
PHYSICAL REVIEW B VOLUME 48, NUMBER 6 1 AUGUST 1993-II

Theory for the electronic structure of high-T, superconductors

G. Baumgartel, 3. Schrnalian, and K.-H. Bennemann
Institute for Theoretical Physics, Preie Universitat Berlin, Arnimallee 1$, 1000 Berlin 89, Germany

(Received 18 February l993)

Using a three-band Hubbard Hamiltonian within a slave-boson mean-field approximation we
determine the doping dependence of the density of states in the Cu02 planes. We analyze in
detail the occurrence of local magnetic moments, their efFects on the electronic structure, and the
insulating state resulting from a charge transfer or a Mott-Hubbard gap. This theory permits a
treatment of highly correlated systems over the whole doping range and thus of the transition from
local moment to fully itinerant behavior. Using the density of states various magnetic, spectroscopic,
and transport properties are calculated. Our analysis sheds light on the difference of electron versus
hole doping and in particular on the doping dependence of the Cu-0 singlet and the Hall coeKcient.
More generally, by comparing with experimental data and theoretical results obtained by alternative
methods one learns more about the validity of the slave-boson mean-field theory. We also discuss
how the theory can be extended to include quantum Auctuations.

I. INTRODUCTION

The spectral density of the carrier states in high-T,
superconductors is of central interest with regards to an
understanding of the electronic properties of these mate-
rials. Experimental results suggest a complicated inter-
play between itinerant holes (electrons) and localized Cu
spins. The long-range antiferromagnetism depends sensi-
tively on the carrier concentration and exhibits an asym-
metric dependence on electron or hole doping. NMR and
neutron-scattering experiments indicate the existence of
magnetic correlations in the paramagnetic phase of the
cuprates. 3 Measurements of the optical conductivity in
La2Cu04 and Pr2Cu04 yield charge transfer gaps of the
order of 1.8eV and 1.4eV, respectively. These are also
observed by 0 1s x-ray-absorption spectroscopy (XAS)
(Ref. 5) and electron-energy-loss spectroscopy (EELS).s
The insulator-metal transition and the doping depen-
dence of the p and d character of the states at the
Fermi energy E~ and of E~ itself are presently studied
intensively. 7 s In particular, the latter problem is under
debate due to convicting experimental observations.

It is therefore important to develop an electronic the-
ory for the cuprates which is valid over a large doping
range and can describe localized behavior of the charge
carriers for small doping and strongly itinerant behavior
for larger doping. Furthermore, it is of interest to de-
termine the character of the elementary excitations and
to clarify whether it is possible to explain experimental
data within a quasiparticle picture.

In order to obtain a better understanding of the
spectral density several groups have studied the two-
dimensional Hubbard Hamiltonian and the t-J model
by diagonalizing small clusters exactly 3 or by using
the quantum Monte Carlo method. 4 These calcula-
tions show clearly the importance of strong correlations

for the electronic structure, in particular for the metal-
insulator transition and for the doping dependence of the
distribution of spectral weight. Interestingly, these stud-
ies also show that the energy dispersion of the quasi-
particles near the Fermi level resembles the dispersion
obtained in local-density-approximation~7 (LDA) calcu-
lations. Still, there are many open questions concerning,
for example, the relative weights of p and d states in
the various bands, the corresponding asymmetric behav-
ior of the antiferromagnetic phase upon hole or electron
doping, and the eKects of finite temperatures. In addi-
tion, it is very intriguing that Hall measurements
of moderately doped high-T, systems yield small car-
rier concentrations, while angular resolved photoernis-
sion studies ~ s (ARPES's) and angular resolved inverse
photoemission experiments2 (ARIPES's) find a large
Fermi surface.

The main goal of our paper is to present a theory for
the normal state of the Cu02 planes which covers the
whole doping range and is able to treat local magnetic
moments and the transition to itinerant behavior.
Within a slave-boson mean-field approximation to the
three-band Hubbard Hamiltonian we study the effects of
magnetic moments on the density of states, the dispersion
of the bands, and the metal-insulator transition. We also
investigate spin-singlet formation and the doping depen-
dence of the distribution of spectral weight, of the Fermi
energy and Fermi surface, and of the Hall coeKcient. If
we take into account charge and spin Huctuations of the
slave bosons beyond their mean-field values, then this
theory extends and includes our previous one for elemen-
tary excitations in itinerant systems and one expects
to get a workable theory for a variety of normal-state
properties of high-T, superconduetors.

