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As has recently been shown by one of the authors (L.F.), the density-functional scheme of Hohenberg,
Kohn, and Sham can consistently be extended to excited states [Physica B 172, 7 (1991)]. Within this
generalized density-functional theory it turns out that the energy for electronic excitations across the
gap of insulators and semiconductors can be expressed as the sum of the so-called Kohn-Sham gap and a
correction that is usually of the same order of magnitude. (This correction proves to agree up to first
perturbational order with that obtained by Godby et al. [Phys. Rev. B 37, 10159 (1988)] within the so-
called GW approximation.) The present article reports refined calculations on the band gaps of solid
rare gases, alkali halides, diamond, and silicon. The results, are to some extent, still affected by the
atomic-sphere approximations which we have been employing, but show relatively fair agreement with
the experimental data. We also discuss Janak’s theorem, the insulator-metal transition under hydrostat-
ic pressure, and the problem of the Fermi surface in metals.

I. INTRODUCTION

Notwithstanding the growing interest in applications
of conventional density-functional (DF) theory based on
the paper by Kohn and Sham,! there is little awareness of
certain weaknesses in the foundation of this scheme. The
conceptual shortcomings have repeatedly been addressed
by one of the present authors (L.F.) and associates.>”> In
eliminating these deficiencies, it turns out that an alterna-
tive foundation automatically yields an extension of the
DF framework to excited states, and the resulting scheme
may be viewed as a generalized density-functional (GDF)
theory. The present paper rests on this extension and
draws, in particular, on the interconnection between the
true excitation energy, AE, referring to a total energy
difference of the N-electron system under study, and the
difference in the band energies of the one-particle states
that are, respectively, depleted and filled in the process of
an interband transition. This band-energy difference has
to be added onto a correction which is commonly (but
quite inappropriately) referred to as a ‘“‘many-body
correction” and may be viewed as a justification of the
so-called “scissors operator.”

It is evident from the derivation of Kohn-Sham- (KS)
type one-particle equations that the effective potential in
those equations cannot depend on the one-particle state
that the associated equation refers to. The self-
interaction-corrected (SIC) scheme suggested by Perdew
and Zunger® is at variance with this fundamental proper-
ty in that it explicitly requires an orbital-by-orbital can-
cellation of the electronic self-energy. In a consistent N-
electron theory of indistinguishable particles, each elec-
tron appears with the same probability in each of the or-
bitals, and hence a cancellation of self-energy can only
occur within the electron-electron interaction integral
containing the pair density p(r’,r) which does not depend
on individual orbitals. Exchange-correlation potentials
based on suitably chosen pair-correlation factors that
obey the so-called sum rule, guarantee the nonoccurrence
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of self-interaction, and are nevertheless orbital indepen-
dent. (See, e.g., Fritsche and Gollisch.”)

In Sec. II we briefly discuss the origin of the gap
correction. We also address Janak’s theorem® and point
out the limitations of its validity. Section III is con-
cerned with the predictability of the sign of the gap
correction and its connection to the definition of the Fer-
mi surface in DF theory. Results of gap corrections,
which will be presented in Sec. IV, contain (except for the
alkali halides) two sets of gap values and their respective
corrections based on self-interaction-free exchange-
correlation potentials. These potentials are connected to
certain pair-correlation factors. We shall refer to the as-
sociated gap values as resulting from a ‘“nonlocal poten-
tial,” although this is a rather misleading (but widely
used) name for a potential that is actually local, such as
the Hartree potential. To demonstrate that the finiteness
of the gap correction is not tied to nonlocal potentials, we
have recalculated the various band structures, in particu-
lar, the gaps and gap corrections, by using the local
exchange-correlation potential derived by von Barth and
Hedin.’ Where corresponding data were available, we
have also compared our results to those obtained within
the SIC scheme and the so-called “GW approximation”
to the self-energy in a quasiparticle description of elec-
trons in solids. The idea of the latter approach was al-
ready put forward by Hedin!® in 1965, but only twenty
years later applied to the band problem of insulators and
semiconductors by Hybertsen and Louie.!! The method
has later been taken up and technically been improved by
Godby, Schliiter, and Sham!? and Godby and Schliiter.!3
In Sec. V we discuss the possible origin of smaller
discrepancies that still exist with our results and also ad-
dress the prospects of practicable improvements.

