
results were essentially identical. Further study of this
result showed no differences in energy calculations over
a wide range of parameters. Figure 8(a) shows one such
study, where the results of VMC energy calculations for a
mixed state of changing phase are presented. A 122-site
system with b = 0.30 was used. Here, the gap function
was assumed to be

A~(k):—A~g(k) + e'~Ay(k), (17)

where A@s(k) and Ag(k) are defined in Eqs. (14) and
(12), respectively. The variational gap parameters were

both fixed at 0.106t such that gz ——gQ&~& + @&2 was
fixed at 0.15t, and p was varied from 0 (corresponding to
the s+ d wave) to $ (s+id wave). Clearly, there is es-
sentially no variation in these energy calculations shown
in Fig. 8(a). Therefore, there are no distinguishable dif-
ferences between 8+ d-, s+id-, and s+ e'&d-wave energy
calculations in this VMC method. For the Ginzburg-
Landau theory of Sec. II, this implies that P& = 0 in Eq.
(2).

Next we study the effect of the relative weighting
of the two variational gap parameters for the s + id
state. Figure 8(b) shows the calculated energy expec-
tation value for the s+ id wave on a 122-site lattice with
b —0.30. Here, g, and Qg were varied such that g,+,d =
gg, + gz ——0.15k. It is apparent that the lowest en-
ergy calculated indeed corresponds to the Q, = Qg as-
sumption made throughout this entire small-lattice-size
investigation. This corresponds to Landau parameters
defined in Sec. II which satisfy ~P, /n, T,

~

—~Pd/adTd~
and P,g & 2P„P,d, & 2Pd. Surprisingly, however, as long
as neither Q, nor Qg were set too small (which would
correspond to a more d-wave-like and a more 8-wave-like
state, respectively), the energy calculated changed very
little.

In final summary of all the VMC numerical calcula-
tions, it has been shown that the s + id state does in-
deed stand as a strong candidate superconducting ground
state for the parameters investigated, being superior to
the d wave at the hole densities used throughout this
investigation. The main results of this study are again
listed here in brief.

(1) The mixed s + i,d and s+ d waves are energetically
preferred over the s and d waves for the hole densities
studied (b = 0.125, 0.250, and 0.375). This is consistent
with an earlier study which showed d-wave pairing at
6 ( 0.1.

(2) The s+id wave is able to overcome finite-size eKects
at smaller lattice sizes than the d wave.

(3) The energy of the s+ e'~d state is almost indepen-
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FIG. 8. (a) Shows the calculated energy expectation value
vs variational phase parameter p for the s+ e'~d wave. y = 0
corresponds to an s+ d wave and y =

2 to an s+ id wave,

@~ = gg~ + @&2, where g, = Qq = 0.160t. (b) Shows calcu-
lated energy expectation value vs variational gap parameters
g, and gz for the s+id wave Here, g,+,s =. gg~+ gz2 ——

0.15t. gs = 0 corresponds to a pure s-wave state, g, = 0 to
a pure d-wave state. Calculations for both (a) and (b) were
done on a 122-site lattice with 6 = 0.30.

dent of the relative phase p.
(4) Small variation in the weighting of the s- and d

wave parts of the s + id wave causes little change in the
s + id-wave energy calculations. This is not the case if
either the 8- or d-wave parts are allowed to approach zero.

(5) Ambiguity in how a(k) is defined for A(k) = 0
and (i, & 0 can result in discrepancies in normal-state

(Q —+ 0) energy limits. For the smaller system sizes these
discrepancies can be quite large due to the large fraction
of node points where A(k) vanishes. For larger systems,
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these differences become negligible.

(6) The three-site term of Eq. (1) is very important
for determining the ground state, and tends to favor the
s-wave component.

V. DENSITY OF STATES, PENETRATION
DEPTH

We turn now to calculation of experimentally mea-
surable properties of the s + id state. These generally
involve measurements at Rnite temperatures and finite
frequencies. Such quantities are currently beyond the
range of the VMC method. Accordingly, we perform
the simplest calculations possible (random-phase approx-
imation) on a simple tight-binding model of electron dy-
namics. There is no guarantee that these calculations,
which essentially use weak-coupling methods, are consis-
tent with the strong-coupling ideas of Secs. III and IV.
There simply appears to be no alternative at the present
time.