Here, we present results of the mean-field version of our
theory. Since we determine self-consistently the occur-
rence of local magnetic moments on the copper sites, 2
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we can study systematically their e8'ects on the density
of states and related properties. We obtain that local
magnetic moments drive the metal-insulator transition
due to a charge-transfer gap and cause the formation
of a ligand hole band ("spin-singlet band" ) which has
a LDA-type dispersion. Upon hole doping the Fermi
level moves into the singlet band. For increasing hole
or electron doping the amplitude of the local moments
decreases and vanishes for x —0.4, reflecting a transition
to the itinerant regime. These results for the change of
the density of states with doping are compared in de-
tail with XAS, EELS, and photoemission experiments.
It is very interesting that our effective mean-field theory
agrees with many experimental data and with important
results found in exact cluster calculations. Thus, we be-
lieve that this model is a good starting point for further
investigation of relevant problems such as the magnetic
phase diagram and elementary excitations. For example,
our three-band theory is able to explain the difference
between electron and hole doping3 observed in the anti-
ferromagnetic phase and the unusual doping and temper-
ature dependence of the static spin susceptibility. i From
comparison with experiment and alternative calculations
we also see the shortcomings of our theory with respect
to many-particle excitations. However, we can address
a variety of problems which are not easily accessible to
exact cluster calculations.

In Sec. II we first describe the slave-boson transforma-
tion and the approximations made to obtain a workable
mean-field theory. Then we sketch briefly how the theory
can be improved by the inclusion of quantum fluctuations
of the bosons. In Sec. III we present our results and crit-
ically discuss the validity of our model. In Sec. IV we
indicate the implications of our results and discuss the
potential of our model concerning the understanding of
the magnetic phase diagram and the static spin suscep-
tibility.

II. THEORY

We start from the three-band Hubbard Hamiltonian
for the Cu 3d~2 y2 and 0 2@~ „orbitals in the Cu02
planes:

~=) (&~ —v)f,'.f& + ).(~& —v)p,'. p'
j,o. Z) O', CL

+t ). ~., (p,'..f,.+H')+ U). f,', f,&f,', f, i

electron-doped superconductors, where 4/t and U/t are
taken from recent cluster and quantum Monte Carlo
calculations.

In order to treat the eKects of strong electronic corre-
lations, we use the spin-rotation-invariant formulation
of the slave-boson method of Kotliar and Ruckenstein. ~

In this approach, one introduces pseudofermions dj and
auxiliary bosons ej, 8j~~~, and b~, which label the empty,
singly occupied, and doubly occupied states on a Cu site
in an enlarged Hilbert space, respectively. The atomic
states at site j corresponding to the empty site, the singly
occupied site with spin o.

, and the doubly occupied site
are then obtained from

~Oj) = et ~vac),

[oj) = ) si , di , ~vac),

(2a)

(2b)

~ jo / jocr' jo' '

The choice of zj is not unique. Here, we use

z~ = [(1 —bib~)rp —sos ]
~ (ebs + sent~)

x [(1 —ei e~ )~p —si s ] (4)

which leads to the well-known Gutzwiller approximation
in the Pauli-paramagnetic saddle-point approxima-
tion. ' The matrix structure of the boson 8~

(~s~) is necessary to preserve the spin-rotation in-

variance of the original Hamiltonian. Usually 8~ is
represented by its projections onto the Pauli matrices
w = (~~, 7.„,w, ) and the unit matrix wp so that s„
~tr(~„s ). The operator s, is the time reversed com-

plement of s . Since e~, s~p, s~ = (s~, s~„,s~, ), and 6'~

obey bosonic commutation relations, there are unphysi-
cal states in the new Hilbert space which are eliminated
by the local constraints

Q~ =e e +~sspp~+s~ s~+6.$ —] =O, (5a)

(5b)

I Tl j) = ~,'d,'&d,'& I ),
where the pseudofermions dj are related to the original
fermions f~ via

