
PHYSICAL REVIEW B VOLUME 48, NUMBER 7 15 AUGUST 1993-I

&round-state configurations of the one-dimensional Falicov-Kimhaii modei

Christian Gruber

Joel L. Lebowitz and Nicolas Macris
Department ofMathematics and Physics, Rutgers Uniuersity, New Brunswick, New Jersey 08903

(Received 28 December 1992)

We consider the one-dimensional Falicov-Kimball lattice model as well as a continuum model, where
the attractive potential between the electrons and the nuclei is a 6 function, with an equal number 1V of
classical "nuclei" and fermion "electrons. " We find the exact leading behavior of the ground-state ener-

gy as a function of U for U) U, . The error term is rigorously estimated. For fixed N the system forms
"atoms" which have an effective repulsion between them. From this we argue that when N becomes
infinite the ground-state configurations of the nuclei should be periodic. The low-temperature structure
of the model is also discussed.

I. INTRODUCTION

The model discussed in this paper was considered in
Refs. 1 and 2 as a mathematical simplification of the
Hubbard model. It was introduced again by Falicov and
Kimball (FK) in a different physical situation, namely to
describe semiconductor-metal transitions and to study
ordering in mixed valence systems. ' It can also be con-
sidered, as pointed out by Kennedy and Lieb, as an ex-
tremely simplified model of real matter consisting of nu-
clei and electrons. The simplifications are the following.
The nuclei are treated as classical particles occupying the
sites of a lattice Z . The Coulombic repulsion between
them is replaced by an on-site hard-core potential, i.e., a
lattice site is empty or occupied by at most one nucleus.
For the electrons, one retains the quantum kinetic ener-

gy, which is in this context just the lattice Laplacian, as
well as the Fermi statistics. Apart from the effect of the
Fermi statistics, which prevents them from being in the
same state, the electrons do not interact. Their Coulom-
bic repulsion is thus partially taken into account by an
effective repulsive potential. In the same spirit, the
electron-nucleus interaction is modeled by an on-site at-
tractive potential.

Despite the simplifications, the FK model can provide
some insight into the problem of the formation of atoms
and of crystals in real matter. In particular by tracing
out the electron coordinates, one obtains effective interac-
tions between the nuclei, which determine the structure
of the system. Indeed, it has been proved, in some cases,
that at low temperatures the nuclei arrange themselves
on a periodic sublattice of Z". ' For this to happen, it is
crucial for the electrons to be fermions. Indeed, if they
were bosons the nuclei would clump together. In fact,
since in this model there is no a priori interaction between
the nuclei, except for the hard core, the crystallization
comes about from the effective potential between nuclei
induced by the electrons. This produces an attraction if
the wave function of a single electron is localized over
several lattice sites. On the other hand, the Fermi statis-

ties act in the opposite direction (unless the density of
electrons is much less then the density of nuclei, a case
we shall not consider here). In the case of Bose statistics,
the effective potential is always attractive, so that the nu-
clei always clump together.

Let us define the model and fix our notation. For a
given configuration of M nuclei in a region A of a d-
dimensional simple cubic lattice, A C Z", containing

~

A
~

sites, the single electron Hamiltonian, is given by a
~
A

~

X
~
A matrix with entries

h
~ [ I n„ I j =( —

5~, J~, +2d5, , ) —Un, 5, ~,
where i,j&A denote lattice sites, n; =1,0 is the occupa-
tion number of the nuclei, g, ~~n; =

M, and U is the
strength of the attractive on-site potential. The hopping
constant (related to the inverse mass of the electron) in
front of the kinetic-energy term has been set equal to 1.
We shall usually take A to be a simple cube and consider
free or periodic boundary conditions. The ground-state
energy of X electrons in the presence of a fixed
configuration n; of nuclei is given by

(1.2)

where e
&

( I n )Iez( nI)I. e&( I Jn) are the
lowest N eigenvalues of (1.1). We are interested in the
configurations of nuclei which minimize (1.2) under the
condition that the number of nuclei is equal to the num-
ber of electrons. This neutral case will be the only case
considered in this paper.

The half-filled case, where the electronic and nuclear
densities are both —,', was first discussed in Refs. 5 and 6,
where it was shown that there are two configurations of
nuclei minimizing (1.2). These are the two possible chess-
board configurations on the cubic lattice (the results also
cover more general bipartite lattices). Later it was ar-
gued in Ref. 7 that, in the case of a one-dimensional lat-
tice, if the density is p/q, with p and q relative primes,
the ground-state configuration has period q, and within
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each period the p nuclei tend to occupy a configuration
which is "as homogeneous as possible. " It was further-
more conjectured there that this should hold for all U
and all densities. A partial proof of the conjecture was
given in Ref. 8 for the case U )U;„(q), with a
U;„(q)~ ~, when q~ ~. In this paper, we derive a
formula for the ground-state energy in one dimension and
control the error term for U & U„U, independent of the
density, in a uniform way with respect to the
configuration of the nuclei. In particular we show that a
finite number of particles on the infinite lattice will form
atoms interacting by a repulsive, exponentially decaying,
two-body nearest-neighbor potential. Our results thus
provide support for the claim of Ref. 7 that the nuclear
configuration should be homogeneous for any density, at
least as long as U & U, .

The results for the ground state enable us to draw some
conclusions about the low-temperature structure of the
one-dimensional model. Calling p„,p, the chemical po-
tentials of the nuclei and electrons, respectively, the
grand-canonical partition function, after one traces out
the electronic degrees of freedom, has the form

nl, =0, 1

exp Pp„g nk+tr ln[1+e '
]

—P(~(In„I)—p, )

(1.3)

where h [Inkj] is the single-electron Hamiltonian with
matrix elements (1.1). In the d= 1 case considered here,
A is just a line segment of length ~A~. Expression (1.3)
can be viewed as the partition function of a purely classi-
cal system of "c particles, " the probabilities of
configurations of the c particles on the lattice being deter-
mined by the complicated weight in the exponent which
can be thought of as an effective potential energy depend-
ing on the temperature and chemical potential. Our in-
terest is in finding the form of this effective potential in
the limit ~A~ ~ ao. At the same time, we want to know
whether it is meaningful to think of the c particles as ei-
ther bound atoms (or molecules), i.e., bound states of
electrons and nuclei, or as ionized atoms. We argue that
if the chemical potentials are such that the system is neu-
tral (equal densities of electrons and nuclei) and the tem-
perature is low enough, then the partition function
reduces approximately to that of a lattice gas of atoms in-
teracting with the effective nearest-neighbor potential
found in the ground state. At higher temperatures this
picture is obviously wrong, but the characterization of
the transition (which is presumably not sharp) between
low and high temperatures remains an open problem.
We note that for dimensions greater than or equal to 2,
the same questions are relevant but the analysis will be
more complicated because of the additional features of
the Ising-like transition, which has been proven to exist
for the half-filled case ' and also near half-filling.

