PHYSICAL REVIEW B

VOLUME 48, NUMBER 6

Numerical renormalization-group study of low-lying eigenstates of the
antiferromagnetic S = 1 Heisenberg chain

Steven R. White
Department of Physics, University of California, Irvine, California 92717

David A. Huse
ATET Bell Labs, Murray Hill, New Jersey 07974
(Received 3 February 1993; revised manuscript received 23 April 1993)

We present results of a numerical renormalization-group study of the isotropic § = 1 Heisenberg
chain. The density-matrix renormalization-group techniques used allow us to calculate a variety
of properties of the chain with unprecedented accuracy. The ground state energy per site of the
infinite chain is found to be ep = —1.401484038971(4). Open-ended S = 1 chains have effective
S = 1/2 spins on each end, with exponential decay of the local spin moment away from the ends, with
decay length £ = 6.03(1). The spin-spin correlation function also decays exponentially, and although
the correlation length cannot be measured as accurately as the open-end decay length, it appears
that the two lengths are identical. The string correlation function shows long-range order, with
g(o0) =2 —0.374 325096(2). The excitation energy of the first excited state, a state with one magnon
with momentum ¢ = 7, is the Haldane gap, which we find to be A 2 0.41050(2). We find many
low-lying excited states, including one- and two-magnon states, for several different chain lengths.
The magnons have spin S = 1, so the two-magnon states are singlets (S = 0), triplets (S = 1), and
quintuplets (S = 2). For magnons with momenta near 7, the magnon-magnon interaction in the
triplet channel is shown to be attractive, while in the singlet and quintuplet channels it is repulsive.
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I. INTRODUCTION

Recent improvements in real-space numerical renor-
malization group (RG) techniques!™ have made this
method competitive with, and in many ways superior to,
other numerical methods, such as quantum Monte Carlo
and exact diagonalization, for studies of one-dimensional
(ID) quantum systems. The main advance involves
the reformulation of the method in terms of density
matrices.2 In the original formulation of the real-space
RG method, a block of sites is diagonalized and the
lowest-lying eigenstates of the block Hamiltonian are
used to construct a new effective Hamiltonian, which one
hopes is valid for the low-lying states of the whole lattice.
In the density-matrix method we form the new effective
Hamiltonian out of the most probable eigenstates of the
block density matrix. This change makes the method
tremendously more accurate than the original approach.
However, finding the density matrix of the block requires
one to diagonalize a larger section of the lattice which
includes the block, in order to incorporate the effects of
the rest of the lattice on the block. Efficient density-
matrix algorithms have been developed for finite chains
with open or periodic boundary conditions, as well as
for an infinite chain, where the chain length steadily in-
creases with each iteration. These methods have been
described in detail elsewhere.3

In this paper we report results of a density-matrix
RG study of the antiferromagnetic S = 1 Heisenberg
chain, which has been the subject of a large amount
of work in the last decade. Besides exhibiting the well-
known Haldane gap, this system has been found to have
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several other fascinating features. For example, the
ground state of an open S = 1 chain has an effective
S = 1/2 spin at each end. These effective spins have
been observed in real systems containing S = 1 chains,
such as Ni(C2HgN2)2NO,ClO4 (NENP), using magnetic-
resonance techniques.? The ground state also exhibits a
surprising form of topological long-range order, related to
a similar type of order found in fractional quantum-Hall-
effect systems. There have been a number of theoretical
and experimental studies of the spectrum of low-lying
excited states of this system.5™8

The density-matrix algorithms used here give much
more accurate results using open boundary conditions
than with periodic boundary conditions. With periodic
boundary conditions, each block has two ends which in-
teract with the rest of the lattice, whereas with open
boundary conditions, a block has only one active end if
it contains either the right or left end of the chain. The
effective Hamiltonian of the block must be made from a
larger number of states if it must represent two active
ends. Thus the results we report here are all for open
chains. It is possible, however, to accurately reproduce
bulk properties with open chains because we can study
very large chains—up to several hundred sites.

