
PHYSICAL REVIEW B VOLUME 48, NUMBER 6

Attractive Hubbard model on a triangular lattice

1 AUGUST 1993-II

Raimundo R. dos Santos*
Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Caixa Postal 88071,

M/52-0'/0 Rio de Janeiro, Brazil
(Received 28 January 1993)

We study the attractive (i.e., negative-U) Hubbard model on a triangular lattice. A strong-
coupling analysis indicates that a charge-density-wave (CDW) state cannot be formed for any band
filling due to frustration, while pairing correlations are robust. Quantum Monte Carlo simulations
confirm the absence of a CDW state for intermediate couplings, and show that the critical tempera-
ture for superconductivity is higher close to half-Ailing, unlike the square lattice. Also, the behavior
of the uniform magnetic susceptibility suggests that the precursor spin-gap phase is not affected by
frustration.

I. INTRODUCTION

The formation of local (or real-space) electron pairs is
believed to be relevant to explain a variety of phenom-
ena such as unconventional properties in some supercon-
ducting materials, the existence of charge-density waves
in narrow-band systems, the properties of negative-U
centers in semiconductors, polymer conductivity, and
heavy-fermion superconductivity; see Ref. 1 for a list of
references. Electron pairs may be formed in narrow-
band systems due to a local attractive short-ranged
effective interaction, which in turn can be explained
through microscopic mechanisms such as electronic cou-
pling to either local phonon modes or to internal de-
grees of freedom (excitons, plasmons, or other electronic
subsystemss s). The Hubbard model with on-site attrac-
tive (i.e. , negative-U) interaction contains the basic in-
gredients to describe these systems, though in some cases
a nearest-neighbor interaction must also be included to
account for the observed properties.

Recently, this model has been the subject of renewed
interest, 7 ii motivated by the short coherence lengths of
superconducting electron pairs in high-'1", ceramic ma-
terials and by a suggestion that superconductivity in
buckminster fullerenes could be explained along similar
lines. ~ As a result of mappings onto different models
and several calculations, the following picture emerges for
the attractive Hubbard model on bipartite lattices:
Superconductivity sets in at a critical temperature T„
which depends on the band filling and on U. Two regimes
of U should be distinguished: For weak coupling, with
lower T„ the system goes from a high-temperature nor-
mal metallic state to a superconductor; for strong cou-
pling, the transition corresponds to a condensation of
preformed pairs (in the spin-gap phase ) into a state
with long-range order. At half-filling (p = 1), a charge-
density-wave (CDW) state coexists with the supercon-
ducting state. '7'8 On a square lattice and at half-filling,
one then has T, = 0 for any U ( 0; away from half-filling
and for fixed U, the superconducting critical tempera-
ture rises sharply from zero, displaying a maximum at
some intermediate filling, and falling again to zero as

p ~ 0 or 2 (see Ref. 8).
The situation for nonbipartite lattices is less clear.

For instance, some features found for the square lattice
should be different on a triangular lattice as a result of
frustration. With this in mind, here we study the attrac-
tive Hubbard model on a triangular lattice, by means
of strong-coupling analyses and quantum Monte Carlo
(MC) simulations. We focus on the interplay between
CDW states and superconductivity, on the phase dia-
gram T, versus p, and on whether a spin-gap phase per-
sists above T, . The layout of the paper is as follows. In
Sec. II we discuss particle-hole transformations and the
strong-coupling limits of both the attractive and repul-
sive models. In Sec. III we briefly outline the quantum
Monte Carlo background as well as the finite-size scaling
hypothesis for the pairing correlation functions. The re-
sults are displayed and discussed in Sec. IV, and Sec. V
summarizes our findings.