The paper is organized as follows. In Sec. II, the main
result is formulated and discussed for the FK model.
There we also introduce a continuous model which has
the same basic features as the FK model. The low-
temperature structure is also discussed in this section. In

the remainder of the paper we prove our main results. In
Sec. III, we derive by the transfer-matrix method a poly-
nomial equation for the eigenvalues of (1.1). This polyno-
mial equation is then related in Sec. IV to the partition
function of a classical lattice gas. Since the degree of our
polynomial is much larger than the number N of elec-
trons, we have to carefully isolate the roots correspond-
ing to the lowest-N eigenvalues in the sum (1.2). This is
the subject of Sec. V, where we also show that sum (1.2) is
related to the free energy of the classical lattice gas. Sec-
tion VI then combines the above results to give the proof
of our main formula for the ground-state energy of the
FK model.

II. MAIN RESULTS

We consider the Hamiltonian formally defined by (1.1)
for an infinite one-dimensional lattice: it acts on wave
functions g(i), i HZ, such that g;~z~f(i)~ is finite. For
a finite number M of nuclei in a specified configuration
[n j, the spectrum of this Hamiltonian on the infinite lat-
tice has the following properties (see Appendix A).

(i) There is a continuous part which spans the interval
[0 4].

(ii) For U) 4, there are exactly M distinct negative ei-
genvalues, all located in the interval [—U, —U+4].

Notice that these properties are independent of the
configuration of the M nuclei. In the case M=1, the en-
ergy of the unique bound state (the atom) is

Eo=2—(U +4)'

while the wave function is given by

$0(i) =(coth 1nE~ )
' exp( ~i~in@),

(2.1)

(2.2)

0&a&1 . (2.3)

We now state our main result about the ground-state
energy, which, in the case U) 4, is just the sum of the N
negative eigenvalues. It will be denoted by E((l)~,N)
where (l)&= I l„.. . , lz, ] specifies the configuration of
the nuclei by the successive distances between them. The
distances are labeled from left to right, and I; is defined as
the number of empty sites between the ith and (i+1)th
occupied sites.

Theorem I

There exists a U, )4 (or e, & v'5 —2) independent of N
and the configuration of the nuclei such that, for U ) U,
(or @&e,),

N —1

E((l)~,N)=NEO+ g P(l, ) [1 R+~ (l()~,e)],
i=1

(2.4)

with

where we have chosen the origin as the position of the
nucleus, and the parameter e is related to U by

e= —,
' [( U +4)' —U] or Eo =2 e —e—
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and

(t(l, )=2(1,+1)e '

~R~((l)n, e)
~

=0 (e)

(2.5)

(2.6)

l;=L, (2.7)

which corresponds to having the nuclei confined to a re-
gion A, of length ~A =L +N, with one nucleus at each
end, while the electrons are free to move in all of Z. To
achieve this rigorously one would need more control on
the remainder term (2.6). However, it is instructive to
look at the leading term

N —1

g P(1;) .
i=1

(2.8)

uniformly with respect to N, (1)&.
It follows from (2.4) that the minimum of E((l)~,N ) is

attained when all nuclei are infinitely far apart from each
other, the total energy being then equal to NEo. Thus a
finite equal number of electrons and nuclei will form
atoms of energy Eo. The effective potential energy be-
tween these atoms is, to leading order, $(1), which is
repulsive.

We can also consider the problem of minimizing
E((l)~,N) under the constraint

It is easy to see that, if L =(N —1)q, q an integer, then
the minimum is attained when l;=q for all i, i.e., the
ground state consists of nuclei arranged in a periodic way
with a period q.

We can also consider the thermodynamic limit ob-
tained by letting L ~ oo and N~ ~ and keeping N/L
fixed. Since (2.6) is uniform with respect to N, (l)Jv, and
P( l) is a convex potential, we have

lim E(—(l)&,N)=E0+ (P(l) ) [1+O(e)]N

&E0+p((l ) )[ I+0(e)], (2.9)

where ( ) is the average with respect to the distribution
of lengths between the nuclei. Considering only the lead-
ing term, we see that if (1)=q, an integer, then the
minimum is attained for a distribution in which l. =q for
all j. This corresponds to a crystalline ground state of
period q. These results are in agreement with the con-
clusions of Ref. 7 at least for U & U„with U, indepen-
dent of the density.

We can use theorem 1 to derive the structure of the
effective potential in the weight of the partition function
(1.3) for low temperatures and chemical potential p, , in
the gap of the spectrum. The reason that we have to fix
(M, in the gap is that it enforces the neutrality for P= ~.
First we notice the following identities:

trln[1+e ~' [" ]] (e] Pt (h [I„]] )+ 1 [
P~ I~2[[ ]n]kP, l+ —0/2 —h[[n„]]—p, l

=—[tr~h [[nk]]—p, ~
tr(h [—Ink}]—(((,, )]+trln[1+e " "'

] . (2.10)

When p, is in the gap, i.e., —U+4 &p, & 0, we have, for
large enough P,

[I+
—Pl~ [n„]—V, I

]

Pp„g n +trln[1+e . " '
]

J

=p(]M, +p„—E0 ) g n~
J

+P g P(l ) [1+O(e)]+~A~O(e ~ ),

Moreover, one can see that

tr/ h [nI, ]—p, /

—tr(h [nk ]
—p, )

= —2 y (e, [Ink]] —(, )
e. (p

= —2E((l)~,N)+2p, g nJ .
J

(2.12)

C &0 (2.13)

When N/A is of order one, this effective potential thus
corresponds to leading order in e and e ~, to a system
of atoms with an effective chemical potential p, +p„—Eo
and a repulsive two-body potential P(l) between nearest-
neighbor atoms.

