
PHYSICAL REVIEW B VOLUME 48, NUMBER 6 1 AUGUST 1993-II

Strong-coupling expansions for the attractive Holstein and Hubbard models
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A strong-coupling expansion for the Holstein (electron-phonon) model is carried out through fourth
order. In the large-frequency limit the expansion agrees with known results for the attractive Hubbard
model. Mean-field theory is employed to determine transition temperatures of the effective (pseudospin)
Hamiltonian and the results are compared with recent Monte Carlo simulations of these models in

infinite dimensions.

I. INTRODUCTION

The interaction of conduction electrons in a solid with
lattice phonons is called the electron-phonon problem.
Migdal' and Eliashberg pioneered the study of such in-
teracting fermion-boson systems in the limit where the
phonon energy scale is much smaller than the electronic
energy scale. Vertex corrections can be neglected in this
case' and a self-consistent theory can be constructed that
is exact in the limit of weak coupling; the theory is an ex-
pansion in powers of the coupling strength. In the oppo-
site limit of strong coupling, the electron pairs are strong-
ly bound together into bipolarons and the ground state of
the system is highly degenerate. Degenerate perturbation
theory about this bipolaronic ground state produces a
theory that is an expansion in inverse powers of the cou-
pling strength.

The simplest electron-phonon Hamiltonian is the Hol-
stein Hamiltonian in which the conduction electrons in-
teract with local phonon modes:

H = —g t, c, c, + g (gx, —
p, )(n, &+n, &)

U=- g g
MQ' (2)

which determines the energy scale for the effective
electron-electron interaction mediated by the phonon.

+ —MQ gx;+ gp;
1 q 2 1

l l

where c; (c; ) creates (destroys) an electron at site i with
spin o., n; =c; c; is the electron number operator, and
x, (p, ) is the phonon coordinate (momentum) at site i.
The hopping of electrons between lattice sites i and j is
governed by the hopping matrix element t; (t, is a Her-.
mitian matrix).

The local phonon has a mass M and a frequency Q as-
sociated with it; the combination ~=—MQ is a spring
constant that measures the stored energy per unit length
squared in the phonon coordinate. The electron-phonon
interaction strength is parametrized by an energy per unit
length and is denoted g. A useful combination of funda-
mental parameters is the bipolaron binding energy

The chemical potential is denoted by p and the particle-
hole symmetric point (half-filled band) corresponds to
p= U.

The hopping matrix elements t; are used to define an
energy scale. The mass is then set equal to one (M= 1)
leaving

~
U

~
and Q as free parameters. The strong-

coupling expansion is a perturbative expansion in the
hopping terms of Eq. (1) and is valid when the bipolaron
binding energy is much larger than the electronic energy
scale (~U~))~t,I~). The onl.y remaining degree of free-
dorn in the strong-coupling regime is the polaron band
narrowing parameter denoted S=

~
U

~
/Q.

In the limit where the phonon frequency becomes very
large Q~oo (S~O), the effective electron-electron in-
teraction is instantaneous and the Holstein model be-
comes an attractive Hubbard model

H= —g t; c; cj +Up. n;.t
—— n;i ——1 1

i,j,a

+( U —p) g (n; t+n; i),

with the electron-electron interaction strength U deter-
mined by Eq. (2).

Recent work on the Holstein Hamiltonian has found
that the effective phonon potential becomes anharmonic,
developing a double-well structure at small to moderate
values of

~
U~. A double-well structure signifies the

formation of a bipolaron and indicates that a strong-
coupling expansion should be accurate down to moderate
values of

~
U~. This observation provides a motivation for

studying the strong-coupling expansion to determine its
region of validity.

Strong-coupling expansions have a rich history. In the
late 1950's Anderson' showed that the strong-
interaction-strength limit of the Hubbard model is de-
scribed by a Heisenberg antiferromagnet with an ex-
change integral j=4~t,

~ I~U~ that vanishes as the in-
teraction strength increases. Since then, two competing
methods have been employed to determine the effective
Hamiltonian in the strong-coupling limit: methods based
upon perturbation theory, and methods based upon
canonical transformations. Kato" described how to
determine an effective Harniltonian for a degenerate sub-
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space using perturbation theory and standard operator
methods. His analysis was applied to the Hubbard model
in one dimension by Klein and Seitz' and in arbitrary di-
mensions by Takahashi. ' Beni, Pincus, and Kanarnori'
and Hirsch and Fradkin' applied the same methods to
the Holstein model determining the effective Hamiltonian
to second order in the hopping. The canonical transfor-
mation method was motivated by the work of Lang and
Firsov' and Schrieffer and Wolff. ' The effective Hamil-
tonian for the Hubbard model was determined to lowest
order by Harris and Lange' and carried out to very high
order by MacDonald, Girvin, and Yashioka' using a
computer algorithm.