II. PARTICLE-HOLE TRANSFORMATIONS AND
STRONG-COUPLING LIMITS

The Hubbard Hamiltonian can be written as

'K = —t ) (c, t~, +H. t:.) + U) (n, ~
—2)(n;i —-')

where the sums run over sites of a triangular lattice, (i, J')

denotes nearest-neighbor sites, H.c. stands for Hermitian

conjugate, and c, (c, ) creates (annihilates) a fermion
at site i with spin o.; U ( 0 is the attractive on-site
interaction, and p is the chemical potential controlling
the band filling. On a triangular lattice, the nearest-
neighbor (NN) sites of a site located at the origin are
located at +ay, +a2, and +a3, with

~+ 3Y a3 =
2 x+ 35'

(2)
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where x and y are the Cartesian unit vectors.
A full particle-hole transformation takes electrons with

a given polarization into holes with the same polariza-
tion,

such that

c, ~c, =(—1)'c, ,

nj~ + nj ~ —1 nj~) (4)

+U) (ntT —~)(n, g
—~)+li).n, —2liN, , (5)

where

if NN pairs are along + ai or + a2,
if NN pairs are along + a3, (6)

reHecting the fact that the triangular lattice is tripartite.
The difFerent possibilities displayed in Eq. (6) indicate
that there is no particle-hole symmetry, unless the hop-
ping along +a3 is disabled; this situation would be topo-
logically equivalent to a square lattice. As a consequence,
p, = 0 does not correspond to half-filling, as it does for
bipartite lattices.

A spin-doion particle-hole transformationis i4 (|.-PHT)
leaves electrons with an up spin unchanged, while taking
electrons with a down spin into holes:

c~t ~ c~t and c~i ~ c~& ——(—1) c~g,

thus essentially preserving charge and spin degrees of
freedom. The Hamiltonian (1) becomes

tt = —) tc c; ct + H.c.)

Similarly to bipartite lattices, the attractive model is
equivalent to a repulsive model with chemical potential
p = 0, in the presence of a magnetic field h = 2p, . Also, as
discussed previously, pairing and charge-density-wave
(CDW) correlations associated with the attractive model
become, respectively, planar (i.e. , xx and yy) and zz stag-
gered magnetization correlations in the repulsive model.
The peculiar features introduced by the triangular lattice
are (i) the hopping term is spin and direction dependent,
and (ii) the repulsive model is not necessarily at half-
filling, due to the absence of particle-hole symmetry at
p, =0.

The strong-coupling limit of the attractive model can
be obtained through perturbation theory in the space
of doubly occupied states; these are compatible with any
band filling and represent singlet pairing of electrons in
real space. While to first order the hopping term gives
zero contribution, to second order it induces transitions
into virtual states with one broken pair. The effective
Hamiltonian acting on this space is then

2

C C~~C Catt + C Ct ~C Cttt

(.,j)-

+(i e-+ j)
—p) (n, , —n, ,),

where (i +-+ j) replaces the preceding expression with
labels i and j exchanged, since each pair of sites only
appears once in the sum.

A spin representation for 'R,s is introduced through
the definitions

and their Hermitian conjugates, such that
s; = 2(n, T+ n, g

—1), (14a)

njT ~ nj T and njl ~ nj l = 1 —nj l

The charge and spin degrees of freedom are exchanged
under this transformation:

nj:—njT + njl ~ mj—:njT —njl = nj —1,

and

s+ = c,,c,, = s,*+is,", s; —= (s+)',

o, = 2(nT —n i) .

(14b)

(14c)

mj ~ nz ——1+mj .

The Hamiltonian (1) now becomes

tt = - t ) c;, (c,'.c,.+ H.c. )

(10)

One should not be misled by this notation, since S; and
o, , respectively, describe the charge and spin contents of
site i. Since o., is identically zero in the space of doubly
occupied states, the spin Hamiltonian becomes

H.c = Z) (S,*S,* —'S," S,") —h) S,*,

where

—V) (n, , ——,')(n, , ——,')

