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Thermal conductivity of a granular superconductor
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The temperature and magnetic-field dependence of the thermal conductivity « for a granular super-
conductor is considered via the superconductive glass model. Above the phase-locking temperature T,
(but below the single-grain superconducting temperature T) « is found to be dominated by the
Rayleigh-like grain-boundary-scattering mechanism, while below T, the thermal conductivity follows a
glasslike T? dependence. In the paracoherent state (7 > T > T,) the Wiedemann-Franz law appears to
be nearly satisfied. The field dependence of k is shown to be highly sensitive to the form of the grain-

distribution function.

I. INTRODUCTION

The recently reported weak-link-induced analog of the
fountain effect in high-T, superconductors (HTS’s) (Refs.
1-3), as well as other predictions concerning unusual
thermoelectric effects due to the weak-link nature of
these materials,* 7 set up an interesting and correspond-
ing problem on the thermal-conductivity () behavior in
granular HTS’s. The unusual behavior of the Seebeck and
Nernst effects in the mixed state of slightly oxygen-
deficient YBa,Cu;0, (YBCO) has been found?® to indicate
a strong departure of the vortices (“pancake vortices”)
from the standard Abrikosov type. Galffy, Freimuth,
and Murek® argued that the large Seebeck effect they
found in c-axis-oriented epitaxial YBCO films can be at-
tributed to dissipation due to granularity, since the vor-
tex contribution to the Seebeck voltage is by far too small
to account for the observed value. It is also worthwhile
to mention the recent experimental findings on the
thermal conductivity of twinned and untwinned YBCO
single crystals'® and of twinned YBCO and tweeded Fe-
doped YBCO polycrystals!! (in high magnetic fields)
which apparently show a strong departure from the usual
linear behavior of the thermal magnetoresistivity (TMR),
W =k"1, for conventional type-II superconductors.'?
Up to now, however, there have been practically no in-
vestigations concerning the TMR behavior in granular
HTS’s at low enough magnetic fields (below the first
Abrikosov field) where the vortex-phonon-scattering
mechanism is certainly inactive and where another
scenario for the thermal conductivity is required.

In the present paper, a contribution to x of granular
superconductors based on the weak-link decoupling
mechanism is calculated, both in zero and nonzero ap-
plied magnetic field. We find that above the phase-
locking temperature T, (which defines the coherent prop-
erties of the Josephson grain-boundary network) but
below T, the critical temperature of the single grain, the
temperature dependence of k is dominated by the
Rayleigh-like grain-boundary-scattering mechanism, '3
whereas below 7, the thermal conductivity follows the

famous 72 dependence!* confirming the glasslike
behavior of the Josephson phase network.!*”2° By ac-
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counting for the previously discussed temperature
behavior of the excess magnetoconductivity of a granular
superconductor,?! the Wiedemann-Franz law is found to
be nearly satisfied above T,. The magnetic-field depen-
dence of k appears to be highly sensitive to the form of
the grain-distribution function. In particular, a Gauss-
like distribution law leads to a powerlike behavior of the
TMR, while the Lorentzian form results in an exponen-
tial dependence for «(H).

II. MODEL, APPROXIMATIONS,
AND THEORETICAL RESULTS

The model is based on the well-known Hamiltonian of
a granular superconductor, which in the so-called pseu-
dospin representation has the form'> 2!

7‘[([’):—l JijSi+S'_+H.C. ’ (1)
2 T J
where

J /T, H)=J(T)explid;(H)], S =exp(+ig,),

_
Ay(H)="=(HXR;) Ty , @)

I; =1, R,-j=(ri+rj)/2 .

