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Replica symmetry breaking in vortex glasses
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Destruction of the long range order in a vortex crystal by a random potential is expected to
be accompanied by the formation of a glasslike phase —the so-called vortex glass. The properties
of such a phase are investigated in the framework of the self-consistent harmonic approximation,
taking into account the possibility of replica symmetry breaking. The main attention is given to
the problem of the uniaxial vortex glass in which the vortices are free to move only in one direction.
We obtain the result that in the two-dimensional case, upon lowering the temperature, a phase
transition takes place between the phase in which the random potential is irrelevant, to the phase
with one-step replica symmetry breaking. For 2 ( D ( 4 the random potential is always relevant
and the replica symmetry breaking is of the hierarchical type. In both cases, the Buctuations of
the displacement in the glassy phase diverge logarithmically. The same conclusions are shown to be
valid for the case of a biaxial vortex glass in the absence of dislocations. The results obtained are
also applicable to the description of the pinning of charge density waves.

I. INTRODUCTION

Experimental investigation of high-T superconducting
materials has led to increased interest in the theoretical
understanding of the properties of a vortex glass phase
which may be formed when a vortex crystal interacts
with a random pinning potential. An example of such
a system is the two-dimensional uniaxial vortex crystal
formed by a sequence of vortex lines confined to move in a
plane. One can think, for example, about a large-area
Josephson junction between two bulk pieces of type-I su-
perconductor in the presence of a magnetic field along the
plane of the junction. The inhomogeneities in the width
of the junction will provide a random potential for the
Josephson vortices which then form a two-dimensional
uniaxial vortex crystal. In three dimensions the vortex
crystal can be assumed to be uniaxial if the magnetic
field is applied parallel to the layers of a superconductor
with a well-developed layered structure. Then, at least
at low temperatures, the large core energy will prevent
the vortices &om crossing the superconducting planes.

If Huctuations of the intervortex distance are not too
large compared to its average value, the uniaxial vortex
crystal interacting with a random potential can be de-
scribed by the Hamiltonian:

—(V'u) + Vo(r)V' u
J
2

+ Vi (r) cos u + V2(r) sinu

where u—:u(r) is the displacement of the vortices with
respect to the equilibrium configuration of the vortex lat-
tice. We assume that on the average the vortex lines are
parallel to the y axis and can move only in the x direc-
tion. The displacement u is considered to be rescaled in

Ve(r) Vo(r') = Wb(r —r'),V, (r) = 0,

V;(r)V, (r') = 0 (i g j),
Vi(r)Vi(r') = V2(r)V2(r') = Y8(r —r').

Here and further on the overbar designates the average
over diferent realizations of the random potential and
angular brackets the thermal average.

The second term in Eq. (1) is proportional to the den-
sity of vortices and describes the interaction of the vortex
crystal with the slowly changing part of the random po-
tential. Since it is linear in u one can always get rid of it
by a transformation:

1
u(r) = u(r) ——V' 2V' Vo,

w'hich also changes the form of the functions Vi(r) and
V2(r) (for a given realization of random potential) but in
case of the Gaussian distribution does not change their
statistical properties [Eqs. (2)). Therefore the existence
of this term can manifest itself only in the reducible part
of the correlation functions, for example,

such a way as to make the period of the vortex lattice (in
the 2: direction) equal to 2vr.

The first term in Eq. (1) represents the elastic energy
of the uniaxial vortex crystal, the elastic moduli of which
are assumed to be local. In that case one can always make
this term isotropic by the proper choice of the units of
length for difFerent directions.

Three other terms describe the interaction of the vor-
tex crystal with the random potential. They contain
three difFerent independent random functions V;(r) which
have Gaussian distributions:
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whereas the irreducible correlation functions cannot de-
pend on W.

Two last terms in Eq. (1) describe the interaction of
the vortex crystal with the short-wavelength components
of the random potential which in the x direction have ap-
proximately the same period as that of the vortex crystal.
This is the most relevant part of the interaction.