—p ) (n, T
—n;g) —pN, ,

—1 if o =J, and the NN pairs are along + as,
1 otherwise

(12)

where J = 4t2/iUi, h = 2p, SIi = (S,*,S,"), and a con-
stant term has been dropped. The system then corre-
sponds to a Heisenberg model in which the z components
of S couple antiferromagnetically and the planar com-
ponents couple ferromagnetically. Therefore, CDW and
singlet s-wave pairing correlations (SS) in the original
model, respectively, correspond to staggered S~ and uni-
form Sii correlations in the spin representation. For zero
field, the ground state of a pair of classical spins subject
to this interaction corresponds to their respective 2: and y
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components of S being parallel and to their z components
being antiparallel, for any canting angle. Since the trian-
gular lattice introduces frustration, the global minimum
energy is achieved through a canting angle e = vr/2 (mea-
sured with respect to the z direction) or (S~) = 0. The
lack of CDW ordering should also hold in the presence of
quantum fluctuations, since their role is to decrease any
tendency of ordering. Thus, unlike the square lattice,
one should not expect pairing and CDW correlations to
coexist on the triangular lattice for any filling; we will
return to this point in Sec. IV. It is worth mentioning
that the ferromagnetic arrangement of S~~ is favored up
to a critical transverse field, a rough estimate of which
is obtained through mean-field arguments as h, zJ,
where z is the coordination number of the lattice.

Since an SS state is associated with planar ordering,
the transition is of the Kosterlitz-Thouless type, and
the low-lying excitations are gapless, corresponding to
pseudo-spin-waves. That is, they do not correspond to
configurations with broken pairs, which would imply a
gap of order ~U~. The latter is commonly referred to as
a spin gap and is probed at an energy scale larger than
T, . As the temperature is decreased, the supercon-
ducting transition is then thought of as a condensation
of preformed local pairs.

It is also instructive to discuss the strong-coupling limit
of the equivalent repulsive model, Eq. (11). Second-
order perturbation theory on the basis of singly occu-
pied states —thus valid at half-filling —leads to an effec-
tive spin Hamiltonian

Q,g = J) S;S'+) J, S, S —h) S;, (16)
(i,j) (ij) 2

where J = 4t /~U~ as before, and

J ~ ~

—J if the NN pairs are along + a3
J otherwise.

results will be checked against those of quantum Monte-
Carlo simulations for intermediate couplings.

III. QUANTUM MONTE CARLO AND
FINITE-SIZE SCALING

Z = Tr —A~MN Tr ( —A~K —b.~VqM (20)

with

jC = t ) (t:, —c + H.c.)
—p. ) n

2) CJ

(21)

and

V = U) (n, , ——,')(n, &
——,') . (22)

The last step in Eq. (20) follows from the Trotter
formula. 2O The systematic errors are of order A~2 in the
measured quantities; one therefore wishes to take L~ as
small as possible, though compatible with a moderate
number of time slices, say M & 80.

A discrete Hubbard-Stratonovich (HS) transforma-
tion is performed for each on-site interaction term,

—Av. U(niT —1/2)(n, g
—1/2)

26
1 A~ U/4 T —&~—) s'e (n f y +n, g

—1i (23)~'e

where a new Ising field S,g ——+1 has been introduced,
and cosh AL~ = e ~ / . Defining N, x N, matrices K
and V (e) such that

In a grand-canonical simulation 6 the imaginary
time is discretized through the introduction of M "time"
slices separated by an interval Aw such that P—:Ar M.
The partition function is then written as

The spin operators are related to the fermion operators
appearing in (11) through

—t if i, j are NN sites
0 otherwise, (24)

S; = -'(n, g
—n, g), (18a)

and

and

S+ =cI,c,, =S,*+is,", s; =— (S+)', (18b)

we can write

V~(t) = 6,~ (~iAs, g
—p, ), (25)

cr, = 2(n, T+ n, i —1) . (18c)
N, MZ= -'- ~' '

Tr T D,2C (s) (26)

Alternatively, the same result is obtained if one per-
forms a $-PHT directly on the strong-coupling limit of
the attractive model. Taking Eqs. (7) into (14), the spin
operators are transformed as

where N, is the number of lattice sites, and

D& — & +i Kij Ciao a +7"+i Vij IE)CiaCga (27)

