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Stark ladder in a one-dimensional quasiperiodic system
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We have investigated the eFect of a uniform field F on the energy spectrum of the Harper model,
which includes an irrational co and the phase variable y as parameters. The energy levels E;(y), i HZ,
are periodic on y, E;(y+1)=E;(y), and form a two-dimensional (2D) pattern in the y-E plane. The
pattern which we term a 2D Wannier-Stark ladder (2DWSL) has 2D periodicity because of the equalities
E;(y)=iF+Eo(y+i~), i EZ. The energy spectrum is a vertical section of the 2DWSL through the
specified g and represents a quasiperiodic WSL.

The electronic structure of a quasiperiodic (QP) system
is of current interest in connection with quasicrystals. '

Much progress has been achieved from one-dimensional
(1D) models. The simplest of them is the Harper model,
whose Hamiltonian is given in the Wannier representa-
tion as follows:

characterizes the eigenstates. The present work will
present an answer to this question. We restrict our con-
siderations to the weak-field regime so that the interband
transition from the band included in the model to the
other bands omitted can be neglected. The Hamiltonian
is given by

Ho= —g (~n )(n + l~+ ~n +1)(n
~
)+ g ~n ) V„(n ~, H=HO+F (4)

V„=Vf (nto+tp), (2)

where ~n ) is the Wannier state localized on the site
n,f (x) —=2 sin(2srx) is the modulation function, V( & 0) is
the potential strength, co(0(co& 1) is an irrational num-
ber, and y is the phase variable. We adopt the transfer
integral and the lattice spacing as the units of energy and
length, respectively. The argument y„=nm+cp of V„ is
called a local phase. The modulation potential breaks the
translational symmetry of the system. More precisely,
the Hamiltonian Ho —=Ho(y) is transformed by the
translation operator U =g „~n + 1 ) ( n

~
as follows:

U 'Ho(tp) U =Ho(&p+co),

which follows from the property y„+ i =y„+co of the lo-
cal phase. The Harper model was originally derived as
the equation determining one-electron wave functions on
a two-dimensional (2D) rectangular lattice under a uni-
form magnetic field. In this view, y is essentially the
wave number along the second axis.

It has been established that the Harper model exhibits
a localization-delocalization transition as V is varied. '
All the eigenstates (wave functions) are extended, critical,
or localized for V & 1, V = 1, or V & 1, respectively, and,
consequently, the energy spectrum, which is independent
of y, is absolutely continuous, singular continuous, or
dense point, respectively.

The energy spectrum will be drastically changed by a
uniform electric field F as in the case of a periodic sys-
tem, where a uniform Wannier-Stark ladder (WSL) takes
place. There exist several works on this subject but
progress is still rudimentary probably because we have
not yet identified the proper quantum number which

where F,~=+„F~n)n(n~. Moreover, we consider only
the extended regime, i.e., the case for V&1. These re-
strictions will justify Zener's tilted band picture" on the
subject. Then the eigenstates are localized and the energy
spectrum becomes discrete. More precisely, the average
level spacing is equal to F and the extension of the eigen-
states is of the order l —=B/F, with B being the bandwidth
at the zero field. The energy levels form a WSL with
nonuniform spacing.

Prior to analyzing the structure of the WSL, we shall
note several properties of the Harper model in the ab-
sence of the field. ' The energy spectrum of Ho in the ab-
sence of the modulation potential V„ is composed of a
single band. The modulation potential expands the entire
bandwidth and, simultaneously, introduces an infinite
number of gaps. However, only a finite number of gaps
have appreciable magnitudes' if V & 1, so that the spec-
trum is composed virtually of a finite number of mini-
bands, among which the states of the entire band are
shared. It can be shown by using the gap labeling
theorem"" that the fraction of a miniband is written as
g=n —mco with n, m HZ. We may consider 1/g to be
the "lattice constant" of the miniband, while g is that of
the "reciprocal lattice. " We shall term the symbol [n, m]
the index of the miniband. Since 0 & g( 1, m is nonzero
and ~n ~/ m

~

is a rational approximant to to; n and m
have the same sign, which is equal to that of

~
n

~ /~ m
~

—co.

We can assume that n /I is a best approximant to co,' oth-
erwise the miniband can be divided into several smaller
ones. A sequence of best rational approximants to co is
obtained from the continued fraction expansion of co.

The energy spectrum of the Harper model has the center
of the inversion symmetry at the origin of the energy axis
and, consequently, the minibands are formed symmetri-
cally. This is because of the inversion symmetry of the
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E;(y)=E;,(y+co)+F, for all i HZ. Similarly, we ob-
tain 4,.(y+1)=%';(y) and 'Il;(y)= U4;, (y+co). It
turns out that

E, (y) =iF+Eo(q)+i co),

'0;(y)= U%0(y+ico) .
V=0. 1 V=0. 6

E,"(y+ 1)=E*+ (y),
E*(g)=E,* „(rp+co)+F . (10)

It follows that

E*(y+n men) =E*(y)+mF—.

Since Eo(y) is a periodic function with the unit period,
E, (y), with y being fixed, is quasiperiodic on i by Eq. (7).
The energy spectrum o(y) is a vertical section of the
2DWSL, so that its quasiperiodicity is ascribed to incom-
mensurability of the vertical axis with respect to the lat-
tice L. This structure of o.(y) is similar to that of an in-
commensurately modulated system. ' The 2DWSL is
completely specified by the single dispersion relation
Eo(rp) because E, (g) are it.s translations. Figure 2 shows
Eo(y) for several values of V but with co and F being the
same as in Fig. 1.