Here, f&~ (@&i ) creates a hole at a Cu (0) site l with
spin cr and sd (s„) are the corresponding on-site ener-
gies. t is the nearest-neighbor Cu-0 hopping integral,
U is the Coulomb repulsion between Cu holes, and p,

is the chemical potential of the system. The p~ —d
and p„—d hopping matrix elements tp, ~ alternate in
sign in the x and y directions, respectively. 32 In the
following we use the parameters 6 = z„—c& ——3eV,
U = 8eV, and t = 1.1 eV for hole-doped superconduc-
tors and 4 = 2 4eV, U = 8eV, and t = 0 96eV for

IXlj = Sp S~ + S~ Sp~ + t(S~ X S~) =

(5c)
The Hamiltonian of Eq. (1) can now be written in terms
of the pseudofermion and slave-boson operators as

H = H,s + ) (U6'i6~ + v~Q~ —Ap~n~ + A~ m~) . (6)
2
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The efFective Hamiltonian H, g which does not contain
direct fermion-fermion interactions is given by

H,„=) d (( „—p+Ao, ) ~ —A, o )d,
j,o cr'

+ ).(e, —V)p,'. p'
2, (7)0,'

) ~(pt z, .d, + Hc).
ij,cro', a

(7)

vj, Apj, and Aj are Lagrange multipliers which act as
internal molecular fields and zj takes the bosonic
hopping processes into account that accompany any
fermionic hopping.

The advantage of the slave-boson formulation is the
possibility to perform nonperturbative approximations
which are not limited to specific values of U/t One.

powerful approach is the expansion of the thermody-
namical potential with respect to the number of closed
boson loops. In zeroth order this is equivalent to the
static saddle-point approximation. In this mean-field ap-
proximation one neglects the quantum fluctuations of the
bosons which are assumed to be numbers.

In the following, we study in detail the mean-field ap-
proach which is a prerequisite for any systematic inclu-
sion of quantum fluctuations. Consequently, H,g is an

effective single-particle Hamiltonian with renormalized
on-site energy and hopping element. The molecular fields
A()~ and A~ are determined self-consistently by a mini-
mization of the ground-state energy of the Hamiltonian
in Eq. (6). Concerning the treatment of H,g at the sad-
dle point this extends our previous theory~" which as-
sumed Aj = 0 appropriate for itinerant systems with
larger doping. As usual Aoj is considered to be site inde-
pendent. For A~ we assume at each site A~ = +(0, 0, A)
with equal probability so that zj~~l = zj~b~~~. The fic-
titious alloy resulting from the random distribution of
magnetic molecular fields is treated within the single-site
coherent-potential approximation (CPA) (Refs. 25 and
28) by applying the CPA formulation due to Shibas
to the three-band Hubbard model. We then obtain from
H,s the d-state contribution to the spin-resolved density
of states at a site j with a given molecular field A~ which
is embedded in the CPA medium:

For the density of states, g„~ (w) =
2 g,NN g„, , of the

oxygen sites around a Cu site j with a given molecular
field Aj, we obtain

g„, (cu) = ——Im & (9)

Here, the coherent locator Z(w) is the generalization of
the CPA self-energy for a system with off-diagonal dis-
order (resulting from the z~ ). It describes the effective
medium of the holes and is determined from the CPA
condition

F(w) = ( E'(w) '+ E~ {~)—c(w) ) (10)

( ), refers to averaging with respect to A~, E~ (cu) =
({o—e& —Ao+oA~, )/z. , and the auxiliary Green's func-
tion F(w) is given by

F(~) =
4t2 -

(cu —e„)l:(~)/(4t2) —p~2
'

4t2 ')
The total copper and oxygen densities of states g~ and
g„are obtained from Eqs. (8) and (9) by averaging with

The coherence factor p), = sin (k /2) + sin (A:„/2) de-

scribes nearest-neighbor Cu-0 hopping processes, where
and k„are given in units of the Cu-Cu bond length.

The intersite Green's function, which is averaged over the
nearest copper neighbors of j, reads

respect to Aj. The densities of states are strongly af-
fected by the presence of local moments whose existence
and magnitude are determined self-consistently by a min-
imization of the ground-state energy. The existence of
local moments in our mean-field theory corresponds to
a localized behavior of copper spins on the time scale of
the hopping processes.