In the high-temperature limit P~O, the situation is of
course very different. Developing the effective potential
in (1.3) to first order in P, one finds

In the last equality, we have used the fact that the num-
ber of negative eigenvalues is equal to g. nj Combinin. g
(2.10)—(2.12) and the formula in theorem 1, we obtain the
effective potential for large enough P and small enough e,
namely,

~A~[(n2+P(p —()] P(p„+ U j2]gk nk=e e
nk =0, 1

(2.14)

This is the product of the partition functions of a gas of
free nuclei and free electrons in the limit of small P. As
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mentioned in Sec. I, the characterization of the transition
between low and high temperature is an open problem
even for the one-dimensional FK model.

Continuum FK model

For the rest of this section, we discuss the continuous
analog of the one-dimensional FK model. Consider N
electrons and N nuclei moving on a one-dimensional line.
The positions of the nuclei are denoted by (r)z
= Ir& « . r&]. For a given configuration of nuclei,
the single-electron Hamiltonian is

N N

g y5(x r)+—g V(r( r)—, (2.15)
m=1 I (m

where y )0 and Vis a hard-core potential

V(r)=0 if ~r &h and V(r)= ~ if ~r &h (2.16)

The electrons do not interact with each other but are sub-
ject to the Fermi statistics. The relevant dimensionless
parameter is yh =b. For N= 1, the Hamiltonian (2.15)
has, for any value of b, exactly one bound state, the atom,
of energy —y /4. When b is large enough the Hamil-
tonian (2.15) has exactly N nondegenerate bound states
with negative energies e, ((r)z) « . . e~((r)~), in addi-
tion to the continuous part of the spectrum which for
every b and N spans [0,~ ] (see Ref. 10). In this case the
ground-state energy is given by the sum

N

E((r),N)= g ek((r) ) .
Ic =1

(2.17)

Because of the hard-core potential, the only allowed
configurations for the nuclei satisfy

~ r& r~ )h, far-
l, m =1, . . . , N. For such configurations we can prove
the following.

Theorem 2

X [I+R~((r)~,y)], (2.18)

There exists a constant b, ) 1, independent of the num-
ber and configuration of the nuclei, such that for
b &b, ) 1, and for every (r)& such that y~rl r&+&~ )b, —
we have

2 N —1

E((r)~,N)= N+ g P—(r(+, rl)—
4

interaction between atoms being purely repulsive. The
minimum of the leading term in (2.18) under the con-
straint gP &' ~rt+& r&

—
~

=L, L )Nh is attained for
~rl+, r&

—
~

=L/N for l =1, . . . , N. This is also true in the
thermodynamic limit N, L ~ ~, with N/L =p fixed,
since the statement of the theore~ is uniform with
respect to X. Thus we expect that the system forms a
crystal in the ground state with a period 1/p. However, a
rigorous proof of this statement would require a more de-
tailed control of the error term (2.20).

The above statements hold for 6 )b, . For suKciently
small values of b, the structure of the ground state can be
very different. An analysis of the case of two electrons
and two nuclei is already instructive. We find that there
exist 0 & b

&
& b2 such that for b & b, one electron binds

with the two nuclei while the other one is in a scattering
state; for b, &b &b2, both electrons are bound to a pair
of nuclei; for b &b2, we have two atoms infinitely far
apart from each other.

The rest of the paper is devoted to a proof of theorem
1. The proof of theorem 2 is similar, and we explain the
modifications in Appendix B.

III. POLYNOMIAL EQUATION
FOR THE ENERGIES OF THE BOUND STATES

Pk(i)= A ( kye)'+B ( kye)

where y is related to the eigenenergy by

1
e =2—ey —,0&ay &1 .ey'

(3.2)

(3.3)

The solutions (3.2) must satisfy the matching conditions
f&(ik+&)=gk+, (ik+, ) for k =0, . . . , N —1. This leads
to

In this section, we use the transfer-matrix method to
derive a polynomial equation for the energies of the
bound states of the Hamiltonian (1.1). These are solu-
tions of the Schrodinger equation

—[P(i —1)—2$(i)+f(i+1)]—Un;g(i)=eP(i) . (3.1)

For simplicity, we do not label P and e by their quantum
number, and we do not write explicitly their dependence
on n;. Let i &, i2, . . . , i~ denote the positions of the N nu-
clei on the lattice and set io= —~, i~+&=+ ~. In the
region ik & i &ik+ „k=0, . . . , N the solutions of (3.1) are
of the form

with

and

2

2
(2.19)

~k+i
Bk+ &

= [1—(ey)']Tk
Bk

(3.4)

where the transfer matrix Tk can be cast in the factorized
form Tk = VkHV k, with

R~((r)~, N)=O(e ') (2.20)

uniformly in N, (r)&,
From this theorem one can draw the same conclusions

as for the lattice model. Namely, the ground state of N
nuclei and N electrons on the infinite line will consist of
atoms infinitely far apart from each other, the effective

1 —(1—e )y ey—
(1—e')y

—(1—e )y

1+(1—e )y —e y
(3.5)

(ey)

0
0

(ey)"

To have bound-state solutions clearly requires that
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AO=BIv=O. This condition and (3.4) lead to the equa-
tion

[ ~o T, TIv ] i &

=0 . (3.6)

with the matrix Q(l) given by

Using the factorized form of Tk together with the proper-
ty Vk Vk = Vk+k, (3.6) can be put in the equivalent form

(3.7)

P2(y, l)=(1—y) (I+a y) (—1 —e ) y (ey) (3.10)

which has 2l+4 roots. The two physical roots (they
satisfy 0 & ey & 1) should tend to y= 1 (which corresponds
to the atom) as e~O or as l ~ oo. Moreover, in this limit
P2(y, l) tends to P, (y), for ey & 1, which suggests that all
other roots tend to infinity in the complex plane. This is
confirmed by looking at the special case I=O (the two nu-
clei are on nearest-neighbor sites) where we can deter-
mine exactly the four roots of P2.