To take H (or the torus T'= R/Z) as the domain of y is
nothing but the extended {or reduced) zone scheme. Let
us consider the mapping i&Z~(icomodZ)HT'. Then
the image of Z is dense on T'. Consequently, the func-
tional form of E„(y) can be completely retrieved from
the data IE, (0)~i&ZJ via the plot of E, (0)—iF[=Eo(ice)] vs icomodZ(HT') because Eo(y) is a
continuous function. The dispersion curves in Figs. 1

and 2 have been obtained in this way by a numerical cal-
culation on finite but large samples. However, the energy
levels which are situated near both ends have been dis-
carded because they have suffered the boundary effect.

The Geld term F, preserves the inversion symmetry of
the modulation potential. We can conclude from this
that the space group of the 2I3WSL is represented by p2
and also that the dispersion relation Eo(y) has the
centers of the inversion symmetry at y=0 and 1/2.

If the dispersion curves belonging to two different
minibands cross, they must interact and, consequently,
reconnect so that the crossing is lifted. However, the
reconnection virtually cannot be observed in the case
where the interaction is very weak. This is usually the
case if the two minibands do not immediately neighbor.
This effect is similar to the magnetic breakdown in the de
Haas-Van Alphen effect. ' A miniband may be ahnost
isolated on account of the breakdown. We shall consider
below the contribution of such a miniband to the
2DWSL.

We assume that the energy levels E*(g),v&Z, derived
from an almost isolated miniband, are virtually continu-
ous functions of &p and E,*(y) (E*+i(y) for all v. Then
they form a subpattern of the 2DWSL, which is termed a
mini 2DWSL. It has the same translational symmetry as
that of the original 2DWSL but has not the inversion
symmetry, except. in the case of a symmetric miniband.
Consequently, there exist integers m and n such that

V=O. Z V=0, 8

V=0. 4 V=1. 0

1 0

FIG. 2. The dispersion relation Eo(y) for
V =0.1,0.2, 0.4,0.6,0.8, and 1.0, while co=co& and F =0.05. It
exhibits a number of oscillations in one period and the number
increases with V. It has many cusps for large Vs on account of
"crossing and reconnection. "

Equations (9) and (11) must be consistent with the fact
that the average level spacing is equal to F' =F/g with (-'
being the fraction of the miniband. We can easily show,
by using the irrationality of co and g, that this condition is
satisfied only when [n, m] indexes the miniband, i.e.,
g=n —mco. It is interesting that the index of the mini-
band determines completely the transformation property
of E*(y) with respect to the additive group L.

Equation (11) shows that E (y) is divided into a linear
term and the bounded one, E', (q&), with respect to the
variable y:

E,*(y)=mpF'+E', ((p) . (12)

The bounded term satisfies E„'(y+g)=E'(y) and
E'(qr)=E', (p+rI)+F' with g=p qco, where p an—d q
are integers satisfying pm —qn =1. We can assume that
p /q ( = ~p ~ /~ q ~

) is the rational approximant situated next
to n /m in the sequence of best approximants to co. It fol-
lows that

E'„(y)=vF'+Eo(y+ vn) .

The dispersions E' (qr) have the same translational sym-
metry as those of the Harper model with the lattice con-
stant I/g and the ratio co'=g/g'[=(p q~)/(n —mes—)],
which is a modular transformation of m. The appearance
of a hierarchical structure like this is characteristic of 1D
QP systems. "

Since the dispersion relation E=E*(q&) includes the
bias term m yF'( =myF/g)by Eq. (12), it exhib'its several
crossings (i.e., breakdowns) with those from other mini-
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bands when g is increased by g. We may assign the posi-
tive (or negative) sign to each crossing if it is down to up
(or up to down). Then we can conclude from Eq. (11)
that m =n+ n— , with n+ (or n ) being the number of
positive (or negative) crossings.

Equations (12) and (13) show that the average change
of E,*(y) as a function of y and v is given by the linear
function E (tp)—:(mtp+v)F'+C, with C being the aver-
age of Eo(y). The resulting averaged mini 2DWSL is a
linear grid with equal spacings; each grid line is specified
by v. The index [n, m] of the miniband agrees with that
of the direction nt, +mt2 of the grid lines, ~hose slopes
have the same sign as that of m. The grid yields a single
closed curve on the 2D torus T =—IR /L. The homology
class to which the curve belongs is indexed by n and m.
The appearance of such topological numbers may be re-
lated to the gauge-field nature of the magnetic field but
their physical origin is, as yet, an open question.

The various features described above are identified in
the 2DWSLs shown in Fig. 1. Equations (7) and (8) show
that the ith eigenstate has its own phase, /+leo, which is
the local phase of a representative site of the region
where the state is localized. That is, the phase variable is
a good quantum number to characterize the eigenstates.
Most properties of the Harper model under the field do
not depend on the choice of y but they are well under-
stood by considering the 2DWSL which shows the depen-

dence of the energy levels on y. This is because 2D
periodicity is latent in a 1D QP structure. '

The basic theory developed in the arguments between
Eqs. (5) and (8) does not assume V( 1, and applies to the
case V ~ 1 as well. For the latter case, however, the phys-
ical picture behind I' and/or V dependence of the
2DWSL awaits further investigation because the mini-
band picture is not justified.

The Fibonacci lattice is representative of 1D QP sys-
tems whose modulation functions take only discrete
values. ' Our preliminary calculation revealed that the
dispersion relation Eo(y) of this model has many discon-
tinuities. Therefore, analyticity of Eo(qr) depends criti-
cally on the modulation potential. This model awaits ex-
tensive investigation.

It has recently become known that QP superlattices'
as well as periodic ones can be manufactured and the
WSL has been observed in the case of a periodic superlat-
tice. ' An observation of the WSL of a QP system may
stimulate the search for a novel device because it not only
has fascinating features but also a high nonlinearity on
the field because of the tunneling effect.
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