The same Hamiltonian can be applied to the descrip-
tion of pinning of the uniaxial charge density waves. '

In the absence of the second. term it also coincides with
the Hamiltonian of an LY model with random field in
which the possibility of the creation of vortices is ne-
glected. In that context it was investigated earlier by a
number of authors. For D = 2 it has been shown
with the help of the renormalization procedure in the
replica representation that with decrease in tem-
perature a phase transition takes place from the high-
temperature phase in which the random potential is ir-
relevant and the fluctuations of u diverge logarithmically:

m(R)—:([u(r+ R) —u(r)]2) = glnR (B~ oo) (5)

to the glassylike low-temperature phase in which the ran-
dom potential is relevant and the fluctuations of u diverge
more rapidly:

II. SELF-CONSISTENT HARMONIC
A PPROXIMATION

After introducing n replicas of the Hamiltonian (1) and
averaging the partition function over the random poten-
tial, the effective Hamiltonian for the replicated variables
will acquire the form

D
~rept = —) (V'u ) ——) (V u )(V' ub)

a a, b

Y
cos Da —tLg

2
agb

(7)

Here and throughout, the replica indices a and 6 run
&om 1 to n. At the end of the calculation n should be
put equal to zero. The factor P = 1/T is assumed to be
included into the definition of the Hamiltonian, therefore
J oc 1/T and W, Y oc 1/T .

We shall calculate the &ee energy corresponding to
the Hamiltonian (7) using the self-consistent harmonic
approximation which is equivalent to the variational
calculation of free energy:

u)(R) oc ln B (6)

, = I'p + (II —Hp) p

with the help of the harmonic trial Hamiltonian:

(8)

(Refs. 11 and 13). These conjectures are also sup-
ported by the results of dynamical renormalization-group
analysis

For 2 ( D & 4 Villain and Fernandez have suggested
a real-space renormalization scheme which shows that a
random potential is always relevant and that the fluctu-
ations (at least for T -+ 0) diverge according to Eq. (5)
(with rI oc 4 —D for D ~ 4 ). On the other hand Natter-
mann on the basis of a real-space variational calculation
suggests that for 2 ( D ( 4 Eq. (6) is also valid.

In the present paper we reinvestigate the same model
in terms of the replica representation taking into account
the possibility of the replica symmetry breaking in the
same fashion as was done recently by Shakhnovich and
Gutin for the problem of random heteropolymers and
by Mezard and Parisi for the problem of the fluctu-
ating manifold in a rand. om potential. We show that
for D = 2 the glassy state (low-temperature phase) is
characterized by a one-step replica symmetry breaking
whereas for 2 (D ( 4 a full hierarchical replica symme-
try breaking takes place. In both cases the correlation
function m(R) diverges in the glassy phase according to
Eq. (5) contrary to the results of the replica symmetric
renormalization-group analysis for D = 2.

Earlier an attempt to consider replica symmetry
breaking in a pinned-vortex crystal was undertaken by
Bouchaud, Mezard, and Yedidia for the case of the or-
dinary (not uniaxial) vortex crystal. However these au-
thors have not taken into account the periodic nature
of the vortex. crystal and have come to the conclusion
about the algebraical behavior of m(R). The applicabil-
ity of our results for the case of the biaxial vortex crystal
without dislocations is briefly discussed in Sec. VI.

dD
IIp ——— ) G,'(q)u (q)u,*(q).

a, b

In Eq. (8) I"p stands for the free energy for the trial
Hamiltonian and (. . .)p for the thermal average calcu-
lated with the help of Ho. Both terms can be calcu-
lated exactly. Such an approach was introduced for anal-
ysis of systems with the sine-Gordon structure by Saito
and has proved to give a correct qualitative description
of both phases. Recently it was used by Mezard and
Parisi for the problem of the fluctuating manifold in
rand. om media.

Substitution of Eq. (7) and Eq. (9) into Eq. (8) gives
the following expression for the &ee energy of the system
formed by n coupled replicas:

1 d+q
D 1n(det [G(q) /2a] j2 27l

+Sp(IG '(q) —G. '(q)]G(q))

Y . ( ab)——) exp/—
2 ( 2

(10)

&-b —= ((u- —ub) )o

[G-(q) + Gbb(q) —G-b(q) —Gb-(q)]

where B g describes the amplitude of fluctuations of
tLa I' 'll b F
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and

with

G '(q) = G '(q)b b
—D (q)

Gp (q) = Jq, Dp(q) = Wq

Ref. 12 in both phases the charges are bound in pairs
because their interaction is not renormalized. Therefore
the self-consistent harmonic approximation cannot dis-
tinguish between these two phases. Below we show that
in reality the phase transition in a two-dimensional sys-
tem is accompanied by the replica symmetry breaking
and the appearance of the &ee charges.

is the inverse of the bare Green's function corresponding
to the harmonic part of the Hamiltonian (7). After thatE, should be minimized with respect to the trial Green s
function G b(q).