A simple understanding of the ground state of the anti-
ferromagnetic Heisenberg spin-1 chain was presented by
Affleck, Kennedy, Lieb, and Tasaki (AKLT).5 Each spin-
1 may be viewed as two spin-1/2 spins that combine on
site in a fully symmetric triplet wave function. Now let
one spin 1/2 on each site pair with one of the spin-1/2
spins on the next site to the left in an antisymmetric sin-
glet wave function, while the other spin-1/2 pairs with a

3844 ©1993 The American Physical Society



48 NUMERICAL RENORMALIZATION-GROUP STUDY OF LOW-.. ..

spin 1/2 on the next site to the right. The unique singlet
wave function of the entire chain resulting from this con-
struction captures much of the essential physics of the
ground state. (In fact this wave function is the exact
ground state of a closely related Hamiltonian with addi-
tional biquadratic nearest-neighbor interactions.®) With
simple free ends, one thus has unpaired spin 1/2’s left
at each end of the chain. The interaction between these
extra half-spins falls off exponentially with the length of
the chain, and so in the limit of a long chain one has a
four-fold degenerate ground state due to these two free-
end spins. Although this and other end effects are quite
interesting in their own right and can be captured very
accurately using density-matrix algorithms, in this pa-
per we will focus on properties in the bulk of the chain,
away from the ends, and so we would like to remove this
inconvenient degeneracy.

If one adds a real spin-1/2 spin at each end of the chain,
these can each form singlets with half of the last spin 1 in
the chain, thereby removing the ground-state degeneracy.
Thus for a chain of length L sites our Hamiltonian is

L
H =

1
J(£)S; - Set1, (1)
1

[
Il

where §; and S L are spin-1/2 spins, while all other spins
are of spin 1. The couplings are J(¢) = 1 in the bulk of
the chain, but may be adjusted at or near the ends of the
chain. By varying the couplings at the ends of the chain
we may attempt to choose the best boundary conditions
for the task at hand. Examples of this are illustrated be-
low. We generally only adjust the final couplings, taking
J(1) = J(L — 1) = Jena and leaving all other couplings
at unity.

The total spin commutes with the Hamiltonian (1). We
work in an S* basis in which the good quantum numbers
are total S# and total spin. The couplings will generally
be taken to be symmetric, J(£) = J(L — £), under parity
(reversal of the chain), and so parity is an additional good
quantum number.

II. GROUND-STATE PROPERTIES

We have examined the ground state of (1) for various
boundary conditions. As long as we have the spin-1/2
spins on the ends and only antiferrromagnetic couplings,
J(£) > 0 for all £, the ground state is a singlet (zero total
spin). The parity of the ground state is opposite to the
parity of the number of sites, L, as is expected from the
above AKLT wave function. Most of our results are for
even L where the ground state is thus odd under parity.

We are interested in the properties of the translation-
ally invariant infinite chain, and so when we study the
ground state we should choose a boundary condition that
induces minimal nonuniformity in the ground state away
from the ends. To do this we can measure the ground-
state expectation value of the local energy,

e(®) = (Se - Spi1) (2)
and ask that this be perturbed as little as possible by
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the boundary condition. Near the end of the chain, e(£)
does show nonuniformities due to end effects which decay
rapidly as one moves away from the end, as illustrated in
Fig. 1. When we adjust the end coupling, the minimum
end effect is seen at Jenq = 0.7 (see Fig. 1).

The ground-state energy can then be obtained by mea-
suring F(£) in the center of the chain. However, a signif-
icantly more accurate estimate is obtained by measuring
energy differences using the infinite-lattice algorithm. In
the infinite-lattice method, the size of the lattice grows
by 2 at each step. The two additional sites are added in
the center of the chain. The total energy of the chain
increases in one step by the energy associated with these
two sites. Using Jenq = 0.7, the additional energy added
in a step divided by two converges very rapidly with in-
creasing L to a very accurate estimate of the ground-state
energy per site. The error in the energy due to finite L
quickly becomes negligible compared to the truncation
error 1 — P(m),® where m is the number of states kept
per block. P(m) is defined as the sum of the first m
density-matrix eigenvalues; the corresponding eigenvec-
tors are used in constructing the effective Hamiltonian of
a block. Each density-matrix eigenvalue represents the
probability of that particular eigenstate, and 1 — P(m)
thus gives the fractional error involved in representing a
block by only m states. Of course, in the course of a cal-
culation the density matrix is diagonalized for a variety
of blocks of different sizes; we report the largest value of
1— P(m) appearing in the last iteration. (In this case the
earlier iterations can be considered merely preliminary to
the last iteration.)