II. THE GDF CONCEPT

Conventional DF theory rests on the concept of adia-
batically switching off the electron-electron interaction
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and simultaneously turning on an additional external po-
tential V,,(A,r) so that the original one-particle density
p(r) is conserved. It can be shown that this potential ex-

ists for any N-electron eigenstate ¥,(x,,X,,...,Xy) and
has the form*
7O =(1—M VD) + V(D) —AVE (A, (1)

where V{)(r) is the Hartree potential associated with the
density p,(r) that derives from ¥,, and VX (r) denotes
the exchange-correlation potential associated with the
variation of the exchange-correlation energy E {2 by

SEQ= [V(n)sp,(r)d’r . 2)

The extra potential V{")(A,r) exists even for spin-ordered

systems in a spin-dependent form 7*)(A,r,s) that guaran-
tees the conservation of spin-classified densities p, (r),
where s =1 denotes spin-up and spin-down, respective-
ly. The existence proof of 7")(A,r) invalidates an earlier
study by Harris'* that seemed to indicate that an adiabat-
ic connection of ¥, to a noninteracting state cannot
rigorously be ensured.

If A=0, one is dealing with a noninteracting N-electron
system. The associated Schrdodinger equation can be
separated, then, and one is led to N one-particle equa-
tions (in Hartree units)

[_%VZ-’_V<erfl’f)(r’s)]¢is(r)=6is¢is(l') ’ (3)
where
Vi (1,5)=V o (r)+ VD) + Vi (r,s) . @)

The latter relation follows from Eq. (1) for A=0. The as-
sociated N-electron wave function has the form of a
N XN Slater determinant ®,(x;,X,,...,Xy) containing
N orbitals v, (r) that solve Eq. (3). The total set of solu-
tions to Eq. (3) constitutes a complete orthonormal set of
function in terms of which we can construct an infinite
orthonormal set of determinants ®, by systematically
selecting different subsets of N orbitals. The true wave
function may then be expanded in a configuration-
interaction series

W, (X,Xp, ., X)) = D e Pr (X, Xy, . .., Xy)
k

which may be rewritten

v, =0,+7, , (5)
where

‘Tnzz C;lkq)k (6)

k

and

c,x—1 for k=n
nk = |c,, otherwise .
Since ¥, and ®, yield the same densities p,(r), it fol-
lows from Eq. (5) that ®}¥, +®,V*+ ¥ ¥, integrates

exactly to a zero-density contribution if one integrates
this expression with respect to N —1 electron coordi-
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nates. It is, furthermore, evident from Eq. (5) that all
coefficients ¢, in the sum of the right-hand side of Eq. (6)
tend to zero as the coupling strength A is reduced to zero.
Hence, in performing the adiabatic switching one maps
the true wave function ¥, uniquely onto a determinant
®,. [In case where V., (r) has central or axial symmetry
&, may consist of a linear combination of a few deter-
minants that differ in their highest-lying degenerate orbit-
als. (See Cordes and Fritsche.?)] As has been shown by
Harriman,'® the requirement that an N X N determinant
yield the same one-particle density as ¥, does not
uniquely define the orbitals from which that determinant
is formed. Hence, in order to make the mapping
v, P, unique, it is absolutely crucial that the extra-
potentlal V{")(r,s) defining V{®(r,s) in Eq. (3) can be
uniquely constructed. This one-to-one correspondence
between ¥, and P, allows one to classify the ground
state and the excited states as in Hartree-Fock (HF)
theory. It should be noted, however, that the orbitals
¥;(r) solve Eq. (3) where V‘”)(r,s) is a local potential
and, hence, they are definitively different from HF orbit-
als. This applies as well to the total energy which—by
construction—is given by the eigenvalue E, associated
with W, and can be shown to have the form*

(N,)
E,= 2 2 65':)_%fpn(f)V1(.1")(l‘)d3r

+2fpm[exc r,5)— Vi (r,s)1d’r . (7

The function

Prs T ) WA, r,r)
|r'—r|

€SUA, T,5)= ——zf ', )
constitutes the exchange-correlation energy per particle
at coupling strength A, and f(A,r',r) denotes the so-
called correlation factors (originally introduced by
McWeeny!® with a different sign) which are defined as
one minus the respective pair-correlation functions. The
averaged exchange-correlation energy per particle that
appears in Eq. (7) and is characterized by an overbar is
defined in analogy to e/A(A,1,s) except that

Fe,n f I, ndA

stands in place of the A-dependent correlation factors.

