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Magnetic field of vortices crossing a superconductor surface
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The field distribution of a straight London vortex crossing the Bat boundary of a uniaxial super-

conductor is evaluated. A superconducting half-space B,nd a thin film are considered for a general

crystal and vortex orientation relative to the surface. Vortex 18,ttices in a film with a tilted crystal

axis are distorted more strongly than in the bulk.

I. INTRODUCTION

Techniques have recently been emerging for studying
vortices in superconductors. Improved decoration exper-
iments by Gammel et a/. yielded a wealth of information.
on vortices in anisotropic high-T, materials; part of these
data2 are still to be digested by the theoretical commu-
nity. The scanning tunneling experiments of Hess, Robin-
son, and Waszczaks have not only revealed the details of
the core structure (on the scale of the coherence length
(), but have also demonstrated a strong correlation be-
tween the anisotropy of the material in question (NbSe2)
and the fiux-line lattices (on the scale of the penetration
depth A » (). Recent developments in the Hall-probe
technique made it possible to probe the vortex field dis-
tribution outside the sample;5 some of the measurements
are done with an epitaxial film of LaSrCuO grown with
the crystal axis c at an angle (49') with the normal to
the film surface. Recent advancements in magnetic force
microscopy promise to yield more data on the vortex
field in the near future. All these experiments provide
information about the vortex structure and the funda-
mental intervortex interactions in anisotropic supercon-
ductors.

The interpretation of these measurements is, however,
complicated by the fact that the structure of vortices and
their interaction are strongly affected by the interface be-
tween the superconductor and the outer space (vacuum)
where the data are taken. The pioneering work on this
effect is due to Pearl, who evaluated the field distribu-
tion of a vortex out of a thin isotropic superconducting
film; he also solved the problem of a vortex perpendicular
to the Hat surface of a superconducting half-space. To
describe the experiments mentioned, the Pearl problem is
to be solved for an anisotropic superconducting slab (or
half-space) with arbitrary orientations of the crystal axes
and of the vorte~ itself relative to the slab boundaries.
However, being designed for vortices perpendicular to the
boundaries of isotropic samples, Pearl's method utilizes
the cylindrical symmetry of the vortex field and thus can-
not be applied to a general situation of a tilted vortex in
anisotropic materials. The approach described in this
paper is free of the requirement of cylindrical symmetry.

Basically, we employ the two-dimensional (2D) Fourier

transform (FT) in the plane (x, y) of the interface; since
both London (for the superconductor) and Laplace (for
the outside space) equations are of second order, the
remaining dependence on the third coordinate z con-
tains simple exponential functions. A version of this
method has been used in Ref. 9 for the problem of
a vortex parallel to the boundary; a similar approach
has been employed by Marchetti. We demonstrate the
method for a tilted straight vortex in anisotropic (uni-
axial) half-space and for a thin film with an arbitrarily
oriented c axis. In fact, our method can be applied to
the more general situation of a Hat boundary between ei-
ther anisotropic superconductors or any combination of
anisotropic and isotropic materials. The method is based
on I ondon equations and as such is relevant for materials
with A » (. One should bear in mind that for layered
Josephson coupled superconductors (such as many high-
T, materials) the London approach works well provided
(,(T) exceeds the interlayer spacing.

Considering only straight vortices, we leave aside the
physical question of how in fact the vortices behave in the
boundary layer under certain external conditions. Being
aware of this weakness of our approach, we note that the
main thrust of this work is in providing a method for the
evaluation of the field distribution outside the sample.
Although this distribution is sensitive to the curvature
of vorte~ lines immediately under the surface, the in-
Huence of vortex elements decreases exponentially with
their depth. We thus expect that the method proposed
allows one to distinguish between vortices crossing the
boundary at an angle and those which exit perpendicu-
lar to the surface. (A brief inspection of our Fig. 2 for
the outside field of a tilted vortex strongly supports this
claim. )

In the next section we formulate the problem and de-
scribe general features of the method. Then we solve the
problem of a straight vortex crossing the boundary of an
anisotropic half-space; the problem of an anisotropic film
follows.