Because of the very rapid decrease of 1 — P(m) with
m, our determination of the ground-state energy is ul-
timately limited in accuracy by accumulated round-off
error in the various parts of the calculation due to the
use of 64-bit (“real*8” in FORTRAN) precision. The accu-
racy of the density-matrix eigenvectors begins to degrade
when the associated eigenvalues become less than about
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FIG. 1. Local energy in the ground state vs distance along
the chain £ for a chain of length L = 60 and various values
of Jend. The end effect is minimized for Jonq =2 0.7. Note the
highly expanded scale on the vertical axis.
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10~12, The primary effect of using these inaccurate eigen-
vectors is a slight slowdown in the rate of convergence of
quantities such as the energy with m. As long as the set
of eigenvectors used to represent a block is kept orthonor-
mal to machine precision, which is not difficult, we do not
expect any errors associated with including these approx-
imate eigenvectors, only a somewhat slower reduction in
the truncation errors. In the case of the ground-state of
the S = 1 Heisenberg chain, for m < 110, round-off error
is negligible. Table I shows the ground-state energy per
spin, eg, for various values of m, having converged with
lattice size in each case. For m ranging from 36 to 86,
the error in the energy (determined using the larger-m
results) is roughly proportional to 1 — P(m), with a coef-
ficient of about 5. Using this slope to correct the results
for m = 110 gives a corrected estimate of the energy of
eo = —1.40148403895. This correction also can be used
as an estimate of the uncertainty in the final result; we
find (using m < 110) ep = —1.4014840390(2). A more
accurate result is obtained by correcting the m = 180 re-
sults in a similar way, yielding eq = —1.401484038971(4).
This last result may be affected by round-off errors larger
than the stated error (which is a generous estimate of
the truncation error); to estimate the round-off error we
would need to run the calculations with higher numerical
precision.

The spin-spin correlation function C(i — j) = (SfS%)
can be measured in a symmetrical fashion on a finite
chain by putting 7 and j equal distances from the center of
the chain, and varying their separation. This calculation
can be carried out with either the finite-lattice or infinite-
lattice method. The correlation function is expected to
behave for large [ as

C(f) ~ A(—1) Ko(£/€) =~ A(—1)4(w€/20)Y/2e ¢, (3)

where A is a constant, Ky is the modified Bessel function,
£ is the correlation length, and the second form holds for
£ >> €. Figure 2 shows C({) from an infinite-lattice
calculation with m = 180. The correlation function can-
not be measured as accurately as the energy, with the
errors as large as 107 for £ ~ 30. Nevertheless, our
results are substantially more accurate than those from

TABLE I. Ground-state energy per site as a function of
the number of states kept m. The energy was obtained us-
ing the infinite-lattice method, where the lattice size was in-
creased until convergence of all digits shown was obtained.
Also shown is the truncation error 1 — P(m).

m €o 1— P(m)
36 -1.40148379810 5.61 x 1078
48 -1.40148401407 4.13 x107°
60 -1.40148403106 1.23 x 107°
72 -1.40148403623 3.42 x 10710
86 -1.40148403729 1.34 x 1071°
100 -1.40148403872 2.66 x 10711
110 -1.40148403887 1.27 x 10711
160 -1.401484038968 4.4 x 10713
180 -1.401484038970 1.4 x 10713

STEVEN R. WHITE AND DAVID A. HUSE

102

1078

lc)

104

10-%

1076

sl ool ot 1ol

LELR L) L B a0l N R AL R Rl M AL R L

10-7 1 | | N
20 40 60 80

o

FIG. 2. Spin-spin correlation function C(£) as a function
of £ for two different values of m, the number of states kept
per block.