An interband transition bridging the gap of an insula-
tor or semiconductor may, within the GDF framework,
be described as a transition from the ground state W¥;
(mapping onto ®;) to the lowest-lying excited state W,
that maps onto ®,. The respective total energies are
given by Eq. (7) and their difference may be cast into the
form*

AE:ef_€i+Aﬁ’ (9)
where
A=AExc— [ VQ(r)Ap(r)d’r (10)

is associated with the change of the charge density Ap(r)
that is connected with the transition W;—W¥,. This
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quantity is finite for the following reason: For an
infinitesimal change 8p(r) of the ground-state density
pPol(r), which occurs when applying a small perturbative
potential 8¥ (r), we have, according to Eq. (2),

8Exc— [ V(r)8p(r)d’r =0 . (11)

By contrast, p,(r) and p;(r) derive from two eigenfunc-
tions ¥ I and ¥;, neither of which can be considered an
infinitesimal distortion of the other, and both belong to
the same external potential V., (r). Consequently, Eq.
(11) is invalidated if 8p(r) is replaced by Ap(r). It can be
shown that Eq. (10) may be rewritten*

Ag= [ [280n)— VRO [¥,(0)>—9:(0)*1d% ,  (12)

which constitutes the basis of our calculations discussed
in Sec. III. Clearly, both &X(r) and V{Q(r) contain
many-body information via the pair correlation to which
they are connected. On the other hand, €, and ¢;, being
eigenvalues of the one-particle equation (3), contain infor-
mation of this kind as well, since V2. (r) explicitly con-
tributes to the effective potential in this equation. It is,
therefore, hardly illuminating to refer to Aﬁ as being a
many-body correction to €, —¢;.

In concluding this section we want to address a popu-
lar misconception concerning Janak’s theorem.® It ap-
pears to be a commonly accepted view that this theorem
proves the vanishing of A; in Eq. (9). As will become evi-
dent from the following consideration, this fallacy is con-
nected to the fact that Eq. (11) does not hold for discon-
tinuous changes Ap(r). In deriving Janak’s theorem one
first rewrites Eq. (7) in the form

E,=3 3 nel—1 [p,()ViP(r)d’r
s i

+3 [ pus[E2r,5)— Vi (x,)1d’r (13)

where
Pns(f)=2 nis|¢is(r’nis1’nis27 cee )|2

and

1 for N, occupied orbitals
"is = 10 otherwise ,
with the latter quantities denoting orbital occupation
numbers. If one analytically continues E, as a function
of these occupation numbers to noninteger values, one
can determine the change 8E, that results from varying
n;. Most of the terms that primarily occur on varying
Eq. (13) cancel each other if one observes that the orbitals
¥;(r) obey Eq. (3) and that Eq. (11) holds in this particu-
lar case. The result may be written

8E, =3 3 edn; (14)
s i

and represents Janak’s theorem. Unfortunately, Janak

gave Eq. (14) the form
9E,
on,,

(n)

€IS >

s

which is actually incorrect because the partial derivative
with respect to n; implies that the other occupation
numbers are kept constant. On the other hand, any ad-
missible change in the occupation numbers must conform
to the requirement of particle conservation

NZE Enis ’ (15)

since exchange is not defined for a system of a noninteger
number of particles. Clearly, Eq. (15) is irreconcilable
with varying only a single occupation number. If one al-
lows two occupation numbers, say n; and n 1, to vary, Eq.
(14) attains the form

BEﬁz(Ef_ei)an ’ (16)

where we have used Eq. (15) and dropped irrelevant in-
dices. If one would, furthermore, naively integrate this
equation with respect to n, over its entire range from
zero to one and justifiably assume that the one-particle
energies do not change for an extended solid, one would
arrive at

AE;=¢€,—¢€; . (17

The error made in going from Eq. (16) to Eq. (17) consists
in the fact that the validity of the former rests on Eq.
(11), whereas the latter equation involves the finite
change Ap(r) which gives rise to the finiteness of Ag; ac-
cording to Egs. (10) and (11).

