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Transport coefficients for the Anderson model
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We have calculated the temperature-dependent electrical resistivity and thermal conductivity for the
nondegenerate Anderson model of the magnetic-impurity system. Our calculation is based on Yamada's
perturbative Green s-function solution and the Doniach-Sunjic prediction for the universal Kondo peak.
We obtain results that are in quantitative agreement with the available quantum Monte Carlo data.

The Anderson model' has been employed in the inves-
tigation of many physical phenomena. For example, it
has been applied to the magnetic-impurity problem,
heavy-fermion and mixed-valence phenomena, and
chemisorption theory. The model has become an impor-
tant tool in the understanding of strongly correlated elec-
tron systems. Many properties of the model have been
precisely analyzed using the Bethe-ansatz' (BA) and
renormalization-group (RG) methods. Thus, the Ander-
son model also serves as a useful testing ground for alter-
native solution schemes. ' The Hamiltonian for the
single-impurity Anderson model is given by

H =g Ek c„c„
k, o

+g (Ed~cd~cd~ + ,' Ucd~cd~c—q cd )

+g( Vdkcd~ck~+ Vkdck~cdg ) (1)
k, a

where the operators ck and ck create and destroy elec-
trons in the metal states with energy Ek, respectively,
and the operators cd and cd create and destroy elec-
trons on the impurity atom with energy Ed or Ed + U,
respectively. The electron spin is denoted by o
(o = cr). In this pap—er, we consider the symmetric
(Ed = —U/2) limit of the Anderson model with an
infinite bandwidth. For this case, the relevant parameters
are the temperature T, the correlation energy U, and the
hybridization width b, =trN( Vdk ~

')„, where N is the
density of states at the Fermi energy.

The purpose of this paper is to present a calculation of
the temperature-dependent electrical resistivity R ( T) and
thermal conductivity tc(T) for the full range of values of
T/TI;, where Tz is the characteristic scaling tempera-
ture commonly referred to in the literature as the "Kon-

I

do temperature. " It is an interesting fact that, in the
wake of the understanding generated by the BA and RG
analyses, a quantitatively correct calculation of these
quantities for the single-impurity Anderson model seems
to have been quite difficult to obtain. A notable early
success is the perturbative calculation of R ( T) vs T/b, by
Yamada. The recent quantum Monte Carlo calcula-
tion' may be viewed with some skepticism, because it is
not obvious from the data presented that it accounts for
the effects of charge fluctuations. The charge fluctuations
are an essential feature of the Anderson model. Their
effects are most pronounced at T &5 (k~ =1) and disap-
pear in the Kondo limit (u = U/trh&&1). The effect on
the resistivity R ( T) is to suppress its decrease as the tem-
perature increases above Tz (see Figs. 1 and 2). The
effect on tc( T) is less obvious, but it is clear that the quan-
tum Monte Carlo data' are inconclusive for T )Tz.

The transport coefficients are given by the formulas de-
rived from Boltzmann's transport equation. " The resis-
tivity R ( T) for the Anderson model is determined by

R (0) Bf(E) (~ ))
R (T) —.BE

(2)

where f (E)= [ exp(PE)+ 1 } ', P= 1/T, and the spectral
density function pd is

[6—
Imbed (E)]

pd (E)=
[E—ReXd (E)] +[5—ImXd (E)]

The quantity Xd (E) is the retarded self-energy correc-
tion for the symmetric Anderson model. For simplicity
we consider only the second-order self-energy correc-
tion, ' ' which should give correct results for the trans-
port coefficients at sufficiently small u. The second-order
correction may be expressed as

U2
Xd (co)= I dE [tanh(pE/2) ImG(E)y'(co E)+ coth(pE/2) —Imp'(E)G (co E)}, —

277
(4)

where G(co)= [co+id }
' is the Hartree-Fock Green's-

function solution for the symmetric Anderson model, and
y'(E) is given by'

y'(E) = [ W(z, ) —+(z, )},2h
E E+2ib,

I

where z& =(I+6,/trT)/2, z2 =z& —iE/2mT, and 4 is the.
digamma function. For the thermal conductivity v( T) we
have

J" f E E(g „(E)) dE—
[tc( T) /T], (~T)' —- BE (6)
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FICi. 3. R (T)/R(0) vs T/Tz. The QMC of Ref. 10 is com-
pared to the Kondo limit calculation using the Doniach-Sunjic
equation (7) with I &

= 1.2T&.

FIG. 4. R {T)/R (0) vs T/Tr for the Arai formula [Eq. (14)]
and our Kondo limit calculation using the Doniach-Sunjic equa-
tion (7) with I & =y,

= [1+(~ /3)[a(T)]R (0) (14)

where a( T) is a universal function of T/Tz and is given
by the solution of

[a(T) TL/T]lnI [I+—a(T) ]'/ T/TI ]
—m. ln2=0, (15)

trends are clearly shown in Figs. 1 and 2. On comparing
the universality of R ( T) and sc( T), it is clear that R ( T) is
a universal function for a larger range of values of T/Tz.
Also in Figs. 1 and 2, we give a comparison of our results
with the quantum Monte Carlo calculation of Jarrel
et al. ' The second-order perturbative and quantum
Monte Carlo calculations are in quantitative agreement for
u &2. This is strikingly true for lc(T), which appears to
be quite insensitive to the detail shape of the spectral den-
sity function. However, there are not enough quantum
Monte Carlo data for a detailed comparison at T/Tz ) 1

where the charge fluctuation effects are most pro-
nounced. We have found that I z =1.2T~ gives an excel-
lent fit (see Fig. 3) of our Kondo limit calculation to the
Monte Carlo data. '

Finally, we mention the work of Arai. ' Using a non-
perturbative solution scheme for the impurity Green's
function for the Anderson model, he derived an equation
for R ( T) which is valid in the Kondo limit:

where TI = Tz/0. 624. The function a(T) is multivalued
for T/Tz & 0.676. However, once these values are sorted
out, Eq. (14) is at least qualitatively correct for the full
range of T/Tz. Figure 4 shows a plot of Eq. (14) and our
Kondo limit calculation of R(T). Comparing the low-
temperature expansion of Eq. (14) with the Fermi-liquid
theory' formula R ( T)=R (0)[1—( T/Tz ) ] yields
TL = rrT& /&3, which gives an even poorer agreement be-
tween the two results for T/Tz —1.

In summary, we have calculated the temperature-
dependent electrical resistivity and thermal conductivity
for the symmetric Anderson model by using the results of
Yamada's perturbation theory and the Doniach-Sunjic'
prediction for the Kondo peak. We also observed that
the second-order perturbative calculation is in quantita-
tive agreement with the recent quantum Monte Carlo cal-
culation. ' Thus, our results supplemented by the quan-
tum Monte Carlo data give the complete picture of the
electrical resistivity and thermal conductivity for the
symmetric Anderson model.
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