S,+ —& (—1)'S,+, S; ~ S;,
so that Eq. (15) is taken into Eq. (16). Again, the model
given by Eq. (16) is such that only the z component of
S, which in this case also describes the charge degrees
of freedom, is frustrated. The conclusions of this section
are based on a strong-coupling analysis. In Sec. IV these

Z = Trl, l (det 0) (28)

since both K and V are independent of o., and in a "space"
formulation,

The fermion degrees of freedom can be traced
over» to yield
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with

0 = ll. + BM BM—i Br,

—b.~K —z~v(s)Bg=e e

(29)

(30)

I I I I
i

I

L=4,
(a)

0.5—
'T

0 0 ~ I I I I I I

I I I
i

I I

U= —4

At this point one should stress that the "Boltzmann
weight" P((s)) = (det 0)2 is positive, which makes the
simulation on the attractive Hubbard model free from
"minus sign" problems. ' In order to stabilize the sim-
ulations at low temperatures, instead of (29) we use
a "space-time" formulation, in which Mo consecutive
time slices are collapsed to construct a matrix OM„of
order pN, x plV„with p = M/Mo, see Ref. 22 for details.
With this algorithm advance, we are able to reach inverse
temperatures as large as P = 10/t.

The heat-bath algorithm is used to sample the aux-
iliary Ising fields subject to the "Boltzmann weight"
P(fs)), the ratio of which is related to the equal
time Green's function g,. (/)—:(c, (lA&)c (EA&)); the
imaginary-time dependence of the operators is given
by a(r)—:e +ae +. If the new configuration is
accepted, the Green's function is updated through
simple operations; the thermodynamic expecta-
tion values are also expressed in terms of Green's
functjons 16—19'22 Here we exam jne quantjtjes such as the
equal-time q = 0 local (or s-wave) pairing correlation
function

0 1 2
2.5
2.0
1.5
1.0 -=:

0.5
0.0—2

I I I

)
I I I I

(
I I

(b),
—1

I I
I

I I I I

FIG. 1. Occupation (a) and pairing correlations (b) as
functions of the chemical potential with U = —4, for a lattice
with L = 4. Solid squares represent data for P = 2, open
squares for P = 5, and circles for P = 7. The error bars are
smaller than the data points, and the solid lines are guides to
the eye.

G(r) r ", (37)

where g = 0.25 for T —+ T+. For a finite system of size
L, its associated uniform Fourier transform becomes

P, (T, L) —= (2'4+ d At), (31)
P, d2 —'g I 2—'l7 (38)

1= —) clc1 ) (32)

and the equal-time charge-density structure factor

C(q) = (nant),

with

nt = —) e'~" (n,1+n;1) . (34)

We also calculate the uniform magnetic susceptibility

where T is the temperature, I is the linear lattice size,
and

Above criticality, the apropriate scaling variable22 is L/(,
where ( exp(A/+T —T,), with A being of order unity,
is the correlation length for the infinite system. There-
fore, one can assume the following FSS ansatz:

P, (T, L) = L "F(L/(), (39)

where F(z) is a scaling function such that F(z) —const
when L (( (, recovering Eq. (38). At T„(= oo, so that
L 2P, (T„L) is a constant independent of lattice size.
]3y plotting L I 2P, (T, L) as a function of T for systems
of different sizes, an estimate of T, can be obtained as
the temperature where two successive curves intercept.
Similar arguments can be used with any other thermo-
dynamic quantity.

with

P
q(O) = ) dr (m, (r)m, (0)),

U

m, (r) = e'™[n,l —n, l]e

(35)

(36)

1.5 : (a
1.0 :
0.5 .—
0 0 I I I I I I I I I I I I I I I I I I I

—2 —1 0 1 2
—I

3.0
The dependence of the pairing correlation function

with the system size can be extracted through finite-
size scaling (FSS) arguments. s For an infinite two-
dimensional system, one expects a superconducting tran-
sition within the Kosterlitz-Thouless 5 XY-model uni-
versality class. Therefore, pairing correlations become
critical at the critical temperature T„and decay algebri-
cally,