III. CONSEQUENCES OF THE GAP CORRECTION

To simplify the ensuing considerations we adopt the
viewpoint of the atomic-sphere approximation (ASA),
that is, we subdivide the lattice into atomic spheres cen-
tered at the atomic nuclei and allow for additional suit-
ably chosen empty spheres in cases where the lattice un-
der study is not close packed. Within each atomic
sphere, the first bracketed expression under the integral
in Eq. (12), which we shall denote by —&\J(r), is essen-
tially a monotonic function of the distance from the nu-
cleus and proves to be generally negative. Direct band
gaps in semiconductors and insulators are characteristic
of p-type Bloch states at the top of the valence band and
s-type states at the bottom of the conduction band. If we
introduce the spherical average of |4, (r)|*> (which we
shall indicate by an overbar), the sphere-integrated
charge density 4mr?|y,;(r)|? proves to be localized closer
to the nucleus than the respective expression for the final
state ¥ (r). As follows from inspection of Eq. (12), the
sphere-integrated charge density of ;(r) appears with a
negative sign, and since —&2(r) is negative and mono-
tonic the gap correction A; must be positive in these
cases, in agreement with the experiment. Similar argu-
ments hold for the fundamental optical gap in transition-
metal oxides where the initial state is d type rather than p
type. We have so far studied only NiO and CoO and
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found positive correction of about 5 eV. A detailed dis-
cussion will be published elsewhere. The situation is
different with transitions that interconnect the bottom of
a d band in Ni metal, for example, with the topmost oc-
cupied d bands. The latter are associated with antibond-
ing d-type Bloch states that are slightly stronger localized
within the atomic sphere than the bonding d-type states
at the bottom. As a result, the corresponding correction
A is negative and amounts to approximately —1 eV. In
photoemission experiments the effective d-band width of
Ni metal appears, therefore, narrower by ~ 1 eV than the
calculation yields for the ground-state band structure.
As regards the angular-momentum decomposition of the
band states, their change around a band gap as a function
of momentum k is small in a relatively large portion of
the Brillouin zone. It turns out, as a result of this
behavior, that Ag(k) for optical transitions beyond the
gap energy is almost constant within this energy regime.
This may be interpreted in the spirit of the so-called scis-
sors operator: in analyzing the experimentally observed
interband transitions, the relevant portions of the con-
duction band seem to be rigidly shifted by the amount of
the gap correction.

Another not exactly obvious consequence of our result
on the total-energy difference given by Eq. (9) concerns
the Fermi surface in DF theory. It is commonly assumed
without justification that the ground-state image of ¥,,
i.e., the determinant ®;, contains the N lowest-lying one-
particle states v, (k,r) where 7 is the band index and k
the momentum vector. (The fact that this assumption
may be questionable has first been addressed by Harris.'*)
If the unoccupied and occupied states are not separated
from each other by a gap, one has a Fermi surface in k
space defined by

€, (kK)=€F ,

where 7 denotes the uppermost occupied band(s), and €x
is the Fermi energy. If 8E,, given by Eq. (14), were the
most general expression for the variation of the total en-
ergy E,, the above standard assumption on the filling of
states in the ground state (» =0) would, in fact, lead to

8E,>0,

as required. This result is immediate on using Eq. (15) in
the form

€r S 8nY=0
is

and subtracting this equation from Eq. (14) so that
SEy=3 (9 —ep)on " .
i,s

Because of Eq. (14), both 67"’ and its parenthesized fac-
tor in front are negative for states that are occupied in
the ground state and positive for the remaining states.
Hence, all terms under the sum are positive. Clearly, Eq.
(14) is a consequence of rewriting the total energy, origi-
nally given by Eq. (7), in the fictitious generalized form
defined by Eq. (13). However, in going through a con-
sistent first-principles derivation of 8E, one arrives, in-
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stead of Eq. (14), at
SE,=3, 265'?)5”1'&0)"'87"0 >

where
To=(T,.)o—(To)o,

with (T,,), and (T, ), denoting the kinetic energy of
the true interacting system and the noninteracting image
system, respectively. (For details, see Fritsche.*) Al-
though T, is a positive quantity, 8T, can have either sign
and, hence, one cannot exclude the possibility that 8E
becomes negative for certain distortions of the wave func-
tion ¥;. Whether or not ®; really corresponds to the
ground state can be checked by again using Eq. (9). To
this end one considers a transition from the state ¥;
(—>®;) to another state ¥, (—®,), where ®, differs
from ®; only in that one orbital (with energy €;) at the
Fermi surface has been replaced by another one whose
energy € is above the Fermi surface by an infinitesimally
small amount. Equation (9) yields, for the change of the
total energy in that case,

AE;=A,. (18)

If the Fermi surface is very aspherical, the orbitals at dis-
tinctly differently curved portions of the Fermi surface
can differ sizably in their angular-momentum decomposi-
tion and, hence, Aﬁ can easily be of the order of 0.1 eV or
larger. In those cases €,(k)=¢€p does not define an equi-
energy surface as required for a true Fermi surface. In
general, the ground state is defined by a surface in k
space, which separates occupied from unoccupied states
such that a transition ¥; —V leads to changes