The perturbation theory methods are applied to the
Holstein Hamiltonian in Sec. II and the effective strong-
coupling Hamiltonian is determined through fourth order
in the hopping matrix elements. The phase diagram of
the Holstein model is determined exactly in the large-
dimensional limit by applying mean-field theory to the
effective Hamiltonian in Sec. III, and the strong-coupling
calculations are compared to exact quantum Monte Carlo
simulations to determine their region of validity. Con-
clusions are presented in Sec. IV.

II. PERTURBATION THEORY
AND THE EFFECTIVE HAMILTONIAN

In the strong-coupling limit
~ U~ ~ ap, the ground state

is a bipolaronic state consisting of paired electrons or
zero electrons at each lattice site. Since the distribution
of these paired sites is not determined from the Hamil-
tonian, the ground state is highly degenerate. The
effective Hamiltonian (within this degenerate subspace)
that determines the perturbed eigenvalues can be found
by using standard operator methods. "

Consider a Hamiltonian H =Ho+ T with Ho the un-
perturbed Hamiltonian and T the perturbation. The
ground-state energy is Ep, Qp denotes the subspace that
contains all of the degenerate ground states, and the pro-
jection operator onto Qp is Pp:

HoPo PoHo EoPo Po Po . (4)

As the perturbation is turned on, the eigenstates will
evolve into a new subspace Q with corresponding projec-
tion operator P. If it is assumed that the subspace Q has
a nonzero overlap with the unperturbed subspace Qp,
then the standard eigenvalue equation (H E)~E)=0-
can be projected onto the unperturbed subspace Qp,

P, (H —E)PP, ~E) =0,
to yield an efFective equation for the perturbed eigenvalue
E. The Hamiltonian P0HPPo acts purely within the un-
perturbed subspace Qp and has an overlap operator
P0PP0 that is not equal to the identity. This overlap
operator can be removed to yield an effective Hamil-
tonian within the unperturbed subspace Qp

H, it=(PpPPp) ' PpHPPp(PpPPp)

where

2n —1 !!
n=1

P =Pp —g
n =1 k1+k2+ ' +kn+1

k. ~0

R 'TR 'T TR "+'k k k

In the case of the Holstein Hamiltonian with Ho chosen
by Eq. (1) with t;—:0, the effective Hamiltonian is only a
function of even powers of the perturbation
(H,ft=Hp+H2+H4+ ). The first two terms of the
effective Hamiltonian satisfy

and

1 —Po
H2—:Po T TP0

Eo Ho

1 —Po 1 —Po 1 —Po

0 0 0 0 0 0

(10)

1 1 Po 1 po
PoT TP0 T TP0

(Ep —Hp)2 Ep —Hp

1 —Po 1 —Po

Ep —Hp (Ep —Hp)

The expansion for the effective Hamiltonian can be ex-
pressed graphically by a set of diagrams. A solid line
denotes the hopping of an electron from site i to site j
and is governed by the matrix element t; .. The diagrams
must be closed, since the effective Hamiltonian acts
within the degenerate subspace Qp. There is only one
possibility for the second-order term, which corresponds
to hopping from site i to site j and hopping back to site i,
or which corresponds to subsequent hops from site i to
site j. The diagram is illustrated schematically in Fig.
l(a). There are four possible diagrams that can contrib-
ute to fourth order which are depicted in Fig. 1. The first
three diagrams are linked diagrams which form nonvan-
ishing contributions to the effective Hamiltonian. The
last diagram 1(e) is an unlinked diagram which does not
contribute to the effective Hamiltonian because the con-
tributions from the positive and negative terms in Eq.
(11) cancel. The unlinked diagrams must cancel in order
to have an energy per lattice site that is finite in the ther-
modynamic limit. The fourth-order terms fall into three
categories, those that link two distinct sites [Fig. 1(b)],
three distinct sites [Fig. 1(c)], or four distinct sites [Fig.
1(d)].

The operator R is defined to be

R = Pp, —R"=[(1 Pp)l—(Ep Hp)]—" for k ~ 1 .
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{a) ~ ~) {b)

(c) ~( ~ )&

where a (a) is the harmonic-oscillator creation (annihila-
tion) operator.