II. MAIN EQUATIONS

As was pointed out, in materials with A » ( the mag-
netic field h is described by the London equations (ex-
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2
m~~ = m~ cos 8 + m, sin 8,
m„=m sin 8+ m, cos 8,
myy = ma, mzz = ma —m, cos sin

The general solution of Eq. (1) is

(2)

(3)

where h(P& solves the homogeneous [with zero right-hand
side (RHS)] equation, whereas h("& is a particular solu-
tion of the full Eq. (1). In the presence of a vortex at the
straight line parallel to 8, the part h~"& can be taken as
the field of an infinitely long unperturbed straight vortex;
this assures the correct singular behavior of the solution
h at the vortex axis. For a straight vortex, h& ~ was
studied in Refs. 11—13.

Because of the presence of flat boundaries parallel to
(x, y), it is convenient to perform the FT of Eq. (1)
with respect to x, y; then we are left with the linear

zsk
vacuum c

b,y X

eluding a small region of the vortex core)

h, —A'mI, ie,i,ei,„h,„=ypv, b(rp) .

The mass tensor m;i, is defined in the usual way: For
uniaxial materials, m~mgm, = m~m, = &, which implies
As = A~A„Ap = gmpA (p = a or c). In the following,
unless it is stated otherwise, we use the geometric average
A as a unit length. Further, e,k~ is the unit antisymmetric
tensor, Pp is the flux quantum, v is the direction of the
vortex axis, ro is the position vector in the plane perpen-
dicular to v, and h~, i = 8 h~/Ox, Bxi. For the general
case of the c axis at an angle 8 to the direction z normal
to the boundary plane (or planes), one can choose the x
axis in the plane (c, z) and y in the (a, b) plane; see Fig.
1(a). Then the nonzero components of the mass tensor
are

second or-der ordinary difFerential equations for h(k, z) =
f dxdyh(r, z) exp( —ik r); r= (x,y), with z-independent
coefficients. Thus, components of h&P) (k, z) are linear
combinations of simple exponentials:

(4)

=1+m„k„—m n,
6 y

———ky(im, n+ m„k ),
A*z = im~k~n —m~zk„,2

&yy = 1 + mzzk —m ~n + 2im~~k~n,

&y, ——k„(im, n+ m, k ),
4„=1+m. k' + m k„'.

(6)

The vanishing determinant 6 of the system (5) provides
all possible a„. In finding the coefficients H&")(k) it is
useful to observe that having chosen h~"~ as the field of an
infinite vortex, we in fact impose the condition divh(p) =
0 or

Therefore, any one of Eqs. (5) can be replaced with a
simpler Eq. (7). After simple but tedious algebra we
obtain

1+m A,
"

a~2 ——+
mQ

Here, the z-independent constants n„(k) and H("&(k) are
still to be determined; n should have the real part which
assures the decay of h( ) deep in the material.

Writing explicitly Eq. (1) with zero RHS, one obtains
the linear and homogeneous system of equations for the
three components of h(P); each term in the sum (4) should
satisfy this system separately. Omitting for brevity the
argument k and the label n we have

A,qH, =0,
with i, j = x, y, z and with a symmetric matrix A,~".

superconductor

(b)

vacuum
z,c il

b, X, Q

superconductor

FIG. 1. Coordinates x, y, z are chosen so that the interface
is in the 2:y plane and the y axis is in the ab plane of the
crystal. (a) The c axis is oriented arbitrarily with respect to
the surface. (b) (ab) planes are parallel to the surface; the
vortex orientation 8 is arbitrary.

m, (1+kg/m m + k2m, )
a34 ——ik

mzx mzx

Now, for each n„one can express some of H(")(k) in
terms of others with the help of the homogeneous system
(5), thus reducing the number of quantities to be deter-
mined by boundary conditions; this procedure is problem
specific.