Note that g~(a) is the (normalized) density of states of
the pseudofermions d~ . As in any slave-boson mean-field
approach the density of states of the original fermions,
—ilmF(cu), is not normalized because the constraints
of Eqs. (5) are fulfilled only on average. However, the
transformation d~ ~ f~ will not change the position
of the bands since Im(z~ ) = 0 in our mean-field theory.
Furthermore, we obtain only a slight renormalization
of the hopping (z~ = 1), and there is solely a small
difference between original fermions and pseudofermions
so that gg(w) = ——ImF(u). Obviously, the p states
are not affected by the slave-boson transformation and
the p, ~ describe still original fermions. The Fermi en-

ergy is determined from the total number of particles,
n = d(H)/dy, . Thus, it—follows from Eqs. (6) and (7)
that E~ is the Fermi energy of the p, ~ and dj . In the
following, we consider for the Cu states only the pseud-
ofermions, bearing in mind that this does not affect the
principal structure of the density of states. It is of course
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tempting to speculate that the missing states of the orig-
inal fermions belong to the incoherent part of the spec-
trum which cannot be described in a quasiparticle pic-
ture.

We derived that the local densities of states, g~(»(w),
of the paramagnetic and antiferromagnetic phases can be
expressed by g~&»(u) K(h(w)) where the characteristics
of the d(p) states are properly weighted by g~(»(cu) and

K(z) = P

depends on the function h(~) which describes mainly the
lattice structure. While K(z) is approximatedss by 2(z—
1 —v'z2 —2z), we use exact expressions for gd(»(~) and
h(~).

The consideration of Gaussian fluctuations of the
bosons around their saddle-point values in the spirit of
our previous work [e.g. , e, (r) = e, ,~ + 6e, (w)] is straight-
forward but causes computational problems. The inter-
action of the fermions with the fluctuating bosons leads
to a renormalization of the boson propagator. However,
in contrast to the Pauli-paramagnetic case the spin and
charge quantum fluctuations are not decoupled. Further-
more, as in the linear-response formulation of the CPA
(Ref. 40) one has to include vertex corrections in the
boson self-energy. From this one finally obtains a renor-
malized fermion Green's function. Our results of this
approach for the static spin susceptibility indicate an in-
teresting doping and temperature dependence. s~

For the following numerical analysis, we apply the
saddle-point approximation to the effective Hamiltonian
of Eq. (7) and calculate the density of states from Eqs. (8)
and (9).

III. RESULTS AND DISCUSSION
Using the above theory we present now results for the

metal-insulator transition and for the doping dependence
of the density of states, of the Cu-0 singlet, and of the
Fermi surface. We then determine the Hall coeKcient
and discuss its relation to the energy dispersion of the
bands. This should demonstrate whether our approxi-
mation yields already important experimental facts and
results obtained by other theories.

In Figs. 1 and 2(a) we show results for the dependence
of the density of states, g~(»(u), on 4 and U. In the
case of a weakly correlated system we obtain a metal.
However, if U and 4 are larger than certain critical val-
ues U, and A„we obtain a Mott-Hubbard insulator for
U & 6 and a charge-transfer insulator for U & L. The
resultant metal-insulator phase diagram is also shown.
Most importantly we obtain in agreement with experi-
mental results a density of states with a charge-transfer
gap using parameters 4 and U appropriate for the high-
T, materials. By contrast, for a Pauli-paramagnetic
(Brinkmann-Rice) localization, i.e. , t,rf = z, t ~ 0, the

critical A/t & 4 2+ ~ = 6.7 is too large to describe

the metal-insulator transition of the cuprates. Our re-
sults are supported by a recent variational Monte Carlo
calculation4s for the two-dimensional three-band Hub-
bard model which suggests the absence of a Brinkmann-
Rice transition.