When site i is occupied by an electron pair and site j is
unoccupied, the electron pair separates with one electron
hopping from site i to site j and either hopping back from
site j to site i or the second electron hopping from site i
to site j. There is only one class of intermediate states

1'l 0 -'l L:1'i 0,
tl O=. T 4 —' 0 1'l,

(13)

(14)

(e) !W Mike W!

FIG. 1. Schematic diagrams used in the determination of the
effective Hamiltonian. The second-order diagram is plotted in

(a), while the fourth-order diagrams appear in (b) —(e). The
fourth-order diagrams link two (b), three (c), or four (d) distinct
lattice sites. The contributions from the unlinked diagram (e)
vanish.

&+m~n &= 1
e

—(s/4)
&m!n!

X &0~(a+VS/2) (a + &S/2)"~0), (12)

The matrix elements for the effective Hamiltonian are
evaluated by introducing appropriate complete sets of
states between each of the operator factors in Eqs. (10)
and (11). The expectation value of the operator Eo Ho-
is —A(m+nS) where m is the total quantum number of
all of the excited harmonic oscillator states and n is the
total number of broken electron pairs. The limit of large
frequency Q~ ~ is simple because the intermediate state
must always lie in a harmonic-oscillator ground state
(m =0) and the expectation value of Eo Ho depe—nds
only upon the number of broken pairs. The limit of small
frequency 0—+0 is problematic because the unperturbed
subspace Qo is larger for 0=0 than for nonzero Q.

We will be interested in evaluating thermodynamic
phase transitions at finite temperatures. An approxima-
tion is made that the transition temperature T, is much
smaller than the phonon frequency Q so that one can re-
strict the analysis to the subspace Qo corresponding to
the ground state and need not consider the effective Ham-
iltonian in the subspaces corresponding to excited states.
This is not a prohibitive approximation since the small-
frequency limit is already known to be singular.

The evaluation of the second-order Hamiltonian Hz
has been performed previously. ' ' It is instructive to il-
lustrate its calculation in the present framework since it
is simpler than the calculation of the fourth-order terms.

The origin of the harmonic oscillator lies at x0=0,
xo= —g/MQ, or xo= —2g/MQ when there are zero,
one, or two electrons, respectively, at a given lattice site.
Let

~

+m ), ~
m ), and

~

—m ) denote the mth harmonic-
oscillator state centered about the origin with zero, one,
and two electrons, respectively. The overlaps &+m!,n )
satisfy

where !' $ corresponds to a bipolaron on a lattice site, 0
corresponds to an empty lattice site, and f or $ corre-
sponds to a single electron (polaron) at a lattice site.
Only one of the two possible intermediate states is shown
in Eqs. (13) and (14). Consider first the evaluation of Eq.
(13). Introducing the relevant complete sets of states pro-
duces

2 2 &
—O~m ) &+O~n ) &m

~

—0) &n +0)
—Q(m+n+S)

2t"Se ' co Sm +n

m!n! m+n+S ' (15)

for the diagonal matrix elements of the effective Hamil-
tonian. Similarly one finds

, &
—o~m)&+o~n)&m~+0)&n~ —0)

—A(m+n+S)

2t;. 1"Se s
/U m+n+S '

( S)m+n

m!n!
m, n =0

(16)

for the evaluation of Eq. (14). Using the identity
oo m+n

m!n! m + n +y

1=—e 1+ (
—2x )"

(17)
, (y+1)(y+2) . (y+n )

yields the simplification

&(i,j)=—2t, 1+ (
—S)"

, (S+1)(S+2) . (S+n)

J+=(—1)jc ct J. =(J+)t
J'= ,'(n~ t+ n~ ~

——1),
(19)

oo S"
X 1+

i (S+1)(S+2) (S+n)

At this point, it is convenient to introduce the notion
of pseudospin operators. ' If the lattice is bipartite, so
that it can be separated into A and B sublattices with
nonzero hopping matrix elements only between sublat-
tices A and B, then one can define pseudospin operators
via
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and the factor ( —1)J is 1 for the A sublattice and ( —1)
for the B sublattice. The pseudospin operators satisfy an
SU(2) algebra and form a spin- —,

' representation in the
strong-coupling limit. A doubly occupied site corre-
sponds to an up pseudospin and an empty site corre-
sponds to a down pseudospin. The matrix elements of
the effective Hamiltonian (that connects site i to site j)
satisfy

H2(i j)ITT)=0,
(20)

H2(i j)I T 1 ) =b(i j )I T $ ) 3'(ij—)I $T ),
with similar results for the pseudo-spin-Hipped states. So
the effective Hamiltonian can be mapped onto a pseudo-
spin Hamiltonian (with the same matrix elements) that
corresponds to an XXZ Heisenberg antiferromagnet

JI (I,J )= 26 (I,J )

jI '(i,j)=——2b(i, j) .