quantum Monte Carlo calculations.® Unlike the errors in
quantum Monte Carlo calculations, the truncation errors
from finite m are systematic, rather than random. Fig-
ure 3 shows & = —1/In[-C(£)/C(¢£ — 1)], which is a
measure of a local correlation length, with the true cor-
relation length given by £ = {,,. For any value of m, the
behavior becomes purely exponential for large ¢, but the
limiting correlation length is not especially accurate. The
presence of prefactors modifying the simple exponential,
as in (3), makes a direct determination of £ (with no
assumptions about prefactors) difficult from this data.
Also shown as the top trace in Fig. 3 is the equiva-
lent decay length for the decay of (S7) away from the
effective S = 1/2 spin on an open end of a S = 1 chain,
i.e., one without a real S = 1/2 on the end to remove
the degeneracy; here we take the ground state with total

m=180

m=48

20 40 60 80
[4

FIG. 3. Local correlation length £, = —1/In[—C(£)/C(£—
1)] for various m. Also shown is the equivalent decay length
for an effective S = 1/2 spin at the end of an S = 1 chain
(with (S}) replacing C(£) in the formula for ).



48 NUMERICAL RENORMALIZATION-GROUP STUDY OF LOW-. .. 3847

S§% = 1/2. The decay in this case is expected to be almost
purely exponential,'? in contrast to an earlier report,!?
and our results support this. (The irregular behavior for
large £ is due to truncation error.) In this case it is easy
to determine a decay length of £ = 6.03(1), as was re-
ported earlier.? Given that we can measure this decay
length accurately, an interesting question is whether this
decay length is the same as the correlation length gov-
erning the decay of C(£). To this end we analyze the
data for C(¢) in a similar manner to Nomura.l® Figure
4 shows C(¢) divided by A(—1)¢K,(£/€), with & = 6.03
and A = 0.19934, for various m. The factor A was de-
termined by requiring the fit to be exact for £ = 30 for
the m = 180 data. For small £ the calculated C(¢) is
very accurate and gives corrections to the assumed form.
For intermediate £ the data and the assumed form agree
extremely well. For large ¢, the data show systematic
deviations, with the value of £ for which the deviations
appear increasing with m. We conclude that the assumed
form works very well for £ > 15 and that the decay length
and the correlation length are indeed the same, £ = 6.03.

It has been conjectured,'® and limited numerical evi-
dence has supported,'*™!° that a particular type of topo-
logical long-range order exists in the spin-1 chain. This
order can be measured by the string correlation function

o0 = (55 (ﬁ 5) 7). @)

k=1

Despite its complicated form, this function is easily mea-
sured with the infinite-lattice algorithm. In this algo-
rithm, the left-hand block is built up site by site by
adding a site to its right-hand side. (The right-hand
block is obtained at each step by reflecting the left-hand
block.) The matrix representation of the operator in the
brackets of Eq. (4) is built up site by site also. As site k
is added to the block, the matrix for the operator e*™S«
is multiplied onto the right-hand side of S¢ (H;:ll et s,
which was formed during earlier steps. The starting point
for the buildup of this operator is not the first site of the
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FIG. 4. Ratio of |C(£)| to the approximate form AKo(£/€)

for various values of m, with A = 0.19934 and £ = 6.03.

chain; it is a site far enough from the left end to avoid
end effects. At each step of the calculation, we obtain
either of two possible measurements of g(£): one where
we terminate the product at one of the center sites £+ 1
by applying S%,;, and one where we couple this string
operator with its reflection in the right-hand block to get
a measurement of g(¢ — j) with ¢ and j symmetrically
located about the center of the chain. At each step of
the iteration, two more sites are added to the center of
the chain and the separation ¢ — 7 grows by 2.

Figure 5 shows the string correlation function g(¢) as
a function of £. The long-range order is clearly evi-
dent. The function settles down to its limiting value
very rapidly. We have continued the calculation to
larger values of £ than is shown in the figure; the re-
sults stay at the limiting value. For m = 180, we find
g(oo) = —0.374325096(2), with convergence to this ac-
curacy starting at £ = 50. For comparison, keeping only
m = 110 states we find g(oco) = —0.374325104. Exact-
diagonalization calculations!? have estimated g(oco) =
—0.38 based on a 14-site lattice.