Variation of the trial free energy (10) with respect to
G b(q) gives

G,'(q) = G, '(q)b b
—D, (q) + Z b

where the self-energy matrix Z b = —Jo b does not de-
pend on q. Its nondiagonal elements Z b (with a j b)
are negative and should be found self-consistently from
the equations

Y C Bb)
o b= —exp/—J 2y' (i4)

whereas the diagonal elements (with a = b) can be de-
termined &om the relation

o b
——0,

which follows from the form of expression (11).

III. REPLICA SYMMETRIC CASE

Let us discuss the simplest case when o b (with a g b)
is assumed to be not dependent on replica indices a and
b. In that case in the limit of n —+ 0 the matrix element
o. = o. gb drops out &om the expression for B = B b..

1

(2~)~ G (q)+nJ~
and therefore there is no need to solve any self-consistent
equation. That means that o is given directly by the
expression

Y dDq
o = —exp —

& Gp(q)
27r

(17)

and accordingly is finite for D ) 2 and zero for D = 2.
Thus we have obtained the result that if the possi-

bility of replica symmetry breaking is excluded from the
consideration the self-consistent harmonic approximation
does not predict any phase transition in the case of the
two-dimensional system. Such a conclusion is in con-
tradiction with the results of the renormalization-group
analysis. There is nothing surprising in that since in
the terms of the Coulomb gas representation the self-
consistent harmonic approximation corresponds to the
Debye-Huckel approximation which can take into account
only the influence of &ee charges whereas according to

IV. ONE-STEP REPLICA SYMMETRY
BREAKING

One can expect that at least at low temperatures the
vortex crystal interacting with the random potential may
become quenched in one of the many different almost de-
generated states separated by infinite barriers. There-
fore it is advisable to consider the possibility of replica
symmetry breaking. We shall start with considering a
case of the one-step replica symmetry breaking which is
realized for D = 2.

The case of the one-step replica symmetry breaking
corresponds to such a form of the self-energy matrix o b

when its nondiagonal elements can acquire two difFerent
values o q and oo depending on whether the two indices a
and b belong to the same block of the length m or not. In
order to represent this form of the matrix with the help
of a simple mathematical notation it would be convenient
to split each of the replica indices running &om 1 to n
into two:

a = ma'+ a",
where the first index a' (running Rom 1 to n/m) is the
number of the block and the second index a" (running
&om 1 to m) is the number of replica inside the block.
In that notation o. b for the case of one-step replica sym-
metry breaking can be written as

~ab O'0 + (o 1 &0)ba'b' ['ao'0 + m(ol OO)]h b, (18)
where the value of the coefticient in the last term follows
from Eq. (1S).

For o b of the form (18) inversion of Eq. (13) gives the
expression

1 1 1
G b

———
n Jq2 —nDp(q) J(q2 + Ap)

1 1 1
m J(q2 g b, p) J(q2+ 41)

1

J(q2 + 41)

which contains two different gaps:

Ep = ao'0, Ai = 7Lo0+ m(01 —op). '

Substitution of Eq. (19) into Eq. (11) shows that 41
can be associated with mutual fluctuations of replicas
belonging to the same block whereas Lo is related with
mutual fluctuations of the replicas belonging to different
blocks.

The general equation (14) for the self-energy matrix
o. b can be then rewritten as
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Ya.i ——exp[ —g(b, ,)],J
Y 1——Id(&o) —d(&~)) —d(&i) )J m

where the function

(20)

(21)
g(A) = Kln (23)

we shall use the explicit expression for g(E) of the form
corresponding to the sharp cutofF:

1

(2~)& J(q2+ Z)
(22)

describes the amplitude of the fluctuations corresponding
to the gap L.

For D = 2 the factor g(A) diverges logarithmically
for small L, therefore in the limit of n ~ 0 for which
Lo ~ 0 we get oo ——0. In what follows for simplicity

Here the prelogarithmical factor K—:1/4mJ is propor-
tional to the temperature T and b„oc ( is determined
by the cutoff length ( which should coincide with the pe-
riod of the vortex lattice or with the correlation radius
of the random potential (if it is larger).