(1—y)(1+ay) e(1——~ ) (ey) '+

1 ( I+y)(1 —e'y)(~y)"+'2I+2
1

y+ =+—,
6

y+= 1

1+@—e
(3.11)

In (3.7), IIv is an arbitrary number and the product does
not depend on it. P~ is a polynomial in the variable y
and has degree g~:,' (2l;+4). The number of roots of
P~ (in the complex plane) is equal to its degree and thus
is always greater than N. From property (ii) in Sec. II
and relation (3.3), there must be, for U) 4, N distinct
roots located in the interval [—', ,4], which correspond to
the energies of the X bound states. These roots will be
called the "physical roots. " We are thus faced with the
problem of extracting the physical roots from all the oth-
er ones. This will be done rigorously after we obtain
some intuition into the structure of this polynomial and
the location of the roots in the complex plane.

For 0& e& i/2 —1 (or U) 2), two of them correspond to
the bound states, namely y+. These tend to one as e—+0
while y+ tends to + ~. Note that for &2—1 & e & 1 (or
U& 2), only one root corresponds to a bound state, name-
ly y'+. So for U&2 and l=0, there is only one bound
state. For e=V2 —1 (or U=2), two of the solutions be-
come degenerate: y' =y+ =&2+1. These values of y
and e correspond to e =0 by (3.3). Physically this means
that as @~i/2 —1 from below, one of the two bound
states merges in the continuum. For general l, we know
from property (ii) in Sec. II that there are two nondegen-
erate bound states for U) 4. To find their behavior for
small e, we look for roots of the form

The atomic polynomial

For N= 1, the polynomial defined by (3.7) is simply

P i (y) = (1—y) (1+~'y) . (3.9)

y=l+ g c„e".
n =1

This yields to leading order

y I+~I + I + ( I + 2)~2I +2+

(3.12)

(3.13)

The root y= 1 corresponds, via (3.3), to the energy (2.3) of
the atom. The other root y = —1/e is unphysical. Note
that it tends to —~ when e~O (or U~ m& ).

Adding the corresponding eigenenergies given by (3.3),
we find that the energy of the molecule is to leading order
equal to 2EO+P(l), in agreement with theorem l.

The molecular polynomial

For two nuclei separated by a fixed distance l, the poly-
nomial (3.7) is

Factorization property for general N

For any 0 & L & 1V, we can write

i =L+1
Q(l, ) + Q Q(l;)

i =L+1
Q(I;)

21

(3.14)

2IL+4An inspection of the second product on the right-hand side of (3.14) shows that it is equal to (ey) multiplied by a
polynomial S (y, I„.. . , ll „ll +,, . . . , IIv I ) which is independent of lL . So

N(y, ( )Iv)= I (y, „.. . , Il —i)PItI, (z, ll +I, . . . , lIv I)+(ey) S(y, l&, . . . , ll. &, ll +I, . . . lIv I) (3.15)

For 0 & ey & 1, the second term on the right-hand side of
(3.15) vanishes when we let ll ~~. P& then factorizes
into the product of two polynomials associated with the
two separate clusters of nuclei. As a consequence of this

factorization property, P& tends to Pi(y) in the limit
where all lk —+ ~. This suggests that in this limit there
are exactly X physical roots close to y=1, while all the
others tend to infinity in the complex plane. The same is
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true when e~O, as can be seen directly from (3.7) and
(3.8); i.e., the N physical roots branch off from the N-fold
degenerate root y=1 at @=0.

z„(y,(i)~ )

N —2

dp1n1 dpN —1 N —1 ~ y

IV. MAPPING TO A ONE-DIMENSIONAL
LATTICE GAS In terms of (4.7), relation (4.5) becomes

(4.7)

The key observation which enables us to deal with the
polynomial P~ for general (l)& is the realization that it is
closely related to the partition function of a one-
dimensional lattice gas. To see this, we first note that if
we write out the product of the matrices in (3.7), the sym-
bols Q, 2 and Q2, will appear the same number of times.
Furthermore, P, (y)=(1 —y)(1+e y) is independent of
(l)&. Thus (3.7) will remain unchanged if we replace Q2,
by Q2, P, (y) and Q, 2 by Q,2/P, (y). Finally we can ex-
tract an overall factor (P&(y)) . Thus the polynomial Pz
can be written as

PJv(y, (l)~)
N —1

=(P, (y)) II [ I+/(y, l, )] Z~(y, (l)~) . (4.8)

F&(y, (l)&) =InZ&(y, (l)&) . (4.9)

Our interest is then in obtaining the zeros of Z~(y, (l)&)
which lie on the real axis "close" to y=1. It will turn out
that for small e this corresponds to finding a low activity
expansion of the free energy

P2v(»(l)x) —=(Pi(y»"[Q(li) «4-i)Q«4»]ii
(4.1)

In this context it is a "polymer expansion, ""which we

briefly review in the rest of this section.

where Q(l) is the new matrix

21+4—
2( 1 2)2 (n»

(1—y)'(1+ ~'y)'

(1+y)(1—~'y), 2I+2
(1 —y)(1+e'y)

(4.2)

We now define "activities" g(y, l) and a "weight" w (y) in-
dependent of I by

g(y, l)=Q»(l), g(y, l)w(y)=Q22(l) . (4.3)

With these definitions, the matrix Q is the transfer matrix
associated with the "partition function"

Polymer expansion

We will denote by G the connected graphs consisting of
bonds connecting nearest-neighbor points on the one-
dimensional finite lattice 1, . . . , X —1. We will say that
i E G (respi E G) if the site i belongs at least to one bond
of the graph (resp if it does not belong to any of the
graph's bonds). Thus a graph G contains at least two
sites and at most N —1 sites; the number of sites of a
graph will be denoted by ~

G~. Two graphs G, G' are said
to be disjoint if they do not have any common site. In
such a case we will write G AG'=S. One can think of
these graphs as "polymers. " With each polymer G we as-
sociate an activity given by

N —1 N —2

Z~(y, (l)~)= g g (g(y, l;)) ' II (w(y)) ' '

n,-=O, i =1

(4 4)