The particular solution of the London equation (1),
h~"~, should also be Fourier transformed in the xy plane
parallel to the interface. This has been done in Ref. 14
for the interface in the ab plane. In the general case,
the vortex orientation is given by two spherical angles:
8~ between z and v and P„between the projection of
v onto xy and x Transforming .the RHS of Eq. (1),
Ri = Ppv&6'(xp)6(yp) (xp and yp are perpendicular to the
vortex direction v), one uses
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xp = (x cos Pv + y sin P„)cos 8„—z sin 8„,
yP X S1114v + y COS 4v~

zp ——(2:cosP„+ysing„)sin8„+ zcos8„,
(9)

Q' = m'kjk

should be continuous.

to obtain the vector R of the RHS:

cosg„tan8„
) e izta ns„(k cosp„+k„sinp„)

(10)
1

To evaluate the 2D Fourier transform h~"i(k) one can
use the fact that in an infinite straight vortex, nothing
depends on the longitudinal coordinate zp (zp = v):

Ozs = sin 8v (cos Pv Bz + sin Pv 8„)+ cos 8v Oz = 0. (11)
Therefore, in order to obtain the 2D FT one can use the
replacement k, —+ —tan 8„(k cosP„+ k& sing„) in the
3D FT. Equation (1) then reads

A,~
hI" ~ (k) = R~, (12)

where A,~ is obtained from A, k of Eq. (6) by the replace-
ment

n ~ i tan 8„(k co—sf„+ k& sing„) .

Solving Eq. (12) for h,
" one can utilize the known de-

terminant

III. SUPERCONDUCTING HALF-SPACE

k(k + nl)p + (n1 —ns)H, ' = f(h ",nl) )

k(k + ns) y + (ns —n1)H~'l = f (h~" i ns)
(19)

where

f(h~.&, n) = -ik. h~"i —nt i"&. (20)

Moreover, excluding y from Eqs. (19) we have a useful

relation

With the z axis directed into vacuum, we have a re-
quirement Reo, & 0; i.e. , the only terms possible in Eq.
(4) contain n1 and ns. The continuity of h at the surface
z = 0 gives

ik.~ = h~") + H~') + H~')

—I ~= h~") + H~') + H&').

One can exclude H~1i (or H~si) from these equations mul-
tiplying them by ikz, ik&, n1 (or ns) and using Eq. (7):

6=m m (n —n„)
n=1

(14)
(k + n )H~'~ + (k + n )H~" = —kh, "~ + ik h'"'. (21)

V'(r z) = d~k
(k) ik r —k)z~

(2vr) 2

where r = (x, y), k = (k, k„). The 2D Fourier transform
is defined by

and use the replacement (13) to obtain E. In the general

case, expressions for h,.
" are cumbersome and we do not

write them down explicitly. Instead, we will demonstrate
the method in a few cases of interest (for which P„and
at least one of the angles 8 or 8„vanish).

The field outside the sample satisfies divh = 0 and
curlh = 0, so that one looks for h = 7'y with V'2p =
0. The general solution of the Laplace equation that
vanishes at ~z~

—+ oo is

A. Crystal surface coincides with the ab plane

In this case 8 = 0 [see Fig. 1(b)] and the mass tensor
is diagonal: m» ——m» ——m~, m« ——m, . Let us start
with the part hapl of the field distribution, Eq. (4). One
finds 6 = detA, k = m (n —n21)(n —ns), where n1 =
g(1+m k2)/ma and ns = g(1+m, k2)/m . Solving
Eq. (5) for n = 1 and n = 3 we obtain

H~'i = H~'ik. /k„= H&'haik. n, /k',

H~'~ = H~'~1k„/k. , —H,'" = 0.
(22)

We will now proceed by specifying the orientations of
the vortex (v) and of the crystal (c) with respect to the
boundary.

d rp(r, z)e (16)

The z-independent H~ ~(k) and p(k) are determined
by boundary conditions, a particular form of which is
problem specific. At boundaries with vacuum, the con-
ditions consist of continuity requirements for h at the
sample surface and of the vanishing field at infinity.