The density of states (DOS) is one of the most im-
portant quantities in condensed-matter physics because
it is related to many thermodynamic as well as transport
properties. The DOS of a superconducting state can be
measured directly by the tunneling experiment. Theo-
retically, the DOS is proportional to the imaginary part
of the single-particle Green's function,

J I I I

]

I

(a)
0.04

I I I

]

I

0.03

0.02

0.01

ooo— —0.2

I I I

]
I

0 0.2
E/t.

0.4

the asymptotic low-temperature behavior —whether it is
exponential or power law one can tell if there are any
nodes in the gap. Apparently among s-wave, d-wave,
and s+ id states, both the s-wave and s+ id states have
nodeless gap functions and the penetration depth should
have an exponential temperature dependence in the low-
temperature region, while the d-wave state predicts a lin-
ear temperature dependence in the low Tre-gion. We
emphasize that above predictions are only valid in the
absence of impurities (or disorder).

1
D(~) = ——Im) G(p, u)).

7r

For a superconducting state,

(19)

0,025

0.020

0.015

0.010

(b)

Here E2 = [A(p)[ +g&, (~ = &(p) —p, && = &(I+(&/Er ),
and vz = ~ (1 —(„/E„) are all the standard notations. I'
is the broadening due to the inelastic scattering, which
is twice the inverse quasiparticle lifetime.

In Figs. 9(a), 9(b), and 9(c) we show the calculated
DOS of the s-wave [b,(k) = g, = const], d-wave [Eq.
(12)], and s+ id states,

0.005

0.000 —0.2

I I I

]
I

0.2
E/t.

A(k) = g, + i@g(cos k a —cos k„a). (20)
0.03

(c)

The DOS of the s-wave state is (E @,) ~ div—ergent at
E = g, +0 and is zero at E ( @, in the limit I' ~ 0, while
the DOS of the d-wave state is logarithmically divergent
at the maximum gap, remains Gnite inside the maximum
gap, and goes to zero linearly as E ~ 0. The DOS of the
s+id state is logarithmically divergent at the maximum
gap, has a kink on the minimum gap, and becomes zero
inside the minimum gap @,.

As we have already seen, one of the obvious difFerences
between the s-wave and the d-wave states is whether
there are any nodes in the gap function. This will afFect
the low-temperature behavior of many physical quan-
tities. One of them is the electromagnetic penetration
depth. The penetration depth measurement is in princi-
ple a clean probe of the superconducting state because it
directly measures the superHuid density. By looking at

0.02

0.01

o.oo —0.2 0 0.2
E/t

0.4

FIG. 9. Shows the calculated DOS of (a) s-wave [tg, (0) =
1.76kgyT, ], (b) d-wave [Qg(0) = 1 5kgyT, ], and (c) s+id states
[g, (0) = Qq(0) = 1.5k~T, ] for I' = 0.2k~T, (dashed line) and
I' = 0.01k~T, (solid line), respectively. The parameters used
in the calculation are t = 20A:~T„U = 2t.



g. P. LI, B.E. C. KOLTENBAH, AND ROBERT JOYNT

Experimentally, the penetration depth can be mea-
sured in several ways: magnetization of thin crystals,
muon spin rotation (@SR), kinetic inductance, phase ve-
locity of a microwave signal propagating along a thin
film, and others. Earlier, some groups have used the
s-wave state to interpret their data. Later analy-
sis of the surface impedance data of Fiory et al. by
Annett, Goldenfeld, and Renn found that 6Aab(T) =
A~b(T) —A~b(0) oc T in epitaxial YBaqCus07 films.

More recently, Pond et a/. found that their phase ve-
locity data can be fit by both the s-wave pairing and the
empirical form

(21)

0.015

0.010

0.005

0.000
0
E!t

The latter seems to give a little bit better fit. This em-
pirical form was also found to be in good agreement with
the experimental data of Anlage et at.ss who measure the
phase velocity of a microwave signal propagating along a
thin film of a high-T~ superconductor.