IC (y, G) = J II dp, ( n, )
iEG

II [(w(y)) ' '"—ll .
(i,i +1)QG

(4.10)

Zz(y, (l)~) can formally be considered as the partition
function of a lattice gas on the sites i =1, . . . , X —1,
with an activity g(y, l; ) depending on the site i, and
nearest-neighbor interaction ln(w(y)). From (4.1)—(4.4),
we have

Then by a standard calculation, "one can rewrite (4.7) as

Z~(y, (l)~)
oo M

II K(y, G;) .
M =0 '

(G1 ' ', G~) Gi 0 Gk 0 i =1

P~(y, (l)~)=(P, (y)) Z~(y, (l)~) . (4.5) (4.11)

d p, (n) = [50(n)+ g(y, l; )5,(n) ],1

1+ y, l,
(4.6)

where 5 ( n ) = 1 are the Dirac measures centered at
a=0, 1. The new partition function is

It will turn out to be more convenient to work with a
slightly different partition function. For i = 1, . . . , N—1, we define the "normalized free measures"

The term M=O in the sum is set equal to 1. The disjoint-
ness condition G; A Gk =S implies that there are, in fact,
only a finite number of terms in the sum. Indeed, for
M )—,'(N —2) the disjointness condition cannot be
satisfied and it is understood that the corresponding
terms of the sum vanish. One can view (4.11) as the par-
tition function of a system of polymers interacting by a
two-body hard-core potential
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and

V(G, G')= ~ if GflG'AS

V(G, G') =0 if G 9G'=S .

(4.12)
N —1

F~(y, (l)~) —g F~, (y, (l)~),
s=1

(4.13)

function, one can make a formal low activity expansion
for the free energy (4.9). The result is

Starting from the representation (4.11) for the partition with

oo M

F&„(y,(l)&)= &M: 1 (GI G~) S&GI l:1

(4.14)

where g&&(GI, . . . , GM ) are the Ursell functions corresponding to the hard-core potential (4.12). For each s (4.14) has a
limit as X~ ao, where the polymers 6 now contain sites belonging to all of Z. To prove convergence properties of the
series which are uniform with respect to N, (l)~, we will use the following bound (see Refs. 11 and 12 for reviews).

Tree graph bound

Suppose there exists a function co(G), independent of y, and a domain D of the complex y plane such that

IC (y, G)
l

& co( G) for y ED (4.15)

c —= g co(G)e
G, sCG

Then
M

Q lK(y, G;)l N (G„.. . , G )

(GI ~ G~) sEGI /'= 1

(4.16)

(4.17)

Furthermore, if c, (1, the right-hand side of (4.14) con-
verges uniformly with respect to y HD and F&,(y, (l)z),
s =1, . . . , N —1 are analytic functions of yED. This
remains true for the limit X~~.

V. LOCATION OF THE ROOTS
OF Pw (y, ( I)x )

dy P~(y (l)~)
c„2vri P~(y, (l)~)

(5.1)

for e & e, . Clearly results (i), (ii), and (iii) of the lemma all
follow from (5.1).

We first prove (5.1) for N=2.
Proof of (5.1) for N=2

As was discussed in Sec. III, the N distinct physical
roots must be located near y= 1 on the real axis for large
enough U. The following lemma gives some more de-
tailed information about these roots. In particular, it
proves that there exists a neighborhood of y=1 in the
complex y plane where there are no other roots.

Lemma 5.1

Using (3.8) and (3.9), one can easily check that

P,'(y, l) P', (y)=2 + g qk(y, l),
Phyl P, y

with

1 (2l +4)k
q(y l)(1 e2)2ke(2!+2)ky

k dy (P, (y))'"

(5.2)

(5.3)

annulus

Let m =min((l)&). There exists e, &+5—2 (or
U, )4), independent of N, (l)~, such that for e (e, (or
U ) U, ), P~(y, (l)&} has (with y a complex variable) the
following characteristics.

(i) There are exactly N roots in the disk
ly

—ll &e' '+" '. These are necessarily located on
the real axis and are the physical roots.

(ii) No roots in the A (m)
—Iyle' '+" '& ly

—ll & —,'].
(iii) All remaining roots are outside the disk ly

—1
l

& —,'.
Let r be a number satisfying e' '+" '(r (—,'. Let

C, be the circle centered at y=1 with radius r. Denoting
the derivatives of PN, ZN, and I'N with respect to y by
PN, ZN, and FN, we will prove that

)r [(1+@)[1+@(1—2r)]+E r ]

)r (1+@r ), (5.4)

where we have used r & —,
' for the second inequality. For

r & —,
' and a&e, &+5—2, we also have

IP I (y) I

=
I

~' —1 —2~'y
I

(5.5)

From (5.4) and (5.5), we get

Let us estimate (5.3) for y belonging to the circle C„. Set-
ting y =1+re', we have

lPt(y)l =r [(1+@+e r cosO) +(e r sinO) ]
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(21+4)k

dy {P,(y) )'"
(21+4)k —1 p)(y)= (,1+,)l,y, l, (»+4)k

(p ( ))2k (p ( ))2k+1

((21 +4)k +4k2k 2k+1

(21+4)k
(2(21 +4)k (5.6)

This implies

f 1+r I+2
qk(y, l) (4(1 +2) (1—e )e'+'

Cr 77l r

f .Fl'v(y, ( l ))v ) =0 .dp

To prove (5.13), we use the following lemma.