Note that the summation in Eq. (21) is not restricted toi(j.
The fourth-order terms can be separated into three dis-

tinct forms H4=H4(b)+H4(c)+H4(d) corresponding to
each of the linked fourth-order diagrams in Fig. 1. The
fourth-order term H4(b) corresponding to Fig. 1(b) may
be determined in a similar fashion to the second-order
term. The effective Hamiltonian is identical in form to
Eq. (21) with exchange integrals jI '(i, j) and jI~ '(i, j).
The intermediate states needed for the calculation of the
parallel exchange parameter are

+jI! '(i,j) J J'—— (21)

and

TL0—T 1=TL0 .
T 1:Tl0, (22)

(23)

with
with a pseudospin multiplicity of four. The exchange in-
tegral becomes

8t,4(4)—
jll ~3

1, 1', m, m', n, n'=0
m+ m'WO

(+Oln & &
—Oln'& & n I+m &(n'I —m'& & +m ll & &

—m'll') & i I+0) (1'I —0)
(n + n '+ S )(m +m ')(1+1'+S)

+ (+Oln )( —Oln'&(n
I

—m )(n' +m')( —mll )(+m'll')(ll+0)(l'I —0)
(n+n'+S)(m+m')(1+I'+S)

I, 1', n, n'=0

&+Oln }(—Oln') (n I+0) (n'I —0) (+Oil }(—Oll') (i I+0) (1'I —0)
( n + n '+ S ) (1+1'+S )

+ &+Oln & &
—Oln'& & n

I

—0& & n'I+0& &
—Oll & &+011' & & l 1+0&&1'I —o &

(n+n'+S) (1+1'+S) (24)

Substituting in the matrix elements from Eq. (12) and using the identities

and

= f z~ 'e"'dz, g, = —f z~ 'e"'lnz dz,
on! n+y o

' „o n! (n+y) 0

(Ole'"(a +y) IO) =(x+y)

(25)

(26)

produces the final result

8~,
4

-(4) '~ g3 —2S s —I s(&+I) (S~2) (1—x)' (1—y)'
dx dy xy e

mm =O m!m'!(m+m')
m+m'&0

(S/2)m+(1

+mX)(12+my�)2m

m!m'!(m +m ')

txt Sm+m' 1+( 1 )m+m'

=, m'. m". (m+S)'(m'+S) (27)

A similar analysis for the perpendicular exchange integral gives
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(S/2)m+m (1 x )m(1 )ji '= '

i S e g f dx f dy(xy) '2cosh[S(x —y}] m!m'!(m+m')
m+ m'40

oo Sm+m'
( 1 )m+( 1 )m'

=o m'. m". (m+S) (m'+S) (28)

and the effective Hamiltonian becomes

I

H (i j k)lttt&=0

H4(i j,k)l tst & =j;, It lt &
——ji(l t t& &+

I hatt &),

Hq(i, j,k )
I
t t l &

= —j'
j~' t 1' l &

—ji I t l t &

(30)

(29)

where the i,j dependence of the exchange integrals has
been suppressed.

The contributions to the effective Hamiltonian H4(c)
from the diagram in Fig. 1(c) can be determined by em-
ploying the same techniques. By symmetry, the most
general effective Hamiltonian satisfies

with similar results for the pseudo-spin-Ilipped states (the
i,j,k dependence of the coefficients is suppressed). In
terms of the pseudospin operators, the contribution to
the effective Hamiltonian becomes

H ( )=—g ' j' —(J;+J +J; J++Jk+J +Ji, J+)—
j~~ J J'+JkJ' —+j i' —(J;+Jk +J—; Jk )

i,j,k

(31)

where the prime indicates that i,j, and k are all distinct. The algebra needed to determine the effective exchange in-
tegrals is straightforward but tedious. The results are

4k&& tjk
2 2

ji= '
3

Se f dxf dyf dz(xyz)
o o o

X(expI —,'S[x —y+z —2z(x —y ) —xyz]] +exp[ —,'S[x —y —z(x+y )]] )

+2,d, d —, ~„—~ ~ (S/2} (1 } (1+y }+2 dx dy xy e
0 0 mtm

+ f dx f dy(xy) 'e '" '(lnx+lny)
0 0

(32)