To summarize the current status, recent experiments
show that the temperature dependence of the magnetic
penetration depth is not consistent with a simple scaled
weak-coupling BCS temperature dependence. The ex-
perimental data in the low-temperature region (0.1T, &
T & 0.5T~) can be fit by either an anisotropic gap func-
tion with a small but nonzero minimum gap or a power-
law T2 dependence. The former is in agreement with
the s+ id gap function, while the latter would indicate
nodes in the gap function. The question remains whether
the experiments are in the asymptotic low-temperature
regime. If the T~ dependence is confirmed to be the true
low-temperature behavior, it certainly lends support to
the gapless superconducting order parameter, but it is
not a straightforward confirmation for the d-wave case,
at least not in the clean limit where the d wave pre-
dicts a linear T dependence. Note that the clean limit is
not an unreasonable limit for high-T, materials because
of their short coherence length. Recently, Prohammer
and Carbotte studied the eEect of impurities on the
penetration depth in d-wave superconductors. They find
that by introducing so-called unitary scattering, one can
produce the T near T = 0 in the d-wave case. They
also show that Born approximation of impurity scatter-
ing does not change the linear T behavior of the London
penetration depth in d-wave superconductors. But there
is a question whether the unitary approximation can be
applied to high-T, superconductors. Unlike in the heavy-
fermion systems where unitary scattering is proposed to
be realized due to the underlying Kondo lattice, the as-
sumption of unitary scattering in high-T, superconduc-
tors is less justified.

Experimentally the angular dependence of the gap
may be measured rather directly by angle-resolved
photoemission. In particular recent measurements in
BisSrzCaCu2OS show a gap 6(10) = 24+ 3 meU along
the k axis and a gap A(ll) = 18 + 3 meV along the
k = k„ line, so that 6(10)/6(11) —1.33.ss The s+ id
state proposed here [Eq. (20), Q, = itiq] would give
6(10)/E(11) = 1.92 at 6 = 0.30.

FIG. 10. Shows the calculated DOS of an extended s-wave
state for doping 6' = 0.24 (dashed line) and b = 0.14 (solid
line), respectively. The parameters used in the calculation are
t = 20kaT„ t2 = 0.15t) U = 2t, gas(0) = 5 OksT, .

eg = —2t(eos k~ + cos kii) —4t2 eos k~ cos kii. (22)

In Fig. 10, we show the DOS of the extended s-wave
state at 14% and 24Fo doping. We can see the DOS of
some extended s-wave state is very similar to that of
the s + id state, while the other looks like a gapless @-

wave state. As we discussed earlier in Sec. II, the most
nontrivial property of the d-wave state is that the gap
function changes sign when rotated by 90'. This property
is not manifest in the DOS because it depends on the
square of the gap function only. There are, however,
some other physical quantities, such as the nuclear spin-
lattice relaxation time 1/Ti, which are sensitive to the
phase information in the gap function. One can use those
properties to distinguish extended s-wave, d-wave, and
s+ id states. We shall discuss that in the next section.

VI. NUCLEAR MAGNETIC RESONANCE (NMR)

In this section we calculate the nuclear spin-lattice re-
laxation time 1/Ti and Knight shift of YBasCusOq be-
low the critical temperature using various pairing states
including s-wave, d-wave, and s + id states and com-
pare them with the currently available experimental data.
We concentrate on YBasCusOr because that is where
most experimental studies were done. 6 Our calcula-
tion can be easily extended to other high-T, supercon-
ductors because the essential ingredient is the Cu02
plane which is the trademark of high-T, superconduc-

Finally we comment on the extended s-wave state.
We have used the tight-binding single-particle dispersion
eg = —2t(cos k2; +cos k„) in our discussion above. In this
ease, extended s-wave A(k) = @~s(cosk~ + eosk„) is
essentially equivalent to the usual isotropic s-wave state
A(k) = g, = const because the extended s-wave state
is also constant on the Fermi surface. To make the ex-
tended s-wave state anisotropic, one has to choose some
dispersion relation other than the tight-binding one, for
example, by including next-nearest-neighbor hopping,
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tors. Theoretically, the normal-state NMR data have
been studied by Mila and Rice (MR), Millis, Monien,
and Pines (MMP), ro Bulut et ai, s7 and others. ss Monien
and Pines, Lu, Bulut and Scalapino have also tried
to fit the superconducting-state NMR data using either
s-wave or d-wave pairing. Following MR and MMP, we
use the electron-nuclei coupling Hamiltonian of the Cu02
plane,

H'"="I„A S„+B) "I„.S„+.