Our results also shed light on the origin of the spec-
tral density structure, which is strongly influenced by
the formation of local magnetic moments. We find that
the density of states has two copper-dominated Hubbard
bands separated by about U, a nonbonding oxygen band
at e„=0, and two oxygen-dominated ligand hole bands
in the vicinity of s„; see Fig. 2(a). The ligand hole band
below z„has mainly bonding character due to the hy-
bridization of oxygen hole states with copper states at
e~& + U and forms the singlet state. Similarly, the ligand
hole band above z„has mainly antibonding character due
to the hybridization of oxygen hole states with copper
states at e& and forms the triplet state. Analyzing in
more detail the densities of states of the charge transfer
[Fig. 2(a)] and the Mott-Hubbard [Fig. 1(b)] insulator we
find that for increasing 4/U the lower ligand hole band
of the charge-transfer system changes gradually into an
upper Hubbard band. This behavior was also obtained
in a recent exact cluster calculation and shows that our
mean-field theory can reproduce the essential features of
the bands in the insulating state. Summarizing, our the-
ory yields properly the existence of two Hubbard bands
and of two ligand hole bands due to the hybridization of p
and d states. The positions of these bands are in surpris-
ingly good agreement with exact calculations and
experiment.
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FIG. 1. Results for the copper (solid line) and the oxy-
gen (dashed line) density of states for various E and U.
The nonbonding oxygen band (nb) at s„= 0 is a 6 func-
tion due to setting the oxygen-oxygen overlap t„„=0. (a)
refers to weak correlations yielding a metallic phase and (b)
refers to a Mott-Hubbard insulator. In (c) we show the
metal-insulator phase diagram resulting from the occurrence
of a gap in the density of states (solid line). For compari-
son the metal-insulator transition due to a Brinkmann-Rice
localization (z~. —+ 0) is also shown (dashed line).



THEORY FOR THE ELECTRONIC STRUCTURE OF HIGH-T, . . . 3987

0.4—
0.3 :
0.2

0.1

0

0.4

I I I
I

I I

charge transfer
insulator

Inb ~&
I~ I

I
I

( I
& I I
IE~ )

Ox

l I

EF
I

I
I I

x=o
U=8eV
b, =3eV
t=i. ieV

(a)

x=0.2

0.3

0.2

0.1

0

0.4 EF x=0.35

0.3

0.2

0.1

0
—5 E 0

a) [eV]

(e)
s i I

FIG. 2. Dependence of the paramagnetic copper density
of states (solid line) and oxygen density of states (dashed
line) on hole doping for typical parameter values of high-T,
superconductors. The charge-transfer gap (EcT) is reduced
upon doping with holes and disappears at x = 0.325.

In Fig. 3 we present results for the spin distribution in
the various bands. These refer to a Cu site which "feels"
a molecular field A~ = (O, O, A) . We find the physically
very interesting result that the oxygen spin polarization
in the lower ligand hole band is predominantly antipar-
allel to the neighboring Cu spins in the lower Hubbard
band, reflecting spin-singlet formation. Upon doping

the tendency towards singlet formation gets weaker, but
persists up to the disappearance of local moments. The
nonbonding oxygen state separates the singlet band from
the triplet one above e„.

The doping dependence of the density of states shown
in Fig. 2 compares satisfactorily with experiment. For
x = 0 we obtain charge-transfer gaps of 1 eV and 1.2eU
in the local moment phase and of 2eU and 2.3eV in
the antiferromagnetic phase for electron- and hole-doped
systems, respectively (experimental observations at room
temperature, 1.4eV and 1.8eV). Upon hole doping the
Fermi energy moves fi.rst to the bottom of the ligand hole
band, whereas for electron-doped systems E~ is close to
the top of the lower Hubbard band. This is also ob-
served in XAS (Ref. 5) and EELS (Ref. 6) experiments
for La2 ~Sr Cu04, where the change of the threshold en-
ergy due to small hole doping coincides with the observed
optical gap of the undoped compound. Upon further dop-
ing up to x = 0.3 the Fermi energy changes slightly by
0.35eV (EELS experiment, s 0.3eV; photoemission ex-
periment for Bi2Sr2Caq Y CuqOs+p, 0.4 eV). This
weak doping dependence of E~ results from the shrinking
of the charge-transfer gap and differs from rigid-band be-
havior, yielding 0.6eV. Also, for increasing hole concen-
tration the magnetic moments (m = 0.68 for z = 0) de-
crease first slowly up to x = 0.275, then rapidly, and dis-
appear for x 0.4. For x = 0.325 the gap vanishes and
we obtain a single band below z„ in agreement with EELS
experiments. This justifies our previous assumption of
Pauli paramagnetism for larger hole doping. A similar
situation occurs for electron doping; see Fig. 4. How-
ever, there are important differences concerning the rel-
ative change of the Cu and 0 occupation numbers upon
doping. For ~x~ = 0.15 we obtain An~/n~ = 1.8% for
hole doping (i.e. , the holes go mainly to the oxygen sites)
and And/ng = 16.7% for electron doping. The latter
result agrees well with the reduction of the Cu 2@3/2 ab-
sorption line (14+4%) determined for Ndq ssCeo qsCu04
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by EELS. Comparing with photoemission experiments
by Allen et at. 7 it is interesting that we find in agree-
ment with other calculations ' and recent photoemis-
sion studies no pinning of E~ in the the charge-transfer
gap.