III. ONE-MAGNON EXCITED STATES

Now let us turn to the excited-state spectrum of the
antiferromagnetic spin-1 Heisenberg chain. For a uniform
chain, momentum is a good quantum number. A sketch
of the expected spectrum of low-lying excited states of
an infinite chain is shown in Fig. 6. The figure shows
only positive momentum; the spectrum is symmetric un-
der momentum reversal (parity). The excitation energy
of the lowest-lying excited state is the Haldane gap A.
This excited state is a triplet with total spin 1 and mo-
mentum 7 in units where the spacing along the chain
is a = 1. This state is the bottom of the magnon band,
whose energy vs momentum is illustrated in Fig. 6. These
magnons are the elementary excitations in this system.
The rough shape of the magnon dispersion in Fig. 6 is
based on the diagonalizations by Parkinson and Bonner®
and the quantum Monte Carlo results of Takahashi.”
Below we demonstrate that for momentum near m, the

0-4‘8 T T T T T
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FIG. 5. String correlation function g(¢).
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FIG. 6. Schematic of the spectrum of low-lying states for

an infinite chain. E is the energy of the excited state, Eo that
of the ground state, and A is the Haldane gap. Note that for
a given momentum, the one-magnon state, when present, is
separated from the continua above it by a gap where there
are no excited states.

magnon is indeed a particlelike excitation, and we ac-
curately measure its dispersion relation near . Inelastic
neutron scattering from the qausi-one-dimensional spin-1
antiferromagnet NENP has seen quantitatively the same
dispersion, with a splitting of the triplet due to the weak
anisotropies in that system.®

One may also excite two or more magnons. This re-
sults in the multimagnon continua illustrated in Fig. 6.
The continua are labeled by the maximum number of
magnons that a state of that total excitation energy and
total momentum can decay into. Thus, for example, the
magnon band disappears into the two-magnon continuum
near momentum 0.37w. At this point the single magnon
with momentum near 0.37w becomes unstable to decay
into two magnons, each with momentum near —0.857,
with the same total energy and the same total momentum
modulo 27. We discuss the two-magnon excited states in
some detail below. The multimagnon continua have not
yet been detected experimentally.

The wave function of the one-magnon state with mo-
mentum g and S, = « in an infinite chain is expected to
be of the form

lg,@) = e'te] .(6)]0), (5)

£

where |0) is the ground state. The magnon creation op-
erator c} . (£) consists of spin operators and products of
spin operators in the vicinity of site £. If the magnon
were truly a point particle, the creation operator would
be simply a spin operator at site £. The true magnon
creation operator c . (£) also contains products of spin
operators away from site £. The weight of these multisite
terms presumably decays as one moves away from site £
with some characteristic length which is thus a measure
of the size of the magnon as a particle. If this particle size

is smaller than the length of our finite chain, we expect
the magnon to propagate as a free particle in the bulk of
the chain, scattering only at the ends of the chain where
translational invariance is broken.

For our finite-length chains with spin 1/2’s on the ends
the lowest-lying few excited states are single-magnon
triplet states, with the magnons having particle-in-a-box
spatial wave functions. This can be seen by examining
the spin density (S?) in the S* = 1 states; some ex-
amples are illustrated in Fig. 7. We label these single-
magnon states by their principal quantum number n. For
Jena > 0.51 the principal quantum number counts the
number of maxima in the smooth part of (S?). The pat-
terns in Fig. 7 are those expected for the probability den-
sities (the square of the modulus of the wave function) for
the eigenstates of a particle in a box. Note for Fig. 7 we
have adjusted the end coupling to Jenqg = 1.5 where the
amplitude of the wave function is minimal at the ends to
minimize scattering into other states. That the magnons
are behaving as particles of finite size carrying energy
and spin is seen by noting that the excess energy above
the ground state is distributed along the chain with the
same pattern as the spin and these patterns are just those
expected for particle-in-a-box eigenstates. Although mo-
mentum is not a good quantum number in this chain
with ends, the nice periodicity of the spin density away
from the ends shows that the magnon wave function is,
to a good approximation, a sum of two momentum eigen-
states with equal and opposite momenta, thus producing
a standing wave. The magnitude of the deviation of the
momentum from zero or m can thus be deduced from the
period of the spin pattern. To distinguish between mo-
menta near zero and momenta near m, one must look at
the sign of the wave function, which is not detected by the
spin density. For even length chains the parity operation
exchanges sublattices, and so a state’s eigenvalue under
parity can be used to determine whether the momentum
is near zero or near .