+C) '"I„.S„,.. (23)

Here again we use the Zhang-Rice one-band model of the
Cu02 plane and assume that the spins reside on the Cu
sites. s ~ and r' label the four unit cells to Cu site n and
the two nearest Cu sites of the planar 0, respectively. A,
B, and C are the hyperfine coupling constants. A is the
direct hyperfine tensor.

The nuclear spin-lattice (also called longitudinal) re-
laxation time 1/Tr is related to the imaginary part of
the susceptibility y(q, w), 4s

ratio p„. Using the above electron-nuclei coupling Hamil-
tonian, one finds that on the Cu(2) site,

G (q) = [A, + 2B(cosq + cosq&)]

+ [A + 2B(cos q + cos q„)], (25)

G~(q) = 2[A» + 2B(cos q~ + cos q&)] (26)

for the magnetic field parallel to the a and c axes, respec-
tively. On the O(2, 3) site,

Go(q) = 4C' cos'(qy, ./2). (27)

This form of G(q) has been used successfully by MR and
MMP to calculate the NMR properties of YBa2Cu307
above T,. In the rest of the paper, we adapt the pa-
rarneter values A» ——B = —0.25A~~ from MR's and
MMP's calculation on the normal state of YBaqCu307.

We calculate y(q, ~) using the random-phase approx-
imation (RPA), s

( )
Xo q~~

1 —UXo(q, ~) (28)

Here U is the effective Hubbard interaction and yo is the
"noninteracting" spin susceptibility of a superconducting
state ("bare bubbles" ),

T, = (p„k~T/2prr) lim ) G(q)lmy(q, ~)/~. (24)

Here G(q) is the hyperfine coupling between the elec-
tronic spin and the nuclear spin which has gyromagnetic

yp(q, ~) = ) [1 —n~(E„+) —n~(E„)]Fr
P

+[nF(E„)—np(Ep )]F2,

where

(29)

(& g~ +&(p+)&*(p-)l 1

4 E„+E„p u+ E„+ + E„+iI' cu —E~+ —E„+i,I'

E2= — 1+ "+"(p, (p + &(p+)&*(p-)
~ —z„,+z„+ir

Here E~ = ~A(p) ~2+(, (~ = e(p) —p, p~ = pkq/2, and
nF(E) is the Fermi distribution function. The Fr term
corresponds to pair breaking and forming, and the F2
term corresponds to the scattering of thermally excited
(Bogoliubov) quasiparticles. Although the F2 term usu-
ally dominates the spin dynamics when the pair-breaking
scattering rate I' is small, the Fr term is not negligible
for larger I'. We always keep both the Fj and Fz terms
in our calculation.

The temperature dependence of the scattering rate
I'(T) is not clear at the present stage. We assume a
simple form I'(T) = I'p + I' ( r/ T)T" with 1 p = 0.1T„
I'q ——0.4T„and n = 2 in our calculation. We have
tried various parameter values and find that the usage of
different parameter values with the constraint that I' at
T = T, does not exceed 0.5T, does not change our results
in any qualitative way. To calculate 1/Tr, one must also

know the temperature dependence of the gap function. In
our calculation, we use the standard approximate form

g, (T) = g, (0) tanh(1. 74 ~& —1), which fits the numer-

ical solution of the weak-coupling BCS gap equation very
well. We also use a similar formula for gd(T) for simplic-
ity. A more accurate form of Q~(T) can be obtained by
solving the d-wave gap equation.