As can be seen from Figs. 2 and 4 the lower Hubbard
band is shifted towards higher energies with increasing
hole doping, whereas the singlet band moves towards
lower energies for increasing electron doping. This corre-
sponds to a transfer of states in the direction of the band
containing the Fermi energy and is related to the transfer
of spectral weight found in e~act cluster-diagonalization
studies ~ where the weight of the band at the Fermi level
increases with doping. Our mean-field theory yields only
a spectral weight transfer resulting from the gradual clos-
ing of the gaps between the lower Hubbard band and the
singlet band and between the triplet band and the upper
Hubbard band, but it does not describe spectral weight
transfer across the gaps. Thus, our estimate of the doping
dependence of the Fermi energy might need correction.
For larger doping when the lower Hubbard band and the
singlet band overlap this defect of our theory becomes
less important.

In Fig. 5 results are shown for the doping dependence
of the Fermi surface determined from the momentum dis-
tribution n(k) = (dk dy + g pI, pI, ~) and defined
by the condition n(k) = 2. We obtain in agreement
with exact cluster calculations and a recent alloy-
analogy approximation of the Hubbard model, a large
Fermi surface fulfilling the Luttinger theorem. In order

FIG, 5. Doping dependence of the Fermi surface which
separates points in momentum space with n(k) ) — and
n(k) ( 2. The solid line refers to the hole concentration
x = 0, the dashed line to x = 0.2, and the dotted line to
x = 0.35.

to understand the existence of a large Fermi surface in a
slightly doped charge transfer insulator, note that for a
given momentum k the sum of occupied and unoccupied
weights is normalized to 1 only if one adds up the contri-
butions from the lower Hubbard band and the lower lig-
and hole band (or upper Hubbard band and upper ligand
hole band), but it is not normalized in one of the sub-
bands. For each k there are then contributions to n(k)
from both these bands. Therefore, for small hole doping
the existence of states in the lower Hubbard band with
n(k) & 2 causes the formation of a large Fermi surface
around I'. In order to illustrate this we show in Fig. 6 the
dependence of the momentum distribution n(k) on hole
doping. Clearly, the Fermi surface is shifted towards the
I' point for increasing doping. Prom Fig. 6 it can also
be seen that for smaller hole doping (2: ( 0.35) the most
significant changes of n(k) occur first near the M point
k = (7r, ~) (x ( 0.1) and then near the A point k = (vr, 0)
(0.1 ( z ( 0.35). For larger doping the Fermi surface fi-
nally separates regions with n(k) 1 and n(k) = 0.
These results are in agreement with a recent exact cluster
calculation by Ohta et aL and a high-temperature ex-
pansion by Singh and Glenister. In our theory we then
obtain for moderate hole doping that the states near the
Fermi energy which are progressively filled upon doping
are mostly in the vicinity of (m, vr) and (7r, 0) (Ref. 50)
and not at the Fermi surface. These states in the lower
ligand hole band should mainly determine the density of
states at the Fermi energy and the transport properties
in hole-doped systems. One may argue similarly in the
case of electron doping.