1.0 -=

0.0—2

FIG. 2. Same as Fig. 1, but for a lattice with L = 6,
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I I I I

I
I

L=8,

i.o--
0.5
0 0 I I I I I I

—2 —1

6 0

I I I I I I I I

1 2

simulation, one adjusts the chemical potential to obtain
the desired occupation, p = (n). Figures 1—3 show the
behavior of p and P, versus p for U = —4; for the sake
of clarity, the data for p are shown for a single value of
P in Figs. 1 and 2 and for two values in Fig. 3. One
should note from the outset that the results with lattice
size L = 4 behave quite distinctly from those with L = 6
and 8. For instance, the compressibility,

4.0—
2.0—

(b)
1 cI(n)

(n)z cIp,
(4o)

0.0—2
I I I I 1 I

IV. RESULTS AND DISCUSSION

The triangular lattice clusters used here have N, =
L x L sites, with periodic boundary conditions; that
is, each site is connected with its six nearest neighbors
through a hopping term. The simulations were performed
on Sun work stations; a single datum point involves be-
tween 500 and 1000 MC sweeps over all time slices, and
we took Aw = 0.125. Prom now on, energies will be ex-
pressed in units where the hopping t = 1, and we also set
the Boltzmann constant k~ ——1. In a grand-canonical

FIG. 3. Occupation (a) and pairing correlations (b) as
functions of the chemical potential with U = —4, for a lattice
with L = 8. Solid squares represent data for P = 2, open
squares for P = 5, open triangles for P = 6, and circles for
P = 7. The error bars are smaller than the data points, and
the solid lines are guides to the eye.

vanishes at low temperatures for a wide range of p, near
p = 0 only for L = 4; see Figs. 1(a), 2(a), and 3(a).
Also, the two peaks in P, have similar heights and are
farther apart when L = 4. We can therefore consider the
triangular lattice with L = 4 too small to be helpful in
estimating T, within a FSS analysis, and will not use the
data with L = 4 throughout the rest of this work.

Figure 4 shows the size-scaled pairing correlation, Eq.
(31), as a function of the inverse temperature, for U = —4
and for several band fillings; the error bars are of the
order of the data points. For p = 0.7 [Fig. 4(a)] the
curves do not intercept, at least up to P 10; thus T,
could be between 0 and 0.1, in this case. On the other
hand, one can define a P, (p) for p E [0.8, 1.2], as the
value where the data points superimpose. Taking into
account the error bars for the data points, we see that
this criterion generally implies an error AP, +1, except
for (n) = 1.2, for which this error can be as large as 3.
These estimates are plotted in the phase diagram of Fig.
5. It should be stressed that the error bars in Fig. 5
are merely indicative of the location of T, for a given
pair of different sized systems; they do not refer to any
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FIG. 4. Size-scaled q = 0 Fourier transform of the s-wave pairing correlation function as a function of the inverse temperature,
for lattices with L = 6 (squares) and L = 8 (circles), and for different band fillings: (a) p = 0.7, (b) p = 0.8, (c) p = 0.9, (d)
p = 1.0, (e) p = 1.1, and (f) p = 1.2; U = —4 in all cases. Except where shown, the error bars are smaller than the data points;
the solid lines are guides to the eye.
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FIG. 5. Critical temperature as a function of the band fill-

ing, for U = —4. The error bars reflect the uncertainty in the
location of the crossings in Fig. 4, and the solid line is a guide
to the eye.
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extrapolation to the thermodynamic limit.
Before comparing with the square lattice, let us exam-

ine CDW correlations. In Fig. 6 we show C(q) as defined
by Eq. (33), for fixed band filling, temperature, and U.
The lack of sealing with size is evident, since the results
for L = 8 are practically the same as for L = 6; the sit-
uation for other fillings is very much the same. These
results confirm the strong-coupling prediction of Sec. II,
according to which charge-density-wave correlations were
frustrated and should be suppressed for any filling on a
triangular lattice.