The model describes the interaction between supercon-
ducting grains [with phases @,(#)], arranged in a random
three-dimensional (3D) lattice with coordinates r; (model-
ing the distribution of CuO planes of oxygen-depleted
YBa,Cu;0,_5). The ‘“‘grains” are separated by oxygen-
poor insulating boundaries producing Josephson coupling
characterized by an energy J(T) which could depend on
8. (According to the Ambegaokar-Baratoff expression for
the temperature dependence of the Josephson energy, 22
near the single “grain” depairing temperature 7,(8),
J(8,T) is equal to J(8,0)[1—T /T,(8)]. The increase of
the oxygen deficiency 8 leads to the decrease of the
Josephson energy (via the increase of the insulating layer
between oxygen-rich ‘“grains”). For small § (such that
8 << 1), we can in fact approximate the & dependence of
both the critical temperature and the Josephson energy
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by a linear law, namely, T.(8)=T,(0)(1—§) and J(§,0)
=J(0,0)(1—38). In the following, though, the label & will
not be further mentioned. It will be understood hereafter
that in making the appropriate configurational averages
(see below) the distributions of 7, and J may depend on
5.)

The system is under the influence of a frustrating ap-
plied magnetic field H, which is assumed to be normal to
the ab plane of HTS’s where the glasslike picture is estab-
lished for the ‘“‘carrier” (or phase) distribution, i.e., the
pseudospins. 17720

According to linear-response theory, 23 we can calcu-
late the weak-link-induced (static @ =0) thermal conduc-
tivity normal to the ¢ axis, within the above-mentioned
model of a granular superconductor, via the Kubo formu-
la

-1 © 1 80(N80 (0
«(T,H)= ZkBTszO dt{8Q(1)6Q(0)),, , (3)

where
8Q(1)=Q(t)—Q(),
Q(t)=dd,H(t) .

4)

Here Q(¢) is the longitudinal part of the energy-flux den-
sity Q(2),

iq
q2

OF£(1)

QH=- ar

(5)

obeying the conservation law 3,7(¢)+divQ(z)=0; V is
the volume of the system, and d is the characteristic
length of variation for the thermal flux flow [which is of
the order of the weak-link thickness, d =(r7)'/?]. The
overbar [e.g., in the right-hand side of Eq. (3)] denotes
configurational averaging over the randomly distributed
grain coordinates and, specifically,

(A(t))wERefowdt explint){ A (1)) ,

6)
A(r)= [drP(r)A(r,) .

Taking into account the equation of motion for the
Josephson pseudospins S;*, 172!

atSi_FE_ZSS—_‘:ZZJUSj_F (7)
J

from Egs. (1) and (5), we get an expression containing the
overall average of a linear combination of four pseudo-
spin correlators [times a J* factor as seen from Eq. (7)]
for the energy flux-energy flux-density correlator in Eq.
(3). At this stage it is customary to decouple the averag-
ing of the “grain distribution” (represented by the
“scattering potentials” J;;) from the carrier (“spins” or
phases) motion as in a common random-phase approx-
imation.?*® The argument is based on the different types
of relaxation time for these physical quantities: The re-
laxation of the scattering potentials is (obviously) quasi-
instantaneous (in some sense the carriers see a static ar-
ray), while the relaxation time of the “carriers” is finite
and has, in principle, to be taken self-consistently from
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the equation of motion; i.e., the “carrier’”’ (inverse) relaxa-
tion time is defined through the scattering mechanism,
i.e., through the characteristic frequency of the Joseph-
son network, 7~ !=2el R /#, where I, is the Josephson
critical current and R is the resistance between grains in
their normal state. However, it is also customary to let
this characteristic frequency go to zero afterwards and to
consider the steady state of Eq. (3), i.e., let ®—0 in Eq.
(6), in order to obtain the “experimentally correspond-
ing” thermal conductivity.

Another approximation is also used in order to avoid
the (usually rarely known in fact) four-spin correlator:
To obtain the final result, we thus also use the so-called
“mean-field  approximation”?®»2%  assuming  that
A(r;)B(r;)= A(r;)B(r;). This might require greater
care in the vicinity of a phase transition (see the corre-
sponding work of Ref. 26 for magnetic systems), but is a
standard procedure for random (quenched “disordered’’)
alloys.?’