AEﬁ=ef—6,+Aﬁ

that vanish for any possible pair (i, f) at that surface. It
appears to be likely that some failures of standard DF
theory in consistently describing ground-state properties
of solids are associated with an incorrect choice of occu-
pied orbitals close to €y (defined by the standard filling).
The transition-metal oxides, for instance, CoO and NiO,
are possibly an example of this type of failure. The calcu-
lations yield incompletely filled, relatively flat d bands
which are Ni and Co derived, respectively. The incom-
plete filling gives rise to a Fermi surface that crosses the
uppermost band(s). The strongly curved oxygen bands
are lower by 3 eV and, hence, fully occupied according to
the conventional understanding. However, on transfer-
ring an electron from the top of the oxygen bands to the
Fermi level, one gains a small amount of energy if one
employs Eq. (18) to calculate the associated energy
change. In order to establish the true ground state, one
therefore has to deplete the topmost oxygen state until
AE equals zero for all possible transfers between Ni (or
Co) and oxygen states, both of which then form a Fermi
surface in k space. If there were a very effective process
that immediately annihilates excessive O holes and d elec-
trons formed on applying an external electric field, the
occupation in k space would stay centrosymmetric,
which would be tantamount to zero conductivity. Al-
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though this picture may be very speculative, it at least
demonstrates the existence of new territory within DF
theory that is bound to go unnoticed as long as one fol-
lows the standard “filling rules” that are not proven.

The Fermi-surface problem is closely related to the
insulator-metal transition of semiconductors, of which we
only consider here Si as an example. If one subjects Si to
hydrostatic pressure, the conduction-band minimum
drops and eventually lines up with the maximum of the
valence band. On further increasing the pressure, the
minimum keeps shifting downward and starts introduc-
ing empty conduction-band levels below the occupied
valence levels. Again using DF standard rules, one
would argue that such unoccupied levels cannot occur in
the Si ground state associated with that pressure and,
hence, the topmost valence levels ought to be depleted in
favor of the lower-lying conduction-band states until the
respective Fermi levels agree. An electronic structure of
this kind would be associated with metallic conductivity,
which, however, is not observed at that pressure. In fact,
even at considerably higher pressure Si remains insulat-
ing. This becomes understandable if one assumes that the
conduction band remains unoccupied even when its
minimum has already dropped substantially below the
valence-band maximum because the downward transfer
of an electron from the topmost valence level would re-
quire a positive energy AE; as follows again from using
Eq. (18). Within a very large range of pressure A is posi-
tive and amounts to 0.5-1.0 eV. Hence, the difference
€7 €, which decreases monotonically as one raises the
pressure, must attain a negative value of approximately
this magnitude before AEj; turns negative and
conduction-band states start getting filled. In other
words, the insulator-metal transition occurs when AE,
changes sign, rather than €, —e¢;.
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It is evident from the above considerations that Eq. (9)
lends itself to discussing many solid-state properties that
are not satisfactorily accessible within conventional DF
theory or lie definitely outside its framework. A further
virtue of Eq. (9) consists in the simple form of the gap
correction as given by Eq. (12) which is considerably less
involved than its equivalent definition within the GW ap-
proximation. The latter hardly allows one to predict the
sign of A; in a simple way and requires substantially
more computational effort than our expression.

IV. RESULTS

A. Solid rare gases

The simple fcc structure of the solid rare gases makes
them particularly suitable for a first test of our GDF ap-
proach. Moreover, the optical absorption—in particu-
lar, the fundamental gap of these archetypal
insulators—is experimentally well studied. Preliminary
results on solid Ne, Ar, and Kr have already been pub-
lished elsewhere.* The calculations have been refined us-
ing an elaborate computer code to calculate the nonlocal
exchange-correlation potentials, and we also included
solid Xe. We use Andersen’s linear-muffin-tin-orbital
(LMTO) method!” in the ASA version. The results are
listed in Table I. The data marked ‘“nonlocal” refer to a
band-structure calculation based on a nonlocal potential
where the correlation factor was chosen to have the form
of either a Gaussian or a Lorentzian to the power 3. The
differences with respect to experimental data neither
indicate a clear trend as a function of the atomic num-
ber nor favor one of the two correlation factors. On the
other hand, one clearly recognizes that the SIC scheme
yields clearly less satisfactory results. Even the gap
corrections obtained using a local approximation to

TABLE I. Interband transition energies for solid rare gases. The shorthand notations “Gauss” and “Lorentz” refers to the respec-
tive model forms of the correlation factor f(r’,r) used in constructing Vxc(r,s). The results listed as “local B-H” refer to calcula-
tions where Vxc(r,s) was assumed to have the form derived by von Barth and Hedin (Ref. 9). Recent results of Bacalis, Papaconstan-
topoulos, and Pickett (Ref. 18) that have been calculated within the self-interaction correction scheme are also listed for comparison.
The experimental reference data are the same as those quoted in that paper. All energies are given in units of eV.