In Fig. 7 we show results for the paramagnetic energy
dispersion zI, in the lower Hubbard band and the lower
ligand hole band. Although the momentum k is not a
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FIG. 6. Results for the momentum distribution n(k) for various hole concentrations. Note that the most significant changes
of n(k) upon doping do not occur at the Fermi surface where n(k) =

~ but at the M and A points.

good quantum number in the CPA, the energy dispersion
ck can be obtained approximately from the maximum
of the momentum-dependent density of states, g(k, w).
Despite their different physical origin the dispersion of

these bands is very similar to that of the lower band in a
Pauli-paramagnetic Hartree-Fock calculation. This sur-
prising fact is due to the bonding character of all these
bands. However, in a Hartree-Fock calculation for x = 0
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FIG. 7. Calculated dispersion (hole picture) of the lower Hubbard band (A) and the lower ligand hole band (B) in the
paramagnetic phase for 2: = 0 (a) and x = 0.25 (b). The dashed line refers to the bonding band in the Pauli-paramagnetic
state obtained using the Hartree-Fock approximation. Note that in the case of a Pauli-paramagnetic phase the Fermi level is in
the middle of the band for half filling, whereas the local moment phase is insulating . The crosses denote electron states from
ARPES's (Ref. 23) and the large bars (representing experimental resolution) hole states from ARIPES's (Refs. 23 and 24).
The inset shows the doping dependence of the e8'ective Fermi surface obtained from cI, = E~. The arrow indicates increasing
hole doping from x = 0.1 to x = 0.25 and x = 0.35.
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the Fermi level is in the middle of the band, whereas
the local moment phase is insulating. The A: dependence
of our energy dispersion is basically in agreement with
photoemission data and exact cluster calculations. As
can be seen from Fig. 7(b) our bandwidths are too large,
and for x = 0.25 the position of E~ with respect to the
X point is not correct. This is probably related to the
fact that our mean-field theory does not yield an incoher-
ent contribution to the spectral density. In exact cluster
calculations a broad incoherent part of the spectrum is
complemented by a very narrow coherent feature which
disperses through the Fermi energy and which is rapidly
filled upon doping.

It follows from the above results that the momentum
states at the Fermi surface (k = k~) difFer from those
with sg = Ff;. The latter ones may define an effective
Fermi surface which contains the momentum states near
the Fermi energy. These states determine the behavior
of the low-lying excitations and are mainly responsible
for transport properties such as the Hall coefficient. The
doping dependence of the effectiije Fermi surface is illus-
trated in the inset of Fig. 7. For small hole concentra-
tions hole pockets near k = (+x, +n) occur, which grow
upon doping. For z = 0.3 (just before the charge-transfer
gap vanishes) the character of the efFective Fermi surface
changes and we obtain a closed Fermi surface filled with
electrons. Again, corresponding results are obtained for
electron doping. Thus, for larger doping the effective
Fermi surface and the Fermi surface defined from n(k)
coincide. For x & 0.3 the two Fermi surfaces are dif-
ferent. By contrast, in exact cluster calculations for
x O. l the Fermi surface determined from ct, is already
closed.

We conclude that our Fermi surface determined from
n(k) is in agreement with cluster calculations, since n(k)
is determined from all contributions to the spectrum. By
contrast, for determining the Fermi surface from the en-
ergy dispersion it is important to distinguish between
the coherent and the incoherent parts of the spectrum.
Nevertheless, we expect that for very small doping the ef
fective Fermi surface consists of hole or electron pockets
even if a significant part of the spectrum is incoherent.
For large doping we have already argued that our the-
ory should yield satisfactory results. Thus, we consider
our results for intermediate doping as an interpolation
between those obtained for large and very small carrier
concentrations.