Substitution of Eq. (19) with o'p ——0 into Eq. (10) gives
(in the limit of n ~ 0) the following simple expression
for the &ee energy per replica:

dE'A', + Y(1 —m) exp) —g(E)) )
, dg(A')

f, —:lim —[E,(A) —I', (A = 0)]
1

2 (m ) p

K

2 q mp

which does not depend on the replica symmetric part
of G

& (q). Variation of the trial free energy (24) with
respect to 6 and m gives a system of two equations which
can be transformed to the form

(25)

&(q) = ([~(q) —(u(q))][u*(q) —(u*(q))]) (»)
changes its form from

&(q) = J,1Jq2

in the high-temperature phase to

ln(1+ K/A, )
A/A, (26)

1 1
Q q

m(q + A) Jq J(q + 4)+ (31)

K
1 —K6= YK/ (27)

m=K, (28)

whereas for T ~ 0 m becomes much smaller than K.
It follows from Eq. (26) that the ratio K/m is always
smaller than 1.

Thus we have obtained that at K = 1 a phase transi-
tion takes place in which the irreducible correlation func-
tion

Equation (25) resembles very much the analogous equa-
tion for the sine-Gordon model.

For high temperatures (K ) 1) these equations have
only one physical solution with L = 0 whereas for the
lower temperatures (K ( 1) a solution with the finite
value of the gap also appears. The value of the tran-
sition temperature coincides with that obtained in the
framework of the renormalization-group analysis for the
replica symmetric case. In the vicinity of the tran-
sition 4 is much smaller than A„so Eqs. (25) and (26)
give

in the low-temperature phase. At the same time the re-
ducible part of the correlation function is the same for
both phases:

(32)

In the &amework of the self-consistent harmonic approx-
imation no correction to the reducible part of the corre-
lation function ever appears. It remain always equal to
its bare form (32) which corresponds to the logarithmical
divergence for D = 2 and to the absence of divergence
for D) 2.

In the high-temperature phase the irreducible corre-
lation function g(q) has the same form (30) as in the
absence of the random potential. This is in agreement
with the results of the renormalization-group analysis
which shows that the random potential in that phase
is irrelevant. In the low-temperature phase the ex-
pression for g(q) contains two terms of different origin.
According to Ref. 17 the first (gapless) term in Eq. (31)
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can be associated with quenching of the system in dif-
ferent almost degenerate states whereas the second term,
which has a Gnite gap, is related with thermal Auctu-
ations in the vicinities of these states. In both phases
the correlation function io(R) diverges logarithmically
but, in contrast to the high-temperature phase in which
the prelogarithmic factor g for the irreductable part of
io(R) decreases with decrease in temperature (g = 4K),
in the low-temperature phase g = 4K/m increases with
decrease in K. At K = 1 the derivative of g with respect
to the temperature has a discontinuity.

In terms of the Coulomb gas representation the phase
transition at the point K = 1 corresponds to the appear-
ance of free charges. On the whole there are n(n —1)/2
different types of the charges (which can be numbered by
two replica indices a ( 6) in the system but they do not
become &ee all simultaneously. The &action of the types
of the charges which are &ee at a given temperature is
equal to 1 —m and increases continuously from zero to
one when K decreases from one to zero.

In the renormalization-group analysis of Cardy and
Ostlund the appearance of the free charges in the low-
temperature phase was not discovered because it was as-
sumed that all the types of charges behave in the same
way (conservation of replica symmetry). In the limit
of n ~ 0 the presence of the replica symmetric self-
energy function does not change the interaction of the
charges (cf. Sec. III) so in that description they, in both
phases, remain bound in pairs. The difference between
two phases in the behavior of the full correlation func-
tion io(R) in that case is related to its reducible part.
For K ) 1 the correction to Dp induced by the presence
of the bound pairs behaves itself at small q as Kq, so
the reducible part of io(R) diverges also logarithmically.
For K & 1 the expression for K becomes divergent. The
renormalization-group analysis shows that an additional
factor proportional to ln(1/q) appears in g(q), leading
thus to the anomalous behavior of the full correlation
function io(R) [Eq. (6)].

In the self-consistent harmonic approximation only the
corrections induced by the &ee charges are taken into ac-
count. Formally they correspond to the lower orders of
the perturbation expansion than the corrections related
to the bound pairs and therefore are more important.
But our analysis has revealed that for 0 & K & 1 only
part of the charges becomes free whereas the charges
of the other types remain bound in pairs. Since in
the replica symmetric case the corrections related to the
bound pairs can change the behavior of the correlation
function, we must check whether they do not do the same
in case of the replica symmetry breaking.