Another type of boundary condition should be satis-
Bed at the interfaces between two superconductors. For
example, at grain boundaries with a "perfect" electrical
contact and with no suppression of the order parameter
near the interface (no Josephson properties), the condi-
tions follow from the fact that London equations should
hold on both sides of the interface (see Refs. 15 and 16):
Tangential components of the vector

g, =1+m.k'+m k'tan'8„,

42 = 1 + mck' + maA; tan 6jv ~

Solving Eq. (12) for h~ ~ we obtain

(23)

h~ ~ = &Pptan8„[l+ m (k tan 8 + k&) + m, k ]/6,
h~"i = y. tan8„(m. —m. )k.k„/a, (24)

Thus, all H~") are expressed in terms of H, and H„(&) (3)

The field h~ ) of an unperturbed vortex satisfies Eq.
(12) with the RHS R = Pp exp( —izk tan 8„)(ztan 8 +
z). According to Eqs. (13) and (14), 6 = detA, k =
m2(k2 tan 8 + n1)(k~ tan28„+ n~s) or A = A1A2 with
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This representation of the vortex field has been used in
Ref. 14.

We now apply the boundary conditions; the erst of
Eqs. (19) gives the outside potential

5

f(h&"l, oi) 0p(ai+ik tan8„)
k(k + ) k(k + ,)Z, (25)

In particular, for a vortex parallel to the c axis, L9„= 0,
we have

.k.,(k+.,)
k (26)

This, along with Eq. (16), provides the outside field dis-
tribution in the Hall-probe experimenti7 where the Bi
2:2:1:2crystal was subject to a small field perpendicular
to the ab crystal surface. Setting m = 1 in Eq. (26)
we recover Pearl's result for a vortex perpendicular to
the isotropic half-space. Note that setting all masses to
unity in Eq. (25), we in fact have a solution for the vortex
tilted relative to the boundary of the isotropic half-space,
which has not been considered by Pearl.

For the internal problem we obtain

(il pp(ik tan 8„—k)

(k+ o, i)Ai

H Pp k~ k„ tan 8„
k2Z,

(27)

B. Vortex perpendicular to the boundary,
c is arbitrary

This is the case of the Hall-probe experiment of Ref. 5;
8„=p„= 0 whereas 8 P 0; see Fig. 1(a). The relevant
ni and ns are given in Eq. (8). Solving the system (5)
for n = 1, one obtains

(1) (1)
(,l (,l ini4~y + kyA~,
X Z (]) (])kA„—kyA

(1) (1)
(,l (,l

in, a~~ + k.A~.
y & (1) (1)kid —k 4zii

(28)

[we have replaced one of the Eqs. (5) with Eq. (7); &,(1)

stands for 4,~ at n = nij. The result for n = 3 is ob-
tained by the replacement 1 —+ 3 in Eqs. (28). Thus, all
H(") are expressed in terms of H, and H,(1) (3)

The RHS of Eq. (12) is R = Ppz. According to rule

(14), the determinant 6 = A(o. = 0) = —m~m~~&i ~os~
2 2.

with the help of identity m ~m„—m« ——m~m, we2

obtain 6 = (1 + m~k2)(1 + mzzk + m, k2). Solving

A,~hI" = Ppz~, we obtain

The rest of the H's are given in Eqs. (22). We now have
all what is needed for the Geld evaluation both in and
outside the superconductor.

-55
x/k

FIG. 2. Contours of the constant field component h, (&, y)
at the distance z = A b = Agm, from the surface for the su-
perconducting half-space z ( 0. The angle 8 between c and
z is 49', the anisotropy parameter p = gm, /m = 4. Inter-
vals between adjacent contours are 2 x 10 Po/4m A . Dashed
contours correspond to h, & 0.

(this could have been taken from Ref. 11).
Turning to boundary conditions (18), we see that after

expressing H~, and H„ in terms of H, in Eqs. (28), we
(1)have three equations for three unknowns: p, H, , and

H~ l. The explicit formulas, however, are too cumber-
some and from this point on we resort to the numerical
evaluation. Distribution of the z component of the vor-
tex field, as detected at a distance z from the surface, is
shown in Fig. 2 for the parameters indicated in the figure
caption. We see that the surface perturbs substantially
the vortex field. Indeed, in the bulk the field h, (x, y)
is an even function of x, whereas near the surface
this symmetry is lost.