2 2
4tI~ tjk 1

o o o3 S e f dx f dy f dz(xyz) 'expPS[x+y+z —2z(x+y)+xyz]]

+2 'd 'd s —i —s(x+y) ~ (S/2) (1+x ) (1+y)+2 dx dy xy e
0 0 m=1 mtm

+2f dx f dy(xy } 'e ' +~'1nx
0 0

(33)
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4tjtjk2 2

j' = — ' S e f dx f dy f dz(xyz) '(exp[ —,'S[—x —y+z+2z(x+y)+xyz]}
o o o

+exp PS[—x —y+2z+z(x +y )+2xyz ] } )

s —i s( + )

" (S/2) (1 —x) (1—y+2 dx dy xy e
0 0 m=1 mmmm

+2f dx f dy(xy) 'e +~ lnx
0 0

(34)

4t; .tjk
2 2

jI' = ' S e f dx f dy f dz(xyz) 'expPS[x+y+2z —z(x+y)+2xyz]} . (35)

Finally, the effective Hamiltonian H~(d) corresponding to Fig. 1(d) is evaluated. The most general pseudospin Ham-
iltonian for this linked diagram is

~4(i j,k, l )I 1 1 1' 1'
& =o,

~4(i j,k, l )I l 111& =~1&11& &
—P[I 11&1&+ I 111}&]+l'I 1111&,

H4(i j k, ~)111&1&=&ill 1& &
—e[11&11 &+ I &&ll &]+p[l &l 11&+

It�

&&1 &],

II4(i j,k, I ) I111& & =vl1& 1' & &
—e[ 11&1&+I&1 &1 &+

I &1&1&+ I
&11}'& ]+pl &1&1&,

(36)

with similar results for both cyclically perrnutated and pseudo-spin-Aipped states. This effective Hamiltonian can be ex-
pressed as

84(d)= —g ' + + (J JJ+J;Ji'+JkJ;+JkJf)
i,j,k, l

+ (J,+J +J; J,++J;+Ji +J; Ji++Jl,+J, +Jk J++Jk+Ji +Jk JI+)

5——(J'J'+ J'J')+ (J+J +J J++J+J +J. J+)

+2(p e)[J Jf (Jk+J—i +Jk Ji+)+JI',Ji'(J,+J +J, J+)

+J'J'(J+J +J J+)+J'J'(J+J +J J+)]
+2(y p)[J Jk(JJ.+J—

i +J& JI+)+Jf Jf(J;.+Jk +J; Jk+)]

++[(J;+J, +J; JJ )(Jk+J. i +Jk Ji+)+(J;+Jr +J; Ji+)(Jk+J +Jk J+)

(J;+Jk +J; Jk—+)(J,+Ji +JJ Ji )]+(—8a+45+2v)J JJ'JI'Jf (37)

in terms of the pseudospin operators (the i,j,k, I dependence of the coefficients has been suppressed) with the prime indi-
cating that all four sites are distinct. The coefficients in Eq. (37) can be expressed in terms of three-dimensional in-

tegrals as

2SS3e 2 dx dy dz xyz 'C x,y, z
IUI 0 0 0

(38)

where C(x,y, z) is the integrand corresponding to the
coefficient C. The integrands for the eight coefficients in
Eq. (37) are recorded in Table I.

The effective pseudospin Hamiltonian H, ff HQ+H2
+H&(b)+H4(c)+H~(d) is an anisotropic, frustrated,
antiferromagnetic Heisenberg model with additional
quartic spin-spin interactions. In the instantaneous limit
(A~ oo), the effective Hamiltonian becomes isotropic. In

the static limit (Q~O), the Hamiltonian involves only
the z component of the pseudospin.

An important check of the effective Hamiltonian arises
from taking the instantaneous limit of S~0 which
should produce the effective Hamiltonian of the Hubbard
model. ' ' In the Hubbard-model limit the parameters
of the efFective Hamiltonian satisfy
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TABLE I. Integrands for the eight coefficients of the effective Hamiltonian H4(d).