In Fig. 11(a) we show the calculated 1/Tr of Cu(2)
using s-wave, d-wave, and s + id states. We also plot
the experimental result of Takigawa, Smith, and Hults
for comparison. 44 Figure ll(b) is the calculated 1/Tr of
O(2,3) and the experimental data. 4s 4s We use a tight-
binding single-particle dispersion e(p) = —2t(cos p +
cosy„), where t is the nearest-neighbor hopping integral.
We choose U = 2t and the filling factor n=0.86 following
Bulut and Scalapino. We have tried various parameter
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values g, (T = 0) and Qq(T = 0) in our calculation and
the parameter values we used in Fig. 11 represent one of
the best choices as far as 6tting the relaxation rate of
Cu(2) and O(2,3) is concerned. One can see from Fig.
11 that for a reasonable scattering rate I' around 0.5T„
the Hebel-Slichter peak is absent even for an s-wave state.
So the absence of the coherent peak in the 1/Ti rneasure-
ment is not necessarily against the conventional s-wave
pairing. 47

The temperature dependence of the anisotropy ratio
of Cu(2), (I/Ti)~/(I/Ti)„has a strange behavior be-
low T,: lt decreases erst as one lowers the temperature,
and then turns around near T = 0.8T„and starts to in-
crease as the temperature is lowered further (cf. Fig. 12).
In Fig. 12(a), we plot the calculated anisotropy ratio of
Cu(2), (I/Ti)~/(1/Ti)„as a function of temperature for
s-wave pairing states. The experimental result of Taki-
gawa, Smith, and Hults 4 is also shown for comparison.
We can see that the s-wave state fails to produce the up-
turn in the low-temperature region of the experimental
data. 40 Figure 12(b) shows calculated anisotropy ratio
for the d-wave and the s+ id states; we find that both
of them agree with the experiment qualitatively. This

qualitative feature of the calculation is independent of
the choice of Q, (0) and @g(0) within a reasonable range.
The reason is that (1/Ti)~ and (1/Ti), have different
spectral weights G(q) for different momentum transfer
q. For s-wave states, the coherence factor (of the F2
term)

(&+&(&+&(p+ q) &"(r )c p, q =1+
IJ+9 'JJ

is almost independent of q when p is near the Fermi sur-
face and contributes equally to (1/Ti)~ and (1/Ti), .
For d-wave and s + id states, on the other hand, the co-
herence factor does depend on q, varying from 2 for small
q to less than 1 for some large q. This q dependence of
the coherence factor, together with the difference in spec-
tral weight of (1/Ti) and (1/Ti)„ is responsible for the
temperature dependence of the anisotropy ratio observed
in the experiment.

Next we consider the ratio of the relaxation rate of
Cu(2) and O(2, 3), (1/Ti), /(1/Ti)o, which provides yet
another test for possible theories. In Fig. 13 we show
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FIG 11. Shows .the calculated 1/Ti at (a) Cu(2) aiid
(b) O(2,3) as a function of temperature for s-wave [@,(0) =
2 5ksT„dashed .line], d wave [@q(0)-= 1 SksT, dotted lin. e],
and s+ id states [@,(0) = @s(0) = 1 5ksT„solid liiie]. . Here
1/Ti is normalized to its value at T = T, . The parameters
used in the calculation are t = 20A:~T, U = 2t, and 6 = 0.14.
The open circles are experimental NMR data (Refs. 44—46).

FIG. 12. (a) Shows the calculated temperature depen-
dence of anisotropy ratio of Cu(2) for the s-wave state with
g, = 2.5ksT, (dashed line) and @, = I 76ksT, (solid line. ),
respectively. The other parameters are the same as in Fig. 11.
The points are the experimental data of Takigawa, Smith, and
Hults (Ref. 44). The asterisks represent (1/Ti), data taken by
NQR and (1/Ti), data taken by NMR in an e~ternal magnetic
field of 0 = 0.44 T. The open circle represent data taken by
NMR in an external magnetic field of H = 0.44 T. (b) Shows
the calculated temperature dependence of anisotropy ratio of
Cu(2) for d-wave (dashed line), and s+id states (solid line).
The parameters are the same as in Fig. 11.
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FIG. 13. Shows the calculated temperature dependence
of the ratio of nuclear relaxation rate of Cu(2) (H [[ c axis)
and O(2,3) for s-wave (dashed line), d-wave (dotted line), and
a + id states (solid line). Here the ratio is normalized to its
value at T = T, . The parameters are the same as in Fig. 11.
The points are the experimental NMR data (Refs. 45 and 46).