IV. THIN FILM

A. Single vortex

h, —4vrA mA,.ie;i,ji.../c = Ppz, 6(x, y). (30)

A thin film can be treated as a slab of a thickness
d (( A (d (( 1 in dimensionless units). Though solv-
able, the problem of a slab is made cumbersome by the
need to determine too many HI"&'s in Eq. (4) for the
perturbation of the vortex field by the boundaries: All
four a's are relevant. On the other hand, in the thin-
film limit, the only role of the London equation (1) is to
provide proper boundary conditions for the outside mag-
netostatic problem. We demonstrate below that this can
be done without a complete solution of the slab problem.

Let us consider a vortex perpendicular to the slab
boundaries; within our notation v = z or P„= 8„=0.
Equation (1) then reads in conventional units

h ~"l = —h~"&ky/k = /pm, k„/4,
& ~"l = Pp(1+ m„k )/2

(29) We now place the origin at the slab middle and integrate
Eq. (30) over the slab thickness. In the following we use
the notation
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f(z)« = &f) f I

—
I

—f ~

——
I
= [f].42) 0 2) (31)

(h, ) + A,rr(m 8„[hs] + m cI [h ]) = Pp6(x, y),

where the effective average film penetration depth

(33)

We now make an assumption (confirmed by the result)
that all quantities change in the film plane on distances
larger than A; e.g. , evaluating (4z j~/c) we write

(Oyh, —O, hy) = cI„(h,) —[hy]/d —[h„]/d. (32)

Keeping only leading terms, we obtain from Eq. (30) for
l=z

I
I

I
I

I

/

/
/

/
//

//
/

/
/

/

/

/
/

/
/

I
I

I

A, rr = A /d. (34) -16-16

The equations for i = x, y involve currents j, j„and,
therefore, the normal derivatives of the tangential field
inside the film; these are needed for the internal problem.

All quantities at the I HS of Eq. (33) vary continu-
ously when one crosses the film along z from one side to
another: The continuity of the derivatives in the paren-
theses follows from the continuity of the tangential field.
Further, in the limit d ~ 0, (h, ) = h, (d/2) = h, (—d/2).
Thus we obtain for the boundary at z = d/2

h, + 2A, ir(m B„h„+m 8 h ) = Pp6(x, y). (35)

The field outside is the gradient of the potential (15).
Performing the FT of Eq. (35) and utilizing the field
continuity, we obtain

y(k) =-
k+ 2A.rr(m k„'+ m, k') ' (36)

This solves the problem of the field distribution outside
the film; in the isotropic case all masses are unity, and Eq.
(36) recovers Pearl's result. 7 Thus, in anisotropic film we
have two efFective lengths to characterize the vortex field,
A m /d and A m /d; the first length depends on the c
orientation, the second is just A2&/d.

The quantity measured by the Hall probe technique is

X/Ref f

f h V'pdV into an integral over the film surface. Then,
it easy to see that the magnetic part f h2dV/8vr of the
internal energy can be neglected relative to the kinetic
one ei,;~ = (2~A /c ) f dVm, qj,jq. Since the integral
here is over the film volume, i.e. , for d ~ 0 over the xy
plane, the current density in the integrand is expressed
in terms of the tangential field: 4'/c = 2z x h(d/2)/d.
We then obtain eq;„= A, rr f dxdy(rn h + m h„)/27r =
A ff f d2k(m k2 + m k2) ~y(k) ~2/87rs. Thus, the total
energy of a vortex is

p2

16vr3

d2k

k+ 2A, rr(m, k2+ m, k2)
(38)

B. Vorte~ lattice

FJQ. 3. Contours of the constant field component h (x, y)
at the distance z = A,g from the film surface. The an-

gle 0 between the crystal axis c and the normal to the film

is 49, p = 4. Intervals between adjacent contours are
10 Pp/4mA, &, the dashed line is h, = 0.