Exchange-correlation Kohn-Sham Band-gap Excitation energy
potential Vxc band gap ¢, correction Ag Theory €, +Ag Experiment

Ne Nonlocal Gauss 11.99 10.97 22.96
Lorentz 11.52 11.08 22.60 20.82

Local B-H 11.63 10.27 21.90

SIC 11.40 5.16 16.56

Ar Nonlocal Gauss 8.88 4.79 13.67
Lorentz 8.93 4.85 13.78 13.88

Local B-H 8.45 5.90 14.35

SIC 3.86 5.90 11.96

Kr Nonlocal Gauss 7.88 3.39 11.27
Lorentz 7.84 3.27 11.11 11.43

Local B-H 7.13 5.45 12.56

SIC 6.76 3.35 10.11

Xe Nonlocal Gauss 6.85 2.53 9.38
Lorentz 6.51 2.23 8.74 9.12

Local B-H 6.29 4.70 10.99

SIC 5.56 2.67 8.23
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[28(r)—VL(r)] in Eq. (12) and combining these
corrections with the associated gaps from a “local” band
structure give a better overall agreement than the SIC
data. One also recognizes that A; becomes systematically
smaller as the atomic number Z increases. This corre-
lates with the shrinking gap size when Z is raised. As
discussed in Sec. III, the magnitude of A is largely deter-
mined by the effect that a lowest unoccupied atomic-type
state is more or less inflated compared to highest atomic-
type state. The lower the excitation (gap) energy ¢,, the
smaller this inflation effect becomes and, hence, A fi drops
with decreasing €.

B. Diamond and silicon

Diamond has for many years been the example used
most to demonstrate the incapability of local-density-
approximation (LDA) -DF theory to account properly
for many-body effects determining the true magnitude of
the fundamental gap. The latter turns out to be 1.7 eV
larger than that obtained from a LDA calculation. It is
interesting to note that—as with the solid rare gases—
the gap in the band structure is hardly affected by replac-
ing the LDA exchange-correlation potential with one of
our nonlocal versions. The pertinent data are listed in
Table II. (The calculated results are based on a lattice
parameter of 3.57 A.) As can be seen from the quantities
Ay, they achieve the necessary correction quite satisfacto-
rily, although there is a striking difference in the
angular-momentum character of the final state which is
filled in crossing the gap: that conduction-band state is
dominantly p type rather than s type as with the solid
rare gases. Since the initial state at the top of the valence
band is p type as well, one would not expect a large
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correction Ag to occur because it depends directly on the
difference of the square moduli of these two states. The
conduction state, however, inflates to some extent into
the interstitial region, thereby lowering the contribution
of |;(r)|*> within the atomic spheres, which gives rise to
a sizable difference | ,(r)|>—|¢,(r)|%. Similar considera-
tions apply to the data listed in Table III which refer to
silicon in the diamond structure. (The lattice parameter
has been chosen to be 5.43 A in agreement with the per-
tinent literature.) Except for the L point, where one still
has a discrepancy of about 25%, our results again com-
pare reasonably well with experiment. In Figs. 1 and 2
we have plotted the dependence of the effective gap AE,
of Si as a function of its relative volume. As explained in
Sec. III, the material should become metallic when AE 4
drops below zero. The lower two curves refer to the
band-energy difference €,—¢; for the direct gap (Fig. 1)
and the indirect gap (Fig. 2) where the results marked
“LDA” were obtained by using the LDA potential and
those marked “KST” are based on the true exchange-
correlation potential defined by Godby, Schliiter, and
Sham.!? The notation for the upper two curves is self-
explanatory. One clearly recognizes that a naive filling
scheme to which the LDA and KST curves refer would
predict a metal-insulator transition around V' /V;,=0.78,
which is not observed. This is in keeping with the result
that the effective gap at this relative volume is still far
from being zero, in both the GW and the GDF approxi-
mations. On the other hand, it is obvious from compar-
ing Figs. 1 and 2 that the transition will eventually take
place by filling the lowered conduction states above the
indirect gap, whereas the states above the direct gap are
shifted upwards as the volume shrinks.