Bearing these “random-phase—mean-field approxima-
tions,” the correlator appearing in the thermal-
conductivity definition reads

(8Q(1)6Q(0))

dJ*(T)
#

2
f(H/HY)[D(t)—L][D(O)—L], (8

where the magnetic field enters only through the (static)
average of the Josephson junction J;; network [as can be
seen by linearizing J;;(7, H) in the definition], i.e.,

fUH)= [dr,P(r,)exp[id, (H)] . )

Here P (r;) denotes the (static) grain-distribution function
and L(T) is the order parameter of the above model,
which is defined via the (in principle still time-dependent)
phase-phase correlator D,;(1)=(S;"(¢)S;7(0)) as

L(T)=1mD(t), D(t)= 3 D;(1), (10)
t— 0 i

but for which as explained above the w=0 limit is taken
(or equivalently by letting 1 — « ). However, note that
the equation of motion enters for defining the time-
dependent correlator value. In fact, in general, the time-
dependent correlator D(f) can be presented in the
form'%28

D(t)=L +(1—L)d(z) . (11)

Here the relaxation function ®(¢) is supposed to be nor-
malized, viz.,

1 po _
Tfo dt ®(1)=1, (12)

and obeys the boundary conditions &(0)=1 and
®(0)=0, i.e.,, D(0)=1 [see Eq. (11)]. This relaxation
time as explained above is taken to be finite and the
thermal conductivity is supposed to be measured after a
time 7, long enough (7, >>7) that the change in tempera-
ture (or the application of the thermal gradient in an ac
method) has been washed out by the fluctuations.

Finally, the thermal conductivity of a granular super-
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conductor reads

k(T,H)=(T,0)f (H /H,) , (13)
where
274
k(1,00=2LDT 14 _p (1) (14)
2y THV

The phase-locking temperature 7,, below which the
ensemble of grains undergoes the phase transition into
the coherent state,'> 2! is defined by the equation
kgT,=J(T,) with J(T)=J(0)(1—T/T;), where J(0) is
the Josephson energy at T =0 and T is the single-grain
superconducting  temperature. Since  usually!® ™!
T, << T, we can put J(T)=J(0) with a quite good accu-
racy. The mode-coupling approximation? for the corre-
lator D (t) results in the following temperature depen-
dence for the order parameter L (T)=1—(T /T, )%

(i) Above the phase-locking temperature, but below T,
the grains are in their decoupling state, and L =0. The
ensemble of grains behaves as if it consists of independent
oscillators obeying the Debye relaxation law
D (t)= exp(—t /7). In this case, as follows from Eq. (14),
the thermal conductivity is dominated by the Rayleigh-
like grain-boundary-scattering mechanism, namely,

d2J40)r

. (15)
2k, T*HV

«(T,0)=

(i) Below T,, where the coherent structure of the
Josephson network is established and thus L (T)50 [viz.,
L(T)=1—(T/T,)*], the thermal conductivity of a
granular superconductor follows the law [see Eq. (14)]

a0 .,

k(T,0)=
2k TV

(16)

As is well known, 3%31 such a T2 law for the thermal
conductivity reflects a glasslike response of any disor-
dered system. Thus such a behavior of k in the system
under consideration gives further evidence in favor of the
so-called glassy behavior (for the phases, equivalent to
the ‘“carriers”) induced by the Josephson-junction ar-
ray, 15-21 the origin of which can be traced to the (some-
what static) oxygen inhomogeneous distribution.

III. WIEDEMANN-FRANZ LAW

Furthermore, it is interesting to compare the above-
calculated thermal conductivity of a granular supercon-
ductor [Eq. (14)] with the longitudinal (normal to the ¢
axis) excess conductivity o(T,H)=0c**(T,H) due to the
electrical current-current correlations within the same
model, 2!

L [~ ar(8j%08;%0))

BT, H)=
T LH=3- 1 ),

(a,B=x,y,z) , 17)

where
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jU)=jHt)—j% o),
..\ 2le _
J(t)——ﬁ— isz,.jsﬁsj r;—H.c.