The interaction of the magnon with the ends of the

0.040 T T T T T
0.030

$ 0.020
0.010
0.000

0 10 20 30 40 50 60
14
FIG. 7. Local spin densities for the one-magnon excited

states with principal quantum numbers n = 2, 3, and 4, and
total S* = 1, for a chain of length L = 60 and Jena = 1.5.
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chain can be adjusted via the coupling at the ends, Jenq.
Thus we do not have just a particle in a box with simple
hard walls. The potential energy of the magnon is uni-
form in the bulk of the chain, infinite outside the chain,
but may be either negative (attractive) or positive (re-
pulsive) near the chain ends. By adjusting Jenq we can
adjust this potential near the chain ends and thereby
the momenta of the magnon eigenstates. In particular,
we have found the end coupling, Jenq = 0.5088, which
makes the spin and energy densities of the lowest single-
magnon state most uniform near the middle of the chain,
as shown in Fig. 8. This effectively puts the magnon into
the lowest state in the magnon band, with momentum =.
The energy of this lowest magnon is the Haldane gap A
and can be estimated from the ratio of the excess energy
density to the spin density near the middle of the chain
where end effects are minimal. Results for A for various
m and L are shown in Table II. From chains with length
up to L = 130 we estimate A = 0.41050(2). The esti-
mated error comes from the same sort of analysis using
1 — P(m) used for the ground-state energy.

At the end of the chain, momentum is not conserved
and so single magnons with momenta near 7 can scatter
into virtual two-magnon states with total momenta near
zero. These evanescent two-magnon states beat against
the one-magnon state, producing the oscillations with
spatial period 2 that are seen in Fig. 8. To minimize
this end effect and thus get the purest single-magnon
particle-in-a-box states we may adjust the end coupling
to Jena = 1.5 where the spin density seems smoothest
near the ends, as in Fig. 7. We would like to map out
the entire single-magnon band, and hope to find tech-
niques to target high-lying states in that band, but here
we only report our results for the readily accessible low-
lying states in that band.

To determine these low-lying states, at each step of
the calculation we must diagonalize to find several of the
lowest-lying states for a particular S#%, not just the lowest
state.3 Each of these states contributes equally in form-
ing the density matrix of a block, which is then diag-

0-015 T T T T T
L=120, s%=1
Jena=0.5088
0.010
&
0.005
0~000 1 1 1 1 1
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[4
FIG. 8. Local spin density for the lowest-lying one-

magnon state with total S* = 1, L = 120, and Jena = 0.5088.

TABLE II. Estimated Haldane gap A as a function of the
number of states kept m and length of chain L. Also shown
is the truncation error 1 — P(m).

m L A 1— P(m)
48 120 0.4123234 2.894 x 1077
64 120 0.4115262 4.346 x 1078
80 120 0.4108767 1.291 x 10~8
100 120 0.4105433 1.900 x 10~°
120 100 0.4105079 6.783 x 1071°
120 120 0.4105073 7.152 x 1071°
120 130 0.4105072 7.291 x 10710
140 120 0.4105020 2.916 x 10710

onalized in the usual way to get the states to be kept.
Up to about 20 states can be targeted in this fashion.
To facilitate finding singlet states in the channel $* =0
in the presence of numerous triplet states, we have in-
corporated spin-inversion symmetry (S* — —S%) into
the program. For even-length chains we find states with
S = 0,2,... have an eigenvalue I = —1 under spin in-
version, while states with S = 1,3,... have I = 1. Spin
inversion is not a symmetry for S* # 0. Thus we can ob-
tain the lowest up to 20 states in each symmetry sector:
S*=0and I =-1,S*=0and I =1, 5 =1, §% =2,
etc.

The case we have examined in most detail is L = 60
and Jenq = 1.5, where we have accurate results for the
lowest eight single-magnon states. (The rest of the ex-
cited states obtained are two-magnon states.) For shorter
chains we can obtain fewer one-magnon states, but, nev-

e 60

| |
0.7 0.8 0.9 1.0

q/n

FIG. 9. Single-magnon energies ¢(q) from the low-lying
one-magnon states for L = 20,40, and 60 with Jena = 1.5.
The absolute value of the momentum g is obtained from the
wavelength of these standing-wave eigenstates.
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ertheless, these states extend to higher energies: The dis-
persion obtained from L = 20, 40, and 60 with Jepq = 1.5
is shown in Fig. 9. Note the inflection point in the disper-
sion, which occurs near momentum 0.857; this inflection
point plays an important role in the two-magnon states,
as is discussed below.