(5.13)

(5.7)

Using e' '+" '&r (—,
' with m =I for %=2, estimate

(5.7) becomes

Lemma 5.2

For @&e, (or U ) U, ), F~(y, (l)&) is an analytic func-
tion of y E A (m), where e'„U, and m are the same as in
lemma 5.1.

f q(y 1)(4(1+2)[(33/+)19+3/4]2k
Cr 2&l 2 4 (5.8)

Proof of Lemma 5.2

For e & 3/5 —2, the right-hand side of (5.8) is smaller than
4(l +2)cl" for some constant cl & 1 depending only on l.
Thus for e & 3/5 —2 we can integrate (5.2) around the cir-
cle C„and interchange the integral and the sum on the
right-hand side there. To obtain (5.1), we note that from
(3.8),

dy P1(y) =1,
c, 2miP, (y. )

21,. +2

g(y, l;)= —(1—~') y
(1 —y)'(1+ ~'y)'

(5.14)

We will use the low activity expansion (4.13) and (4.14)
and the "tree graph bound" to prove that the lemma 5.2
holds for all Flv, (y, (l)~), s =1, . . . , N —1. From (4.2)
and (4.3), we have

w (y)=— (1—y')(1 —e'y') .
( 1 ~2)2 y2

(5.15)

f q„(y, 1)=0, (5.10) We need to estimate (5.14) and (5.15) for y E A ( m ). Us-
ing (5.4), we get

since qk(y, l) is the derivative of a function which is ana-
lytic in A ( m ). (( (1+r) [e(l+r)]

y, l, ( 2

Proof of (5.1) for N&2

Using (4.8), we find

P)'v(y, (1)&) P' (y) )v —' g'(y, 1; )

P~(y, (1)lv ) P,(y), 1+/(y, l;)
+

( 9(3 )
i —m —1/2

4
2E' 6

—
( 33/'

)
i 81 3/2( 81 3/2

2 16 16 (5.16)

Z)v(y, ( l ))v )+
Z)v(y, (1))v )

which, using (3.8), (3.9), (4.3), and (4.9), gives

p~(y, (1)„) P', (y) -»2(y, 1; )=N + g —2
Plv (y, (l)lv ) P,(y), P2(y, 1, ) P1(y)

+F~(y, (l)l(i ) .

(5.1 1)

(5.12)

For the last two inequalities, we used l; ~ m and
@&3/5—2. This implies

g(y, l;)
1+/(y, l;)

(5.17)

for a positive constant c, (one can take c, =16). To esti-
mate (5.15), we use ~y~ ) (1 r), r & —,

'—, and @&3/5—2,
which leads to

The next step is to integrate both sides of (5.12) along a
circle C„(:A (m). The integral of the first term on the
right-hand side of (5.12) is equal to N because of (5.9).
The integral of the sum on the right-hand side vanishes
for N= 2 because of relation (5.1). So (5.1) will be true for
X&2 if and only if

( [1+(1+r) ][1+@(1+r) ] (
(1 E) (1——r)2 2 2 C2 (5.18)

for a positive constant c2 (one can take c2 = 15). With the
help of (4.6) and (4.10), the activity of a polymer G can be
expressed as
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K(y, G)= + [ (y) —1]' '

1+ y, l,
(5.19)

parts the last term on the right-hand side of (6.3) to ob-
tain

and using (5.17) and (5.18) we can estimate it for
y&A(m) as

~I( (y, G) &(c,e ~&) Gl(c

X [c,(c2+1)e ] (c2+1) (5.20)

c, (c2+1) ' g n [ec,(cz+1)e ]"+', (5.22)

So we have obtained a bound of type (4.15) with
D = A (m) and co(G) given by the last member of (5.20).
Thus c, defined in (4.16) is estimated as

c, =(cz+I) ' g [c,(cz+1)e i ]( lel l (5 21)
G, sEG

We notice that the number of polymers G (they are con-
nected) that contain a given site s, and such that

~ G~ =n,
is at most n. Thus

N —1 dyE((l)~,N) =NEO+ g f 2 —ey-
i=1 Ey

Pz(y, l; ) P& (y)
X —2

P2(y, 1, ) P, (y)

+ f e— F~(y, (l)~) .
C, 27TE py

(6.5)

For N=2, we have to replace FN by 1, and the last in-
tegral does not contribute. For X)2, our expansion for
the ground-state energy is obtained by inserting into (6.5)
the low activity expansion (4.14) for Fz. It can be shown,
using the tree graph bound and estimates similar to those
in the proof of lemma 5.2, that the expansion for the
ground-state energy converges uniformly with respect to
N, (l)z for e&,e. Let us first consider the case where
N=2.

so c, & 1 for e & e, & &5—2 (where e, depends only on c i

and cz), which implies the analyticity of F»(y, (l)z) for
y ED = 3 (m) and e &e, .

VI. EXPANSION OF THE GROUND-STATE
ENERGY

The ground state-energy is given by the eigenvalue sum
(1.2). Using (3.3), we have

Ground-state energy for N=2

Using formulas (5.3) and (5.4), we have

P,'(y, l) P', (y)—2
P, (y, 1) P, (y)

( 1 e2)2ke(2l +2)k1

N

E((l)~,N)= g 2 —yk-
k=l yk

(6.1) f y 1 d (21+4)k
X 2 —py—

(P, (y))'"

dy 1 PN(y (i)N )
E((l)~,N) = f . 2 —ey-

e, 2vri ey P& y, I ~
(6.2)

From (4.8) and (4.9), we get

E((i)„,N)=N f dy P 'i (y )

c, 2vri P, y

where yk, k =1, . . . , N are the physical roots of the poly-
nomial P&(y, (l)&). From lemma 5.1, we see that this
sum can be represented by an integral around a circle C,
as in (5.1),

(6.6)

P(l)[1+0(e)], (6.7)

The permutation of the sum and integral can be justified
by estimates similar to (5.6). The computation of the
contour integral in (6.6) is outlined in Appendix C and
yields the result (C6). Combining (6.5), (6.6), and (C6), we
obtain a series expansion [see (C7)] for the ground state of
a molecule with two nuclei separated by a distance l. The
sum on the right-hand side of (C7) is the effective poten-
tial two-body potential discussed in Sec. II. We can
check that the leading correction to 2Eo is

+y f "y 2 ey—
C» 2&l

1 0'(y, l, )

ey 1 +g;(y, &; )
where O(e) is uniform with respect to l, in agreement
with (2.5).

+f 2 —ey — F&(y, (l)&) . (6.3)
27Tl

Let us cast this expression in a more transparent form.
The first integral on the right-hand side of (6.3) is equal to
Eo. For the terms in the sum, we use

g'(y, i; ) P,'(y) P i (y)

1+/(y, l, ) P2(y) P, (y)
(6.4)

Moreover, because of lemma 5.2, we can integrate by

Ground-state energy for N) 2

1 N —1

F~(y, (l)~) &ce g P(l;)
ey i=I

(6.8)

for a positive number c. The estimate (6.8) is based on
the following lemma.