It follows from the form of Eq. (19) that the prelog-
arithmic factor in the expression for the interaction of
those charges that remain bound in pairs for K & 1 is
equal to 4K/m ) 4, so in contrast to the replica symmet-
ric case the correction to Do(q) induced by these bound
pairs remains of the same analytical form as in the high-
temperature phase. That means that the higher-order
corrections do not introduce any qualitative changes in
the behavior of the correlation functions with respect to
the results of the self-consistent harmonic approximation.

V. HIERARCHICAL REPLICA SYMMETRY
BREAKING

In a more general case of the hierarchical replica sym-
metry breaking the form of the self-energy matrix o p

can be described by a continuous function o(m) with
0 & m & 1 . In that case the trial &ee energy acquires
the form

f=' j dm ', J' dd. ~ '
g[~)

+Y exp( —B[A(m)]) (33)

in which the dependence on o(m) enters only through
the continuously distributed gap function:

A(m) = ds s
do (s)

p d8
(34)

and the functional

1 1 1
B[b,(m)] = —g[A(m)] — ds —g[A(s)]m

(35)

plays the role of B b. In that notation the case of the
one-step replica symmetry breaking considered in Sec.
IV corresponds to the steplike function

O.p for 0 & m & mq,o(m) =
0~ for m~ & m & 1.

Substitution of Eq. (36) into Eq. (33) reproduces the
form of the trial &ee energy for the case of the one-step
replica symmetry breaking.

Variation of Eq. (33) with respect to A(m, ) gives the
equation

d
A(m) = Y ds s—exp( —B[6(s)]),

p d8
(37)

comparison of which with Eq. (34) shows that

o.(m) = Y'exp( —B[6(m)]).

Our aim consists of finding a solution A(m) of the nonlin-
ear integral equation (37) in which integration is involved
also through the definition of B.

For & g 0 it turns out to be possible to transform
this functional equation to the algebraic form. By di8'er-
entiating Eq. (38) two times with the help of relations

I'dg I
db, gdA) (39)

do. 1 dL dg 1 dB
dm m dm' dm m dm'

which can be obtained by the difFerentiation of Eqs. (34)
and (35), one can get rid of the exponential expression
and obtain a simple equation
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which does not contain the operation of integration.
Taking for the case of D = 2 the factor g(A) in the

form (23), we get

d (dgb ' 1 r' 2A)
dA (dA) K q A, )

so the solution of Eq. (37) is given by

/K
~(m) =

2 (m
(40)

and accordingly

L K
cr(m) = const + m2

' (41)

These results are in contradiction with the condition
b, (0) = 0 which follows from the form of Eq. (34). There-
fore we have to conclude that for D = 2 hierarchical
replica symmetry breaking cannot be realized and the
one-step replica symmetry breaking considered in Sec.
IV takes place. It corresponds to the function o(m) of
the form (36) for which

&
is equal to zero everywhere

save one point. %e have checked also that the solution
found in Sec. IV is stable with respect to the second step
of the replica symmetry breaking.

For 2 & D & 4 the factor g(A) can be approximated
at small 4 as

m(R) = 2(4 —D) ln R (46)

the prelogarithmical coeKcient being not dependent on
temperature. The results are in accordance with the re-
sults of Villain and Fernandez obtained for T = 0 with
the help of real-space renormalization procedure.

The character of the replica symmetry breaking in the
considered problem (one-step replica symmetry breaking
for D = 2 and full hierarchical replica symmetry break-
ing for 2 & D & 4) turns out not to follow exactly the
same pattern as in the problem of a fluctuating manifold
in the random potential. But surprisingly the behav-
ior of the correlation function in our case is the same
(logarithmical) for any dimension of interest.