FIG. 14. Shows the calculated Knight shift as a function
of temperature for s-wave (dashed line), d-wave (dotted line),
and s+ id states (solid line). The parameters are the same as
in Fig. 11. The points are experimental result of Takigawa et
al. (Refs. 46 and 49) on O(2,3) and Barrett et aL (Ref. 50)
on Cu(2).

the calculated temperature dependence of the ratio of
(1/Ti), of Cu(2) and (1/Ti)o of oxygen O(2, 3) for vari-
ous pairing states. We find that neither the s-wave nor d-
wave state is in agreement with the experiment, and only
the s+ id state can fit the experimental data. Again we
emphasize that this conclusion is a qualitative feature of
the calculation and is independent of the choice of g, (0)
and Qg(0).

Next we calculate the Knight shift which is propor-
tional to the long-wavelength static susceptibility, 4s

(30)

Again we fit the experimental data of Takigawa et al 4s 4s.
and Barrett et al.5 using s-wave, d-wave, and s + id
states. A typical calculated Knight shift as a function
of temperature is shown in Fig. 14 together with the ex-
perimental result. We find that the Knight shift can be
fitted by either s-wave or s+ id states. It is very difBcult
to fit the Knight shift data with a pure d-wave state, es-
pecially in the low-temperature region where the Knight
shift depends linearly on the temperature T for a d-wave
state due to the nodes on the Fermi surface, while the
experimental data seem to be quite flat in the low-T re-
gion.

To summarize the NMR results, we find that al-
though one can eliminate the Hebel-Slichter peak for
an s-wave pairing state with a large scattering rate I',
the s-wave state fails to explain the temperature depen-
dence of the anisotropy ratio (1/Ti)~/(1/Ti), of Cu(2).
Both d-wave and s + id states, however, can explain
the (1/Ti) /(1/Ti), data qualitatively. The Knight-shift
data, on the other hand, seem to suggest a nodeless gap
function, which is inconsistent with d-wave pairing. If
one looks at the overall experimental situation, only the
s + id state seems able to fit both the Knight-shift and

1/Ti measurements. Our conclusion is further supported
by a special set of experimental data, namely, the ratio of
relaxation rates of Cu(2) (H ~~

c axis) and O(2, 3) nuclei,
(1/Ti), /(1/Ti) o, which can be fit by neither a s-wave nor
d-wave state. Only the s+ id state can give a reasonable
fit to the (1/Ti), /(1/Ti)o data.

We have also studied the effect of the shape of the
Fermi surface (FS) on 1/Ti. It has been suggested
by Zha, Si, and Levin based on neutron-scattering
experiments and band-structure calculations that the
FS of Laq Sr Cu04 is quite different from that of
YBa2Cu307 ~ The FS of La2 ~Sr~Cu04 is more like
the FS of a simple tight-binding model on a 2D square
lattice, while the FS of YBa2Cu307 is rotated by 45' rela-
tive to the FS of Lag Sr Cu04. The FS of YBagCu307
mapped out by photoemission studies is in agreement
with band-structure calculations and confirms the 45'
rotated FS.s2 We have calculated 1/Ti for various pair-
ing states using the single-particle dispersion of Eq. (22)
with t2 ———0.5t which gives a 45 -rotated FS approxi-
mately. We find that the change of FS shape has a quite
dramatic effect on 1/Ti. In Fig. 15 we show the cal-
culated temperature dependence of the anisotropy ratio
of Cu(2), (1/Ti)~/(1/Ti)„ for various pairing states, in-
cluding the Bi d wave state [E-q. (12)], the Bz d wave-
state [A(k) = Qg sin k~ sin k„], and the mixed states of s
waves (Ai) with Bi and Bz d waves. We can see that
none of them is in agreement with the experiment qual-
itatively. Obviously a 45'-rotated Fermi surface with a
B~ d-wave state is not equivalent with the unrotated FS
with a Bi d-wave state because the hyperfine coupling
G(q) has fixed the coordinate system. We are currently
working on the question of whether the (1/Ti) /(1/Ti),
data of YBa2Cu307 can be understood with a more re-
alistic FS, i.e. , a 45 -rotated FS, in the framework of the
one-band theory of Zhang and Rice and the results will
be published in a future publication.
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FIG. 15. Shows the calculated temperature dependence of
anisotropy ratio of Cu(2) for the Bz d-wave (solid line), the
Bq d-wave (dashed line), the Aq + iBq (dot-dashed line), and
the Ay + iB2 states (dotted line) using the 45 -rotated Fermi
surface. Here Aq is the s-wave state. The parameters used
are t = 20k~T, t2 ———0.5t, U = 2.25t, and the hole doping
6 = 0.2.