(18)

Repeating the same procedure we have used before to
derive Eq. (14), we find that above T, (where L =0)
o(T,0) has the form [cf. Eq. (15)]:

2d2J%0)r

o(T,0)=
kp T3V

(19)

Thus, in view of Egs. (15) and (19), we find that, near T,
[in the paracoherent state, where J(0)=k,T],

2 2

kg
e

=
2

«(T,0) _

o(T,0) T (20

This can be compared with the Wiedemann-Franz law
for normal metals, k /o0 =L, T, where L,=(7/3)*(kp /e)*
is the Lorentz number. It is worth noting that o =J 2,
and k=~J*, but in the paracoherent state the ratio turns
out to be, in a first approximation, J independent. We re-
call that the energy J is in principle § dependent (see Sec.
1D).

IV. WEAK-FIELD DEPENDENCE

Finally, turning to the magnetic-field behavior of the
weak-link-induced «(H), we stress that it strongly de-
pends on the form of the grain-distribution function
P(r;). Since the calculation of P(r;) is beyond the scope
of our paper, as is the use of the real form P(r;) for per-
forming the averaging in Eq. (9), we restrict ourselves to
two commonly used distributions for a theoretical illus-
tration. Namely, let us consider the Gaussian and
Lorentzian laws. If the randomness of the Josephson lat-
tice is governed by Gauss-like fluctuations of the form

2
T

P(l‘i)z ‘-55

1
p 1
v2s & ’ @1

the configurational averaging in Eq. (9) leads to a quadra-
tic field dependence of the TMR (W =k !):

WH)=W(0)+— . (22)

Here H,=¢,/2S is the characteristic Josephson field,
where S =1rrg2 is the effective junction surface (projected
area) and Ty is the grain size. On the other hand, a
Lorentz-like distribution law

g
(23)
r,-2+rg2

P(r;))=
results in an exponential behavior of the field-dependent
thermal conductivity,

k(H)=k(0)exp(—H /H,) . (24)

In more realistic situations when the anisotropy in grain
orientations (with respect to an applied magnetic field)
plays an important role, the above simple dependences
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for k(H) can be drastically modified. Moreover, Egs. (8),
(9), and (13) could allow one, at least in principle, to
reconstruct the form of the distribution function P(r;) of
any particular ceramics using the experimental depen-
dence of k(H) for this granular material.

V. CONCLUSION

To make more definite conclusions on the observability
of the thermal conductivity given by Egs. (15) and (16),
let us estimate the magnitude of « in such a model. As-
suming that V= r&f’ and d ~r, and using the typical pa-
rameters for HTS granular superconductors,*? r,=~10
um, 7=~10"%s, and T, =50 K, we get k~1 W/mK. This
value is quite comparable with other contributions to the
observed thermal conductivity of HTS ceramics. 13

In summary, the weak-link-induced thermal conduc-
tivity of a granular superconductor has been calculated
within the superconductive glass model with the view of
estimating the order of magnitude of such an effect for
fields below the first Abrikosov field. The weak-link
(oxygen-depleted) array is taken as a quenched disordered
system, but the relaxation mechanism of the phases (“car-
riers”’) leads to a finite characteristic relaxation time,
which in turn leads to the need to calculate the energy-
flux—energy-flux correlator in terms of a pseudospin-
pseudospin correlation function along lines of the mode-
coupling formalism. In order to do so, a so-called

random-phase approximation is made to decouple the
weak-link array of Josephson exchange energies (J;;)
from the pseudospins (S;). A molecular-field approxima-
tion is also made on the four-spin correlator, but the
two-spin correlator is calculated in the mode-coupling
approximation.

In the paracoherent state (T, >T >T,, where T is a
single-grain superconducting temperature and 7, is the
phase-locking temperature for the Josephson array), the
Rayleigh-like grain-boundary-scattering mechanism has
been found to dominate «(7T), whereas below T, (in the
coherent state) «(7T) follows a glasslike T2-dependence
law. The Wiedemann-Franz law appears to be nearly
satisfied in the paracoherent state of a granular supercon-
ductor. Furthermore, the magnetic-field dependence of
the thermal conductivity has been shown to be strongly
sensitive to the form of the grain-distribution function.
In particular, a Gauss-like distribution results in a quad-
ratic power-law dependence of the thermal magnetoresis-
tivity W, while the Lorentzian distribution leads to an ex-
ponential law for «(H).
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