K=H )+H; p. (47)

Here the first term H ~ describing the elastic energy of the
vortex crystal is assumed to be harmonic and amenable
to decomposition into two parts corresponding to longi-
tudal and transversal components of the displacement.
The second term describing the interaction of the vortex
crystal with the random potential in that case will have
the form

VI. BIAXIAL VORTEX GLASS

In the case when the vortices are &ee to move in two
directions the Hamiltonian of the vortex crystal inter-
acting with the random potential can be written in the
form

where the dimensionless coeKcient H1~p: dz V r~~ + u ref) Z ) Z (48)

S~
(2~)~ 2 sin ~, '~

d Idge J4 —D~q
dA (dA) A D —2

and therefore the solution of Eq. (37) should be chosen
in the form

A(m) = &

(4—D) Jm
(D—2)~

2
(4—D)Jm,

(D—2)A

for 0 (m(m„
(44)

for m (m(1,

depends only on the dimensionality of the system (S~ is
the area of D-dimensional sphere). For g(E) of the form
(42)

where V(r) with r = (r~~, z) is the random potential and
two-dimensional index r~~ numbering the different vor-
tex lines coincides with their positions in the equilibrium
configuration of the lattice. For simplicity we have writ-
ten the explicit form of this expression for D = 3. In the
case of D = 2 the integration over dz should be omitted.

If the possibility of the formation of dislocations in the
vortex crystal is excluded Rom the consideration, the
points r

~~

can be assumed to form a regular triangular
lattice. In that case the summation over r~~ can be sub-
stituted by integration with the help of the additional
summation over the set of the reciprocal lattice vectors
Q of the triangular lattice:

e
——) jd eV(r+u)expig. e

where m also depends on C.
As in the case of the one-step replica symmetry break-

ing the correlation function for the displacement is given
by the diagonal element of the matrix G:

=) d Rdetib ~ — iV(R)BR~ )
x expiQ [R —u(R)j. (49)

Q(q) = 1+ dm
1 1 A(m, )

Jq2 0 m2q2+6 m

Substitution of Eq. (44) into Eq. (45) gives then that
the correlation function diverges at large distances loga-
rithmically:

In the last line of Eq. (49) the integration over dsr is
substituted by the integration over d B, where R, = r +
u(r).

Then if one takes the average of the partition function
over the random potential V(r) with Gaussian distribu-
tion the terms of the form



REPLICA SYMMETRY BREAKING IN VORTEX GLASSES 3975

1 V' . s ( p Bu ') ( p cpu~ l——H; p(u )H; p(ug) = — ) d R det
~

h ~ —
~

det
~

b )

x exp i(Q —Q') R exp i[—Q u (R) + Q' . ug(R)j (50)

will appear in the replica representation. If u (R) are assumed to change with R much more slowly than exp(iQ R)
with Q g 0, then only the terms with Q = Q will survive in that sum. In that case the replicated Hamil(, onian can
be taken in the form

V ) f t) s ( (v((((u )(v((((uc)+ ) casu )u (a) —uc(a)]
a, b

(51)

where we have retained only the cross term &om the
smooth factor related with the determinants.

Keeping in Eq. (51) only the terms corresponding to
the smallest wave vectors Q we get the generalization of
Eq. (10) for the case of the vectorial displacements. The
same approach as was used earlier for the case of the
scalar displacement will also be applicable for the analy-
sis of the Hamiltonian (51). The most essential difference
with the scalar case will be that the function g(b, ) will
consist now of two terms (with the same value of the
gap 6) corresponding to longitudal and transversal dis-
placements, respectively. But that will not change qual-
itatively any conclusions obtained above. Note however
that these results can be expected to be valid only at
the scales for which the presence of free dislocations (un-
closed dislocation lines) can be neglected.

In the analysis of Bouchaud, Mezard, and Yedidia the
discrete nature of the lattice was neglected. In our nota-
tion that would correspond to taking only the harmonic
part of the Hamiltonian (51) plus some anharmonicities
related to the determinants which were omitted in Eq.
(51). Since these terms contain only the derivatives of
the displacement, simple power counting shows that they

cannot be expected to induce the appearence of the gap
(be it replica symmetric or not). In accordance with that,
the authors of Ref. 8 have obtained that in their model
the amplitude of the term with broken replica symmetry
in the self-energy matrix. in the physically correct limit
becomes equal to zero. Only in the presence of the addi-
tional regularization breaking the symmetry properties of
the original system does this term appear. In our descrip-
tion the symmetry of the Hamiltonian with respect to the
continuous translation of one replica with respect to the
other is broken not due to externally imposed regular-
ization but is related to the nonlinear terms with Q g 0
and leads to the logarithmic divergence of the correlation
function instead of algebraic divergence. Addition of the
higher harmonics of the interaction does not lead to any
qualitative changes in the results.
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