As a consequence of (6.5), (6.6), and (6.7), we see that
to obtain the result of theorem 1 it is sufhcient to show
that
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Lemma 6.1

For a given collection of polymers G1, . . . , GM, let
k *(G, , . . . , G~ ) be an integer among all
k H G1 U ~ . . U GM such that

lk (G G )
Ik forkEG U UG1''''' M

(6.9)

Then there exist two positive numerical constants K1 and
K2, for which the following estimate holds:

y ~ G
C» 27Tl

IG, I+ + IGM —M+ i

1 k*(GL' ', GM) 2

(6.10)

The proof of this lemma will be given later. First we
show why it implies (6.8). From the polymer expansion
(4.14) and (6.10), we have

f e —
2 F~, (y, (l)~)c, 2ni gy2

1 lG,. l

—1

P(l„*, , )(, ) + (, )
' I@ (G„.. . , G )I

i =1

oo

M=1 ' UsE U GLU'''UGM:Us&GL
p(l ~(G G )) Q (QK2e) ' I4T(G„. . . , GM)I .

1' ™ =1
(6.1 1)

In the last member of inequality (6.11), the only graphs U that contribute are the connected graphs U. Indeed if
G, U . U GM is not connected, then the Ursell function @T(G„.. . , G~) associated to the hard-core potential (4.12)
vanishes. Also, notice that we have used U ~ IG, + . + IG~I —M+1 to obtain the second inequality. The inequal-
ity (6.11) is preserved if we replace P(l + ) by g«~ P(lk) and then release the constraint G, U . . UG~= U.1''' ' M

This leads to

FN y, lNdy 1

c„2mi py
2

(QK2e)' ' g tt(l„) g, g + (QK2e) ' Ic'T(Gi, , G~)1 .
1

U, sE U keU M=1 (GL ~ GM) s&GL i =1

(6.12)

The sum over M in (6.12) can be estimated by applying
the tree graph bound [see (4.15)—(4.17)j with co( G)

QK2E '. We then find that the sum over M is
smaller than a constant times &e. Thus performing the
sum over s = 1, . . . , N —1 on both sides of (6.12) gives (c'
is a numerical constant)

f e — F~(y, (l)~ )
1

c» 27Tl py

N —1

~ c'&e g g (QK2E)I g p(lI, ) .
s=1 UsEU kEU

(6.13)

U, s6 U

N —2

keU

Let us estimate the sum over U in (6.13). Since only the
graphs U which are connected contribute, there are n of
them which contain the site s and such that I UI =n.
Thus

(V'K2e) g p(lk)

Finally, combining (6.13) and (6.14), we find

f e— F~(y, ( l )~ )
dy 1

c» 27Tl Qp

N —2 N —1

~c'&e g n (QK, e)" g P(l;)
n =2

N —1

~ca g P(l;) . (6.15)

Proof of lemma 1.6

The value of the integral in (6.10) is determined by the
location of the poles of K (y, G; ), i = 1, ,M inside the cir-
cle C„. We recall that from (4.6) and (4.10),

To complete the proof of theorem 1, it remains to prove
lemma 6.1.

g (QK, e)" X X 4(lk) (6.16)
n =2
N —2 min(N, s —n)

k =max(1, s —n)

n K,e "
n =2

IUI =n, se U ke U

(6.14)

EG Ey' i

We see on (5.15) that the only pole of w (y) is y=0 and it
lies outside C„. So we have to consider the poles of
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g(y, l, ) (1—~ ) y (~y

1+/(y, l;) P2(y, l;)
(6.17)

p 27jl Qp

Applying lemma 5.1 to the case N=2, we see that the
poles of IC(y, G) which are located inside C, are in fact

)+ 1/4
inside a circle of radius e and center
y= 1. Since e "~ '+"~ '&(2l+2) '& —,', for any l)0, 11

the poles that contribute to the integral in (6.10) are also
located inside a circle C*(G„.. . , GM) of center y=l
and radius

~~', (e +2)(l ~+1)
4+, ~G] (+ - +)G~~ —M+1

Xe " (I~ze)

which is identical to (6.10).
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In what follows, for simplicity we write C*, r*, and k*.
Note that r*~r. We have APPENDIX A

dy
Cr 27Tl

M

+ K(y, G;)
&y h [[n; ]]=ho —UD, (A 1)

The single-particle Hamiltonian can be written in the
form

d
c* 2~i

M

+ E(y, G;) .
n'

(6.19)

zt +z 1+
ig(y, l, )i [e(1+r')] ' (6.20)

For i =k*, this implies

2l ~+2
~9(l„,+I) e " 1+

k*

21 ~+2
k

21 ~+2
~9e(l„+ +I) e " (6.21)

and, for i Wk*, e & &5—2,

g(y, l;)~ ~9e(l, +1) e ' ~9ee .

We will also have

(6.22)

We now have to bound the integrand of the right-hand
side of (6.19). For y EC* and i EG, U . UG~, we

have the estimate [see (5.16)]

where ho is the kinetic-energy part and D is the diagonal
(infinite matrix) with entries n; on the diagonal. The
spectrum of h o spans the interval [0,4] and if
g; n; =M ( oo, D is a finite rank operator. Thus h [In; J ]
has the same continuous spectrum as ho. This proves (i)
in Sec. II.