Coefficient Integrand for Eq. (38)

—exp —'S(x +y+z+xyz)
exp —'S( —x +y +z —xyz ) +exp z S[—x +y +z (x —y ) ]
—2 cosh —'S [x +y —z(x +y ) ] —exp 2 S( —x —y+z +xyz )

2 exp —,'S[x +y+ z(x+y ) ]
—exp —,'S( —x+y —z+xyz) —exp —,'S[—x+y —z(x —y )]

—zsexp —,'S[2z( —x+y)] —z exp2S[z+z(x —y) —xyz]
exp —'S(x+y —z —xyz)+2z cosh —,'S[z —z(x+y)+xyz]
4zsexp —,'S[z+z(x+y )+xyz]
4 exp —'S [ —x —y —z (x +y ) ]+4exp ~ S( —x —y —z —xyz )

+2z exp —'S[—2z(x+y)]+2z exp —,'S( —z —xyz)

4) .(4)4t,"
Jx JII

( )

Jj. 3 ' J Jll ' J ~II 3

(39)
P y
2 3 2 3

P lJ Jk kl 1/

producing

2

H,~ =Up 2(J,') ——+2(U —p) g J +—MQ g x;+ (2J +1) + gp;zz 1 z 1 2 g z 1

l l l l

4t;.+ —g
16t;. 2 2

1 1 4t JtJk 1J;J ——+—g' J;Jk ——
4 2 „, ~U~'

' " 4

+ g '
1 —4(J; J +J; Ji+J;-Jk+Jk J +Jk Ji+J) J()

8 U

+80(J; J Jk Ji+J; JiJk J —J; JkJ Ji) (40)

in agreement with the known results. ' '
III. MEAN-FIEI. D THEORY

Consider the simplified case of nearest-neighbor hop-
ping on a hypercubic lattice in d dimensions. The hop-
ping matrix elements satisfy

r,, =t*/2&d, (41)

where i and j are nearest neighbors and are zero other-
wise. The hopping matrix elements scale as the inverse
square root of the dimensionality because this is the only
scaling that will yield a finite kinetic energy in the limit of
infinite dimensions. The rescaled hopping integral t* is
chosen to be the energy unit.

Since the e6'ective Hamiltonian

H, s =Ho+Hz+H4(b)+H4(c)+H4(d)

is a pseudospin Hamiltonian, mean-field theory for the
spin- —,

' degree of freedom can be used to approximate the
thermodynamic phase transitions that correspond to
staggered order along the z axis [charge-density-wave for-
mation at the antiferromagnetic (~, m, ) point] or to

(J)= —tanh —P~h
h mal 1 1

ih. , l
2 2

(42)

as first described by Gorter. The hypercubic lattice
divides into two sublattices A and B where the hopping
of an electron only occurs from sublattice A to sublattice
B or vice versa. The paramagnetic (or high-temperature)
phase corresponds to the case of a uniform magnetization
on each sublattice:

(J ) =(J ) = —,'me, =
—,'(p, —1)e, , (43)

where e, is the unit vector along the z axis and p, is the
electron concentration. The self-consistent equation for
the magnetization becomes

staggered order along the x axis (superconducting order
in the zero-momentum pair-field state). The mean-field
theory becomes exact in the limit of infinite dimensions.

The mean-field theory is constructed by determining
the molecular field at each lattice site and equating the
expectation value of the magnetization with that of a free
spin in an external magnetic field equal to the molecular
field, h, &, yielding
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m =tanh —,'PI2(p —U)+md[ —
jI~

' —
jI~ '+(2d —1)(j~'~ —jI' )+(d —1)(5+—'v)]+m d(d —1)(2a—5 —

—,'v)] . (44)

The dependence of the chemical potential p upon the electron concentration p, can easily be determined by inverting
Eq. (44).

First consider the simplified case of the Hubbard model where the effective Hamiltonian is given by (40). The transi-
tion temperature to the commensurate charge-density-wave phase occurs at a temperature where the magnetization
satisfies

(Jz &=—,'(m+m')e, , (Jii & = —,'(m —m')e, ,

in the limit m —+0. The transition temperature is

(45)

T, =—p, (2—p, ) 1 — 1+—p, (2—p, )+ [3—p, (2 —p, )]2' '
~U~ 2U' 2' ' 2d

(46)

which agrees with Takahashi's results' in d =3 [Eq. (44)
was used to replace the chemical potential p by the elec-
tron concentration p, =1+m ]. At half-filling and in the
limit of infinite dimensions, the transition temperature
becomes

T, =t* (1 0.75t* —IU )/~ Ui .