TABLE II. Interband transition energies at main symmetry points of the diamond band structure and for the indirect gap
(“Min.”). The GW results with and without parentheses were obtained by Louie (Ref. 19) and by Godby and Schliiter (Ref. 13), re-
spectively. The latter authors calculate the Kohn-Sham band gap by using the “true exchange-correlation potential.” The experi-
mental result for the I point is taken from a recent paper of Armon and Sellschop (Ref. 20). The other experimental data are identi-
cal to those quoted by Godby and Schliiter (Ref. 13). Energies are given in units of eV.

Exchange-correlation Kohn-Sham Band-gap Excitation energy
Gap potential V¢ band gap €, correction Ag; Theory €, +A; Experiment
r Nonlocal Gauss 5.56 0.94 6.50
Lorentz 5.40 0.97 6.37 6.5
Local B-H 5.54 0.56 6.10
GW 5.72 1.54 7.26(7.5)
X Nonlocal Gauss 10.82 1.94 12.76
Lorentz 10.65 1.84 12.49 12.5
Local B-H 10.56 1.00 11.56
GW 11.07 1.48 12.55(12.5)
L Nonlocal Gauss 10.98 0.84 11.82
Lorentz 10.81 0.89 11.70
Local B-H 11.31 0.49 11.80
GW 11.27 1.34 12.61
Min. Nonlocal Gauss 3.97 1.47 5.44
Lorentz 3.77 1.40 5.17 5.48
Local B-H 3.80 0.75 4.55
GW 4.21 1.12 5.33(5.6)
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TABLE III. Interband transition energies at main symmetry points of the silicon band structure and for the indirect gap (“Min.”).
The notation is the same as in Tables I and II. The experimental data are taken from the paper by Godby and Schliiter (Ref. 13). The
GW results listed with and without parentheses are due to Louie (Ref. 19) and to Godby and Schliiter (Ref. 13), respectively. Ener-
gies are in eV.

Exchange-correlation Kohn-Sham Band-gap Excitation energy
Gap potential V¢ band gap ¢, correction Ag Theory €, + Ay Experiment
r Nonlocal Gauss 3.05 0.63 3.68
Lorentz 2.52 0.72 3.24 3.40
Local B-H 2.82 0.69 3.51
GW 2.68 0.62 3.30(3.35)
X Nonlocal Gauss 3.68 1.11 4.79
Lorentz 3.15 1.19 4.34 4.25
Local B-H 3.51 0.97 4.48
si GW 3.64 0.63 4.27
L Nonlocal Gauss 2.24 0.27 2.51
Lorentz 2.46 0.17 2.63 3.31+0.2
Local B-H 2.55 0.26 2.81
GW 2.83 0.66 3.49(3.54)
C Min. Nonlocal Gauss 0.32 1.09 1.41
Lorentz 0.28 1.11 1.39 1.17
Local B-H 0.54 0.91 1.45
GW 0.66 0.58 1.24(1.29)

C. AlKkali halide crystals

Ionic crystals are well known for their large “gap
discrepancies” and therefore provide another important
testing ground for our gap-correction formula. To gain
some confidence in the capability of our approach we
have performed self-consistent LDA calculations on nine
alkali halides. The results are shown in Table IV. To
reduce the computational effort in determining the band-
gap corrections we have replaced 2895(r)— V9. (r) in Eq.
(12) with the pertinent local approximation, which is con-
sistent with calculating the band structure at the LDA
level. The interband transition links a p-type anion state
to an s-type cation state. As in the case of the solid rare
gases, it is hence qualitatively clear that the gap correc-

—~ 1.5 T
c A /
<L - 8
?o 1.0t apr ////'/ Expt.
g Eoawe
s 051 —
’g LDA = s
é (1 e —
B i
2 “0'5 PRI S 't IR TN N TR S Y S N 1
0.8 0.9 1.0 1.1
VIVo

FIG. 1. Minimum band gap of silicon in the diamond struc-
ture as a function of the unit-cell volume. The present results
(marked by triangles) have been connected by a dashed line and
are marked “GDFT.” The other results are taken from the pa-
per of Godby and Needs (Ref. 21). The curves labeled “LDA”
and “KST,” respectively, refer to the Kohn-Sham gaps which
have been calculated within LDA and, alternatively, by using a
true exchange-correlation potential. The GW results corre-
spond to quasiparticle excitation energies. The experimental
gap value for zero pressure is indicated by an open circle.