The parity of the lowest-lying single-magnon state for
these even length chains is even, and thus opposite to that
of the ground state. This shows that the smooth-looking
densities in Fig. 7 arise from a magnon wave function that
indeed does have a momentum near w, thus changing
sign between adjacent sites while its amplitude slowly
varies. Since the spin density is roughly proportional to
the square of the modulus of the local wave function,
it does not detect the alternation in sign. The parities
alternate with increasing principal quantum number 7 in
the discrete series of single-magnon states for a given L,
as expected for a series of particle-in-a-box eigenstates.

IV. TWO-MAGNON STATES
AND MAGNON-MAGNON INTERACTIONS

Let us now consider the two-magnon continuum, whose
minimum is at energy 2A and zero momentum. The first
question we must address is, what are the statistics of
the magnons? The naive, and correct, expectation is that
since they are spin-1 particles, they must be bosons. The
local operators that create or annihilate a magnon are, as
discussed above, presumably linear combinations of the
spin operators in that region and higher-order composites
of those spin operators. Since spin operators on different
sites commute, we expect that the local magnon opera-
tors at two well-separated locations do commute. Thus
the statistics should be bosonic and the full wave func-
tion symmetric under exchange of two magnons. The
magnon operators will not commute when the magnons
are close; this reflects the magnon-magnon interactions.

A two-magnon state may have a total spin of S = 0,

TABLE III.
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1, or 2. The spin wave function is antisymmetric under
magnon exchange for S = 1, and so the spatial wave
function must also be antisymmetric to make the full
wave function symmetric. For S = 0 and S = 2 the spin
and spatial wave functions are both symmetric. We have
been able to access the lowest-lying two-magnon states
in each spin channel. We have the fewest two-magnon
states (typically five or six) for the triplet (S = 1) chan-
nel, because the one-magnon states have the same quan-
tum numbers and must be produced at the same time.
Each two-magnon state can be identified as the scattering
state of two of the elementary one-magnon particle-in-a-
box states by using the quantum numbers, parity, and
total energy. The energy of interaction is the difference
between the sum of the excitation energies of the two one-
magnon states and that of the two-magnon state. This
identification of the two-magnon states is fairly straight-
forward because the energies of interaction are mostly
smaller than the gaps (due to the finite chain length) be-
tween the one-magnon states. We find that the magnons
interact attractively in the triplet channel (S = 1) and
repulsively in the other two spin channels. For the case of
L = 60 and Jenq = 1.5, the interaction energies are listed
in Table ITI. Note that when the two magnons are in the
same “orbital” they can only make a symmetric spatial
wave function, and so there is no such S = 1 two-magnon
state.

The fact that the magnons attract in the triplet chan-
nel and repel in the other channels can be understood as
a sort of “Hund’s rule” for spin-1 bosons. If there is a
strong on-site repulsion between magnons, this will not
affect the interaction energy in the triplet channel, where
the spatial wave function is antisymmetric and thus has
a node when the magnons are on the same site. Such
an on-site repulsion will lead to repulsion in the other
two channels. If, in addition, there is a weaker attraction
when the magnons are on nearby but not identical sites,
this will make the net interaction in the triplet channel
attractive, while the other two channels remain repulsive.

Energies of one- and two-magnon states for L = 60 and Jena = 1.5. The first

two rows of the table show the absolute value of the momentum and the excitation energy of the
lowest five one-magnon states, indexed by their principal quantum numbers n. The remainder of
the table shows the energy of interaction for the two-magnon states with total spin § made from
magnons with principal quantum numbers n and n'. For example, the lowest-lying two-magnon
state isn = 1, n’ = 2, and § = 1 with excitation energy 0.4265 + 0.4723 — 0.009 2 0.890. NSS (“no
such state”) denotes states that do not exist, and NA denotes states that we did not access.

n
1 2 3 4 5

q/m 0.9851 0.9698 0.9543 0.9385 0.9225
e(q) 0.4265 0.4723 0.5415 0.6272 0.7239

S=0 0.052 0.078 0.100 0.116 NA

n =1 S=1 NSS -0.009 -0.015 -0.022 NA
S=2 0.041 0.061 0.075 0.083 0.088

S=0 0.078 0.081 0.104 NA NA

n' =2 S=1 -0.009 NSS -0.020 -0.026 NA

S§=2 0.061 0.059 0.073 0.081 NA

n' =3 S=2 0.075 0.073 0.070 0.078 NA
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We have not thought of a reason for why the repulsion is
stronger in the singlet (S = 0) channel than it is in the
quintuplet (S = 2) channel.