The lowest eigenvalue of —UD is —U, and it is M-fold
degenerate. Since 0 ~ ho ~ 4, the discrete part of the spec-
trum of h is necessarily located in the interval

[ —U, —U+4]. Now we show that there are exactly M
eigenfunctions corresponding to this discrete spectrum if
U) 4. Consider the Hamiltonians h (y) =yho —UD,
where y )0. Notice that (i) h(0) has M degenerate eigen-
values equal to —U, and an infinitely degenerate eigen-
value equal to 0; (ii) h (0) (h(l); and (iii) h (1)=h [ In; ] ].
From (i), (ii), and (iii) and the minimax principle, it fol-
lows that h [In;]] has at most M negative eigenvalues.
Now suppose that h [ In; ] ] has M' negative eigenvalues
with M' (M. Let f„.. . , Pz be the corresponding
eigenvectors. Since M'&M, it is possible to find at least
one normalized vector P such that (P, gk)=0,
k =0, . . . , N, and P(k) =0 if nk =0. Then

(A2)

1 2
e — ~e+ —.

gy E
(6.23)

and

k:nk =1

Combining (6.21), (6.22), and (5.18) we get, for y EC*
and e&e„

M

(P h [ In; j ]P)=(P hog) U g ~P(k) I'
k:nk=1

=(p, hop) —U (0 (A3)

„e, iGi + . . +iG~i —M

(6.24)

for two numerical constants ~'„~z. With (6.19), (6.23),
and (6.24), we conclude

for U) 4. Inequality (A3) shows that the number of neg-
ative eigenvalues must be at least equal to M for U) 4
and thus there are exactly M of them.

To finish the proof of (ii) from Sec. II, it remains to see
that the corresponding M eigenvalues cannot be degen-
erate. In the one-dimensional case, the eigenfunctions de-
cay like exp( —

~i~ ~lnyk) for ~i~~~ao, and yk is related to
the energy by @k=2—

yk
—

yk '. Since the whole eigen-
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function can be built up by the transfer-matrix method,
two degenerate eigenvalues would lead to the same eigen-
functions. Since there are M orthogonal eigenfunctions,
this is clearly impossible.

APPENDIX B

T(r;)= V(r, )H V( r, ), —

(y —1)y

( 1/2)y y», .

e
V(r, )=

3'

(1+y)y

—( &/2)yy»,
e

(81)

Setting ~r2 r, ~=d„—. . . , ~r~ r/v, ~=d—
/v „ this leads

to the analog of equation (3.7), namely

P/v(y, (l)/v ) = [Q(d, )
. Q(d/v, )Q(d/v) j(,=0, (82)

(y —1)
1

ydy

(y+1)e x r (83)

From (82) and (83), we see that the atomic and molecular
polynomials are, respectively,

Here we outline the proof of theorem 2. The method is
an adaptation of that for the discrete case. We look for
bound states of the Hamiltonian (2.15), of the form
g(x)= Ae "+Be'", with different A and B in each re-
gion between the scattering centers r„.. . , r~. The pa-
rameter ~ is related to the energy by e = —~ . We define
the dimensionless parameter y =2~/y, so that
e = —

( y /4)y, and y = 1 corresponds to the energy of the
atom. The matching conditions between the di6'erent re-
gions lead to Eq. (3.6), with T; replaced by

Note that, in the continuous case, Pz(y, (r)/v } is not a po-
lynomial but a transcendental function of y. The factori-
zation property (3.14) still holds. Also, as yh =b(d; )h)
tends to 0D, P/v(y, (d)~)~(y —1), so that all the physi-
cal roots become concentrated around y= 1.

It is again possible to relate P~ to the partition func-
tion of a one-dimensional lattice gas on N —1 sites. For-
mulas (4.6), (4.7), and (4.8) still hold with P/v +P/v—and
the following definitions for g(y, d) and /I/(y):

g(y, d)= —e r r(y —1) (86)

y dy 2 P/v(y, (d)/v )
E((r)/v, N ) = — y4 c„2~i P~(y (d)~)

(BS)

g(y, d)u/(y) = ~+1 (87)
y —1

The corresponding free energy F/v(y, (d)/v) has a formal
polymer expansion which is identical to that of the
discrete case and which can also be controlled using the
tree graph bound. With the help of this representation,
we can prove properties similar to those in lemmas 5.1

and 5.2. Let d;„=min((d)/v) and A (d;„)
min~= Iy~e

'" & ~y
—

1~ & —,
' I. There exists b, such that

for b )b„we have for y a complex variable.
(i) P~ has exactly N zeros inside the inner circle of

A (d;„). They are located on the real axis.
(ii) P& has no zeros in A (d;„).
(iii) All the remaining zeros are located outside the

outer circle of A (d;„).
(iv) The free energy F~(y, (l)/v } is an analytic function

of y for y E A (d ).
The ground-state energy can be computed as in (6.2):

P((y) = (y —1),
P2(y, d) =(y —1) —e r r

(84)

(85)

where C„ is a circle, y =1+re', contained in A (d). Us-
ing the mapping to the one-dimensional lattice gas, we
have

2 N —1 d P '(y, d. ) P '((y, d. ) 2

E((r)„,N}= ~N — g f .y' ' —2
' — f yF (y, (d) ) .

4 4; ( c, 2rri p (y, d, ) pi(y, d,. ) 4 c, 2'/ (89)

Using (84) and (85), we can compute the terms in the sum of the right-hand side of (89). To leading order this yields
the effective two-body potential (2.19). The last term is estimated as in the discrete case by using the polymer expansion
and the tree graph bound.

APPENDIX C

First we outline the computation of the contour integral in (6.6). An integration by parts gives

Since

y (2/+4/k (2/+4/k —2d 1

&„2mi e
1

(P, (y)) " (Cl)

( 1)2k d2k —1

(P (y))2k ( 1+e2y)2k dy2k ( y —1

by Cauchy's theorem we find

(C2)



4324 GRUBER, LEBOWITZ, AND MACRIS

where

~ (y)&(y)l =(,
& dy

(C3)

g ( )
2 (2!+4)k (2l+4)k —2 (C4)

&(y)= 1

(1+ 2 )2k

Performing the derivatives in (C3) yields

1
" '

2k ( p (2k —1)! (4k —2 —p)! [(21+4)k —2]!
e p!(2k —1 —p)! (2k —1)! [(21+4)k —p]!p=

2(2 jc —1 —p)
X Ie (21+4)k[(21+4)k —1]—[(21+4)k —p][(21+4)k —p —1]] .

( 1 +&2)4k —1 —P

The series expansion for the ground state of a molecule with two nuclei separated by a distance l is

(X)

E2(1,2)=2E()+ g —(1—e ) "e' + kIk(e, l) .
k=1

(C5)

(C6)

(C7)

By inspection, we see that the leading term of the sum in (C7) is given by k= 1 and p =2k —1=1. This term is exactly
P( 1) =2( l +1 ) e'+ '
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