VII. DISCUSSION

The purpose of this paper has been to examine the
question of which superconductivity state is the ground
state of the high-T, materials. Early measurements
of the penetration depth supported the s-wave picture,
though measurements of this quantity at low tempera-
tures (T/T, ( 0.1) had rather large errors. 2s Knight-shift
measurements also appeared to support the s wave pic--
ture, being nearly temperature independent at low tem-
perature. Since most conventional theories gives rise to
s-wave states, this situation seemed satisfactory from a
theoretical point of view as well. At the same time, there
were hints of gap anisotropy in Raman-scattering exper-
iments, while difficult-to-evaluate tunneling and optical
data appeared to show a softer gap than in conventional
low-T, materials.

The nuclear relaxation rate data for the various nu-
clei in YBa2Cus07 have changed this situation consider-
ably. These data have very detailed temperature depen-
dences which strongly constrain theory, Lu demonstrated
that they are incompatible with s-wave theory and de-
mand momentum-dependent coherence factors for their
explanation. Bulut and Scalapino analyzed a number of
experiments to show that d-wave coherence could give a
rather comprehensive explanation of these data. In this
paper, we have used a similar computational method to
show that the s+ id state can improve the agreement of
theory and experiment. This is particularly true of the
Knight shiR, whose temperature dependence is well de-
scribed as activated in the low-temperature region. Sim-

ilar success is found for the s+ id state in describing
the temperature dependence of the penetration depth.
The weak-coupling methods used in these calculations
do not seem entirely appropriate to us; they are suffi-
cient to establish, however, that momentum dependence
of the coherence factors and probably also a hard gap are
necessary to achieve qualitative agreement with experi-
ment. The s + id state has these features. In addition
it has roughly the right amount of anisotropy under 45'
in-plane rotations to explain angle-resolved photoemis-
sion experiments. These results are the best argument
against pure d-wave pairing which currently exist, The
d-wave state must de6nitely have nodes.

In the theoretical side, s-wave pairing is predicted by
calculations starting from marginal Fermi-liquid theory
as well as theories based on conventional ideas (phonons,
etc.), while d-wave pairing follows from spin fluctuation
theories using a phenomenological interaction. We have
shown here that the s+id (or possibly s+d) state follows
from the t Jmode-l, which probably describes the low-
lying energetics well. Our method is variational. This
means that we can never exclude the possibility that a
better state exists. Extensive efforts along these lines
have convinced us that obvious candidates do not work.
The rough agreement of the calculated and observed con-
densation energies lends further support to this conclu-
sion. Finite temperature calculations on the Hubbard
model have tended not to show superconductivity. Our
belief is that the rather complex momentum-space struc-
ture of unconventional superconductivity is difficult to
achieve in small systems. We have presented numerical
evidence to support this argument.

Rote added in proof. Recently, a negative result for cir-
cular dichroism in YBa2Cus07 has been obtained [T. W.
Lawrence, A. Szoke, and R. B.Laughlin, Phys. Rev. Lett.
69, 1439 (1992)]. This is consistent with s + id singlet
symmetry, since all singlet states give no signal in this ex-
periment, in spite of the fact that the s+id singlet state
breaks the time reversal symmetry formally [Q. P. Li and
R. Joynt, Phys. Rev. B 44, 4720 (1991)].Evidence from
angle-resolved photoemission for gap anisotropy, consis-
tent with d or s + id symmetry, has been obtained by Z.
X. Shen et al. [Phys. Rev. Lett. 70, 1553 (1993)].
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