The second- and fourth-order approximations are corn-
pared to the exact Monte Carlo simulations in Fig.
2. The second-order approximation (solid line) increases
without bound as

~
U~~0, the fourth-order approxima-

tion (dashed line) has the correct qualitative behavior of
developing a peak, but does not describe the weak-
coupling region properly since T, =O for ~U~ (&3/2.
The quantum Monte Carlo results in infinite dimen-
sions are represented by solid dots in Fig. 2. The
quantum Monte Carlo transition temperatures for three
dimensions are plotted with open circles in Fig. 2. The

I

density of states at half-filling for a hypercubic lattice in
infinite dimensions is 0.564lt" and in three dimensions is
0.494/t', implying that the charge-density-wave transi-
tion temperature should be smaller in three dimensions
than it is in infinite dimensions in the weak-coupling re-
gime [it appears that the Monte Carlo results in three di-
mensions overestimate I, (see Fig. 2)]. Furthermore, in
the strong-coupling limit the transition temperature will
decrease as a function of dimensionality. This arises from
two sources: first the 1/d corrections to the negative
coefficient of the t' I

~
U~ terin increase its magnitude,

decreasing T„' second the corrections due to quantum
fluctuations will reduce the transition temperature below
that predicted by the mean-field theory. The quantum
Monte Carlo results for infinite dimensions therefore
form an upper bound to the transition temperature in
finite dimensions in the strong-coupling regime ( ~

U
~

& 5).
The transition temperature to the charge-density-wave

(CDW) state for the Holstein model in the infinite-
dimensional limit satisfies

T, =-,'p, (2 —p, )(djI~~"
—d'[6J ~~+2J I~'+2(p, —1)'a —p, (2 —p, )~i+ [1+—,'p, (2—p, )] ] ) (47)

The numerical evaluation of the coefficients in Eq. (47) is
described in the Appendix. The second-order approxi-
mation (solid line) and fourth-order approximation
(dashed line) are compared to the quantum Monte Carlo
results of Ref. 9 at 0=0.5 in Fig. 3. One can see that the
strong-coupling approximation is much more accurate
for the Holstein model (with a moderate value of Q) than
for the Hubbard model. Once again the fourth-order ap-
proximation has the correct qualitative behavior of devel-
oping a peak but vanishes for values of

~ U~ less than 0.76.
Here the peak position and magnitude are predicted quite
accurately by the strong-coupling approximation.

The superconducting (SC) transition temperature is
determined by finding the temperature where the magne-
tization satisfies

(J' &=(J'&=—,'m, (J"„&=—(J"&= —,'m', (48)

in the limit m ~0. The transition temperature in the
infinite-dimensional limit is

p, —I
Tc

ln[p, /(2 —p, ) ]

X Idj~i '+d [4ji —2jI +2P —y+2e —p,

+(p, —1) (2P —y —2e+p)]], (49)

and the numerical evaluation of the parameters in Eq.
(49) is discussed in the appendix. In the limit Q~ ~, the
superconducting transition temperature is always larger
than the CDW transition temperature, becoming equal at
half-filling (p, =1). For finite Q, the system is supercon-
ducting when

~
U

~
((Q and has CDW order when

~ U~ &&Q. The phase diagram for the transition between
SC and CDW order is determined by equating the transi-
tion temperatures in Eqs. (47) and (49) and determining
the critical electron concentration p, as a function of S
and ~U~. The result is plotted in Fig. 4 for the case
0=0.5. The second-order approximation is represented
with a solid line, the fourth-order approximation with a
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FIG. 2. Comparison of the second-order (solid line) and
fourth-order (dashed line) strong-coupling approximations with
the quantum Monte Carlo results (Refs. 25 —27) (solid dots) for
the charge-density-wave transition temperature at half-filling in
the infinite-dimensional Hubbard model. The open circles are
the three-dimensional quantum Monte Carlo results of Ref. 28.

dashed line, and the quantum Monte Carlo results with a
solid dot for a CDW transition and an open diamond for
a SC transition. One can see that the fourth-order ap-
proximation is superior to the second-order approxima-
tion, but neither describes the transition region well.

To understand the origin of why the strong-coupling
approximation predicts the CDW transition temperature
at half-filling so accurately, but fails to predict the
CDW-SC transition as well, the CDW transition temper-
ature at g =0.625 (l Ul =1.5625), 0=0.5 is plotted as a

FIG. 4. Phase diagram for the transition from charge-
density-wave order to superconducting order in the infinite-
dimensional Holstein model with &=0.5. The second-order ap-
proximation (solid line) and the fourth-order approximation
(dashed line) are compared to the quantum Monte Carlo results
(Ref. 9). The Monte Carlo simulations predict that the transi-
tion occurs between the last observed charge-density-wave tran-
sition (solid dot) and the first superconducting transition (open
diamond)

function of electron concentration in Fig. 5. The fourth-
order result overestimates T, by approximately 2 —5%%uo at
half-filling and the quantum Monte Carlo overestimates
T, by a similar amount (5%%uo) for all fillings because of a
systematic Trotter error (the quantum Monte Carlo re-
sults were calculated at 6~=0.4 and were not scaled to
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FIG. 3. Comparison of the second-order (solid line) and
fourth-order (dashed line) strong-coupling approximations with
the quantum Monte Carlo results (Ref. 9) (solid dots) for the
charge-density-wave transition temperature at half-filling in the
infinite-dimensional Holstein model with Q =0.5.