tions must be positive. But there is also a relatively fair
quantitative agreement with the experiments considering
the rather crude approximations that have been made.
Apart from using a local (von Barth—Hedin) approxima-
tion to &2x(r) and V% (r) we have not made any attempt
to refine the subdivision of the NaCl structure into atom-
ic spheres by using different sizes to match the different
ionic radii. Instead we have used identical spheres for
cations and anions in performing the LMTO-ASA calcu-
lations. Nevertheless, the results compare quite favor-
ably with those obtained by Kunz,?> who starts from a
Hartree-Fock (HF) level and calculates ‘“correlation
corrections” using Toyozawa’s electronic polaron formal-
ism. His derivation is predicated on the assumption that
the HF total-energy difference for an excitation across
the gap yields only the HF band gap, i.e., the difference of
the associated one-particle energies. It remains unclear
whether or there is definitely no analogous term in the
HF total-energy difference that would correspond to our
expression A;. The occurrence of A for such a transition
is associated with the invalidation of Janak’s theorem
which is just the analogue of Koopman’s theorem. A
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FIG. 2. Results analogous to those in Fig. 1 for the direct
band gap of silicon in the diamond structure at the X point.
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TABLE IV. Interband transition energies at the I' point of the alkali halides. The calculations have, in that case, only been per-
formed on the local B-H level explained in Table I. The experimental data are identical to those quoted in the paper by Kunz (Ref.

22). Energies are in eV.

Exchange-correlation Kohn-Sham Band-gap Excitation energy
potential Vyc band gap €, correction Aj Theory €, +A; Experiment
LiF Local B-H 9.9 6.1 16.0 14.2
LiCl Local B-H 6.5 3.4 9.9 9.4
LiBr Local B-H 52 3.5 8.7 7.6
NaF Local B-H 7.4 6.4 13.8 11.5
NacCl Local B-H 5.4 3.6 9.0 9.0
NaBr Local B-H 4.5 3.7 8.2 7.1
KF Local B-H 5.7 7.2 12.9 10.8
KCl Local B-H 4.8 3.8 8.6 8.7
KBr Local B-H 5.5 4.4 9.9 7.4

clarification of this point appears to be very desirable. As
regards comparative GW studies on alkali halides, we are
only aware of one gap value, viz., 9.1 eV for LiCl ob-
tained by Louie.!® This value agrees also very satisfacto-
rily with our result.

V. CONCLUSIONS

The results obtained in the present paper lend consid-
erable credence to the validity of GDF theory in general,
and to our gap-correction formula in particular. In view
of the simplicity of the latter, the overall agreement with
the experimental data is very gratifying. The discrepan-
cies that still exist for the solid rare gases and the semi-
conductors are very likely due to insufficient accuracy of
our LMTO-ASA one-particle states whose square moduli
enter directly into the gap correction. Moreover, the
function &2(r), which occurs as a factor of the difference
of those square moduli, is based on our approximate form
of the correlation factors. It appears to be unlikely that
the error introduced by this can be reliably estimated.
However, these correlation factors are determined such
that they definitely exclude electronic self-interaction as
they are rigorously subject to the so-called sum rules and
may therefore be expected to give rise to only minor inac-
curacies of the gap correction. As already stated, the
band-gap corrections for the alkali halides have de-
liberately been calculated at a lower level of approxima-
tion and are clearly open to improvement. All in all, the
preliminary results of the present study may be taken as
an encouraging basis for further work in this direction.

From a conceptual point of view, it appears to be very
satisfying that our gap correction does not contain any
“dynamical effects,” as opposed to the GW expression,

which involves the full frequency-dependent inverse
dielectric function. This is a consequence of the underly-
ing quasiparticle picture, which describes the motion of
an extra electron in a dynamically responding back-
ground of N —1 or N electrons, respectively. The gap en-
ergy is defined as the difference between the lowest remo-
val energy of that extra electron (leaving N —1 electrons
behind) and the maximum energy gained by adding an
extra electron to the N-electron system in its ground
state. Clearly, none of the two situations corresponds ex-
actly to the initial and final states in the actual experi-
ment. In our treatment that refers to N fully indistin-
guishable particles, dynamical (i.e., frequency-dependent)
effects cannot occur, since each of the N-electron states
considered (either the ground state or some excited state)
is constructed as a solution to the time-independent
Schrodinger equation. Hence, the associated total-energy
difference for excitations across a gap refers to the actual-
ly established situation in a threshold photoconductivity
experiment where one is dealing with a system of N elec-
trons before and after the photoabsorption.
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