h, (r, z) = — ky(k)e'"' "'d k/(2')

where z is the distance of the probe from the sample sur-
face. The contours of h~ = const evaluated numerically
for a film with m, /m = 16, 8 = 49', and z = A /d are
shown in Fig. 3. Note that h, changes sign in a broad
domain adjacent to the x axis; still the total fiux in z di-
rection is h, (k = 0; z) = Pp, the situation similar to the
bulk case. For the parameters chosen, h, reaches a min-
imum of = —5x10 Pp/A2& at x = 10A,ir, y = 0. At the
first sight, this feature suggests a peculiar vortex-vortex
interaction since in the bulk the interaction potential is
oc h, . It can be shown, however, that the interaction in a
film is a monotonic function of the intervortex distance,
the peculiarity of h, (x, y) notwithstanding (see below).

We evaluate now the energy of a single vortex. The
outside part of it is f h dV/8vr = f d kk~p(k)~ /16~,
where to apply the 2D FT we first transformed f hzdV =

For two vortices separated by a, one obtains e = 2ep +
e;„&, where the interaction part reads

d kcosk a
k+ 2A.rr(m k'+ m k„')

(39)

Compare this with h, (a, z = 0) to see that the bulk re-
lation between the interaction and h, [e;„t ——Pph, (a)/4vr
per unit length] does not hold for a film. Numerical eval-
uation shows that e;„t decreases monotonically with the
distance ~a~ irrespective of the a direction.

According to Eq. (36), the field at distances r )) A, ir
is nearly isotropic. This is true for the interaction (39)
as well; thus in the limit B (( Pp/A~& the vortex lattice
is expected to be made of equilateral triangles. However,
unlike the true isotropic case, the degeneracy with re-
spect to rotations of the lattice as a whole is removed:
The plane (B,c) should be a symmetry element.

In the opposite limit, B )) Pp/A2& (which covers prac-
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tically all fields since $0/A &
—+ 0 for d —+ 0), the lattice

interaction energy per unit area is given by

8 )., 1

8~Ace - maGz +mz Gz ' (40)

(42)

Although pf = pt, at e = 0 or vr/2, the difference between
py and pb can be substantial; e.g. , for e = 45 and for
the anisotropy parameter p = m, /ma )) 1, (pf/pb)
3p2/14; i.e. , the lattice in a film is "squeezed" more than
in the bulk. In other words, the lattice should undergo
transformation if the slab thickness d increases. This
feature could be seen if d exceeds somewhat the zero-
temperature bulk penetration depth A(0); then, reducing
the temperature T one can go from the film situation
with d ( A(T) to that of the bulk. Thus, the equilibrium
vortex lattice structure should depend on T.

In conclusion, we have shown that the superconductor

where P' is extended over all nonzero reciprocal-lattice
vectors C. To find the equilibrium lattice one can use the
procedure employed for the bulk case (see, e.g. , Ref. 19);
we obtain that in a film the lattice is made of isosceles
triangles with a side-to-base ratio

pf = (1+3m /m )' /2. (41)

In the bulk this ratio is given by

pb = (1+3m, /m„)'~ /2.

surface affects the vortex field in a nontrivial manner.
Examples given in Figs. 2 and 3 show that in general
there is no simple way to extract characteristics of the
vortex field in the bulk and the material anisotropy pa-
rameters looking at the outside field distribution. On
the other hand, direct examination of this distribution
provides information on the orientation of vortices im-
mediately under the surface, because the distribution is
qualitatively different for vortices exiting the sample be-
ing tilted or perpendicular to the surface. Also, we found
that the structure of flux-line lattices in anisotropic films
is different from that in the bulk; it depends on the film
thickness via parameter A(T)/d¹tedadded in proof. Our formal approach differs from
that of Brandt:2o we do not isolate the contribution of
the "vortex image" which helps little even in the isotropic
situation. Effects of the superconductor surface upon the
vortex core have recently been considered by Fritz et aL
within the Ginzburg-Landau approach. zi
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