FIG. 5. Charge-density-wave transition temperature vs elec-
tron concentration for the infinite-dimensional Holstein model
at g=0.625 (lUl=1. 5625) and 0=0.5. The second-order ap-
proximation (solid line) is compared with the fourth-order ap-
proximation (dashed line) and the quantum Monte Carlo results
(Ref. 9) (solid dots).
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reduce the Trotter error ). Note that the agreement is
poorest at the lowest electron concentration indicating
that the error in the strong-coupling approximation
grows as the electron concentration is reduced. As a re-
sult, the strong-coupling approximation fails to accurate-
ly predict the CDW-SC transition because it severely
overestimates the CDW transition temperature at low
electron concentrations.

IV. CONCLUSIONS

The strong-coupling expansion has been evaluated
through fourth order in the hopping for the Holstein
model. The result is an anisotropic, frustrated, antiferro-
magnetic Heisenberg Hamiltonian with quartic spin-spin
interactions. The instantaneous limit (Q~ ~ ) produces
the known results' ' ' for the Hubbard model. The ap-
proximation was compared to recent quantum Monte
Carlo simulations for the Hubbard and Holstein
models and found to agree quite well in the strong-
coupling regime. Agreement was significantly better for
the Holstein model at 0=0.5 than for the Hubbard mod-
el.

The second-order strong-coupling approximation pre-
dicts transition temperatures that diverge as the interac-
tion strength vanishes. The fourth-order approximation,
however, has the correct qualitative behavior of predict-
ing a peak in the transition temperature as a function of

~
U, but also predicts that there is a finite value of

~
U~

below which T, =0 . The quantitative prediction for the
peak position and peak height were much better for the
Holstein model (at 0=0.5) than for the Hubbard model.

The strong-coupling approximation is also more accu-
rate near half-filling than it is for small electron concen-
trations. This probably occurs because the dynamical
generation of a double-well effective-phonon potential is
more difficult at low electron concentrations than it is at
half-filling. As a result, the fourth-order strong-coupling
approximation does not predict the transition between

CDW order and superconductivity accurately at Q =0.5.
The extremely good success of the fourth-order

strong-coupling approximation provides a motivation for
studying the conserving Auctuation-exchange approxima-
tion (which is analogously the next level of weak-
coupling approximations beyond the conserving
Hartree-Fock approximation) to see if a unified approxi-
mation technique can carry one from the weak-coupling
limit to the strong-coupling limit. Work along these lines
is currently in progress.
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APPENDIX

The numerical methods used to evaluate the parame-
ters of the effective Hamiltonian as functions of S are de-
scribed here. The coefficients are expressed in the text as
three-dimensional integrals that depend parametrically
on S. The integrand is a strongly peaked function of x,y,
and z in the large S limit so that direct numerical integra-
tion schemes are difficult to control. The three integra-
tions can be carried out analytically, producing a power-
series expansion in S for the relevant parameters. The
power series involve up to fivefold iterated summations
that converge quickly for values of S smaller than 5.
Loss of precision occurs for some parameters when S
exceeds 20. Larger values of S were not required in the
numerical cases analyzed in the text.

The approach utilized for conversion of the multidi-
mensional integrations into power series expansions is il-
lustrated below for the coefficient a. The first step is to
change variables from x,y, and z to u =xyz, U =xz, and
w=z:

3S e J' f J du u 'exp —S iv+ —+u+ —"

4~U~3 o w o v o 2 iv v
(A 1)

The integration over the variable u is performed by expanding the exponential in a power series

S2 —2s y ( ~ ) f S f d s —i(1+v)me (A2)

The integration over the variable v is performed by first expanding the binomial (1+v ) with the binomial theorem,
and then expanding the exponential in a power series and integrating. The result is

(A3)

Finally, the integration over w is performed by also expanding the exponential in a power series. The variables in the
summations are then redefined in order to reexpress the power series in purely increasing powers of S. The end result is

k

(A4)
4~U~3 k o 2

& o (k —I)! o (l —m)! m+S „o (m n)!n! k ——I+n+S l —m+n+S

Similar methods are used to evaluate all of the other relevant coefficients. The final expressions are too cumbersome to
be reported here.
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