The phase diagram of Fig. 5 is similar to the one for the
square lattice in the sense that it displays a maximum.
The lack of CDW ordering, however, makes the order pa-
rameter two dimensional for any filling; in particular, the
maximum T, for the triangular lattice is near half-filling.
This is in marked contrast to the square lattice, for which
the order parameter is three dimensional at half-filling,
pressing T, for superconductivity down to zero for p = l.
Also, the maximum critical temperature for the triangu-
lar lattice is T, (triang) = 0.2, which is higher than its
square lattice counterpart, T,*(square) 0.1; this should
be expected due to the larger coordination number of
the former lattice. At this point we cannot give any nu-
merical estimates for T, outside the occupation interval
[0.7,1.2] as it would require simulations at much lower
temperatures.

In order to check the behavior with U, we have also de-

FIG. 7. Uniform susceptibility as a function of temperature
for U = —4 at half-filling for a lattice with L = 6.

termined the critical temperature for p = 0.9 and U = —6
to be T, 0.25. One should expect the whole phase
diagram to be pushed upwards in temperature, in anal-
ogy with the square lattice, though a somewhat greater
computational effort would be required to investigate the
location of the maximum with U.

Finally, we now discuss the uniform magnetic sus-
ceptibility and the spin gap. We recall that in the
weak-coupling regime the transition is from a normal
(Fermi liquid) metal to a (BCS) superconductor, i the
transition temperature being exponentially small, T,
W exp( —W/IUI), where W = 6zt is one half of the band-
width. One would therefore expect the uniform suscepti-
bility y(0, 0) to display a weak temperature dependence
at low temperatures. For stronger couplings, on the other
hand, local pairs are formed at temperatures quite higher
than T„ though without coherence. In this regime the
spin excitations correspond to a breaking of these pairs,
with an energy cost (gap) of order IUI. The formation
of local pairs, and the associated spin gap, should be re-
flected in the magnetic properties: A local bound pair
must have a smaller response to a uniform field than iso-
lated fermions. The uniform susceptibility should then be
strongly suppressed as the temperature is lowered in the
region of strong coupling. This picture is consistent with
the discussion in Ref. 11, in which a region of concave
susceptibility is associated with a spin gap. We present
in Fig. 7 the uniform susceptibility as a function of tem-
perature for the L = 6 lattice at half-filling and U = —4.
The suppression is apparent for T + 0.5, quite higher
than the estimated critical temperature, T, 0.2 in this
case; at T, the preformed pairs condense, not necessar-
ily affecting the behavior of y(0, 0) any further. We are
led to conclude from Fig. 7 that the spin gap is not sup-
pressed by frustration. A similar behavior is found for
other fillings.

V. CONCLUSIONS

FIG. 6. Charge-density structure factor at half-filling,
U = —4, and inverse temperature P = 8. Squares and circles
represent data for lattices with L = 6 and L = 8, respectively.

We have examined the inHuence of lattice topology on
the properties of the attractive (i.e. , negative-U) Hub-
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bard model. In particular, we have studied local pairing,
charge-density-wave correlations, and the uniform mag-
netic susceptibility on a triangular lattice. The strong-
coupling limit is equivalent to a Heisenberg model with

ferromagnetic couplings betvreen the planar (x and y)
components of the spin operators, and to a frustrated
antiferrornagnetic coupling between the z components.
Since correlations between z components describe charge
correlations, CDW order cannot set in due to frustra-
tion. Quantum Monte Carlo results confirm the absence
of CDW correlations at intermediate couplings, and show
that superconducting ordering is favored at half-filling.
Further, our results for the uniform magnetic susceptibil-

ity suggest that the precursor (normal) spin-gap phase is
not affected by frustration.
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