In Fig. 8 we show the doping dependence of the Hall
coefFicient calculated within the Kubo formalism for dis-
ordered alloys which is independent of the actual def-
inition of the Fermi surface. Concerning the validity of
our theory it is significant that our results for RH are in
good quantitative agreement with experiment. We
obtain in particular the sign change of the Hall coeffi-
cient upon electron or hole doping. The sign change and
the divergence of the Hall coefficient appear to be incon-
sistent with the doping dependence of the Fermi surface
shown in Fig. 5. However, since the transport properties
are determined by the states at the Fermi energy, the cur-
vature of the efj'ective Fermi surface is responsible for the
doping dependence of the Hall coefficient. This can be
seen from the agreement of our results for BH obtained
from the Kubo formalism with those determined from
the energy dispersion and the Boltzmann equation fol-
lowing Ref. 52; see Fig. 8. For example, the hole pockets
of the effective Fermi surface near k = (her, +7r) lead to a
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FIG. 8. Theoretical results for the Hall coefficient R~ of electron-doped (x ( 0) and hole-doped (x ) 0) Cu02 planes are
compared with experimental data. The solid lines show our results obtained from the Kubo formalism for disordered alloys. The
dashed lines refer to results calculated from the relaxation time approximation of the Boltzmann equation and the dispersion
of the bands shown in Fig. 7.
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negative effective mass of the electrons and a divergence
of the Hall coefIicient. For larger doping the effective
Fermi surface is closed and the electrons have a posi-
tive effective mass, causing the sign change of B~. De-
spite the above-mentioned uncertainties concerning our
results for the effective Fermi surface, we believe that
we correctly describe the divergent behavior of BH for
very small doping and the occurrence of a sign change
for larger doping. The rapid formation of a large effec-
tive Fermi surface upon doping is due to the fact that
the momentum states with a maximum in g(k, a) close
to the top of the lower Hubbard band (relevant in the
case of electron doping) or the bottom of the lower lig-
and hole band (relevant for hole doping) have only a rel-
atively small weight within the respective subband. Con-
sequently, the intriguing doping dependence of BH may
result from an unusual behavior of the Fermi surface in
a slightly doped charge-transfer system where the bands
are split due to strong correlations.

IV. CONCLUSIONS

We have presented a mean-field theory which describes
the transition from local magnetic moment to itinerant
behavior in the CuO& planes. The theory is able to treat
the whole doping range and indicates clearly the signifi-
cance of local magnetic moments for the electronic struc-
ture. The essential approximations are the slave-boson
saddle-point approximation which neglects quantum fIuc-
tuations and the CPA for treating the site dependence of
the magnetic molecular field. We have compared our
results in detail with experimental data and with alter-
native calculations. From this we conclude that we can
correctly describe the metal-insulator transition, the en-
ergy dispersion of the bands, the Cu-0 singlet formation,
and the doping dependence of the Fermi surface [defined
by n(k) = zj. Our results for the doping dependence
of the density of states and of the Hall coefIicient are
also in satisfactory agreement with experiment. In order
to distinguish between coherent and incoherent contri-
butions to the spectral density it will be important to
include quantum fIuctuations following the treatment of
our previous work.

Summarizing, we have developed a mean-field ap-
proach to the paramagnetic phase of a strongly corre-
lated system which differs from the conventional slave-
boson saddle-point approximations, where the magnetic
molecular field is neglected. The approach has impor-
tant consequences for systems close to half filling, since it
leads to a metal-insulator transition resulting from band
splitting. This is different from the Brinkmann-Rice lo-
calization obtained in the slave-boson mean-field theory
for the Pauli-paramagnetic phase. Note that we do not
a priori exclude this localization, but it does not occur
for energetical reasons.

It is important that our model can be straightforwardly
extended to describe the asymmetric behavior of the an-
tiferromagnetic phase upon electron or hole doping3 and
also the unusual doping and temperature dependence of
the static spin susceptibility if we take into account
possible short-range magnetic order in the local moment
phase. For electron-doped systems we then find a break-
down of the three-dimensional antiferromagnetism and
a transition to the paramagnetic phase with local mag-
netic moments at 2:, = 0.09 (experiment, 2:, 0.14)
due to magnetic dilution. In hole-doped systems the car-
riers go to the oxygen sites and the three-dimensional
antiferromagnetism is destroyed by singlet-induced frus-
tration at x, = 0.025 (experiment, 2:, 0.02). For
x ) 0.03 pronounced two-dimensional short-range order
occurs. Correspondingly, the spin susceptibility for small
hole doping and at low temperatures is suppressed due
to antiferromagnetic correlations. For intermediate dop-
ing, when the magnetic correlations between the local
moment are small, we obtain a Curie-Weiss-like behav-
ior of the susceptibility. For 2; ) 0.4 the magnetic mo-
ments disappear and we find temperature-independent
Pauli susceptibility. This behavior is in good agreement
with experimental results.
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