We have also found some three-magnon states. These
can be easily found for total S* = 3, where they are the
lowest-lying states. For short enough chains we can also
access three-magnon states for smaller S*. The three-
magnon states occur only at energies above 3A, as ex-
pected. We have not looked at enough three-magnon
states to provide a useful characterization of the three-
magnon interactions.

One interesting feature of the two-magnon continuum
is the formation of a bound state in the triplet channel
that occurs near momentum 0.37 and energy 5A. We
have not been able to directly observe this part of the
spectrum because it is too high in energy. The number
of states rapidly proliferates once one enters the three-
magnon continuum, and so the highest-energy triplet ex-
cited states we have been able to access are those near
the bottom of the three-magnon continuum, which is well
below the energy where the bound state first forms. How-
ever, we do know the one-magnon dispersion ¢(q) fairly
well, and that the magnons attract in the triplet channel,
while they repel in the other two channels.

Thus let us take a phenomenological approach to the
two-magnon states. The magnons are particlelike exci-
tations above the ground state. Let us view the ground
state as the vacuum, the magnons as particles, and as-
sume the interactions are weak. We consider the phe-
nomenological two-magnon Hamiltonian

H= /dqe(Q)CL(Q)Ca(‘I)

+/deQ1dQ2CL(‘I1)Cg(Q - q1)

XVap6(Q, q1,92)cy(92)cs(Q — g2), (6)
where co(g) creates a magnon with S = a and mo-
mentum g, etc., and the repeated subscripts «, 3,... are

summed over —1, 0, and +1. This phenomenological
Hamiltonian explicitly conserves total momentum @ as
it must, and the interaction V,3,s must be such that it
conserves total spin. It also conserves magnon number,
which is an approximation. We will use this phenomenol-
ogy near the bottom of the two-magnon continuum at to-
tal momenta less than 7 /2; we will also consider the one-
magnon state that forms at the high end of this momen-
tum range to be a bound state of two magnons. Thus pro-
cesses that do not conserve magnon number here involve
states in the three- or more-magnon continua, which are
well above the bottom of the two-magnon continuum in
this regime. We assume the interactions are weak enough
that the approximation of neglecting these high-energy
magnon nonconserving processes is appropriate.

The single-magnon dispersion relation €(q) has inflec-
tion points near |g| = 0.857 that separate regions of up-
ward curvature or positive effective mass, and downward
curvative or negative effective mass. The bottom of the
two-magnon continuum reflects this in having inflection
points near |Q| = 0.3w. For total momenta below the
inflection point the two-magnon state at the bottom of

the continuum consists of two magnons with identical
momenta |g| = 7 — |Q|/2 and positive effective mass. If
we go to the “center-of mass” frame, considering only
the relative coordinates and momenta of the magnons,
our two-magnon problem then becomes a single particle
in a potential. For this one-dimensional system, if the
potential is at all attractive in the spatially symmetric
scattering state, a bound state will form. But we have
found that the interaction is repulsive in the symmet-
ric channels, and so we do not expect any bound states
there. For finite, positive effective mass, a bound state
in the antisymmetric channel will not form for arbitrarily
small attraction, but only above a threshold. Thus it is
consistent to have an attraction in the triplet channel,
but no bound state, as is the case here at low enough
Q.

At the inflection point in the magnon band the fourth
derivative of the magnon energy e(q) with respect to
q is positive. This means that at the inflection point
in the bottom of the two-magnon continuum, the two-
magnon state at the bottom still consists of two magnons
with identical momenta. But here once one goes to the
“center-of-mass” frame, the single particle now has a k*
dispersion, where k is the relative momentum. With this
dispersion, a bound state must form for arbitrarily small
attraction even in the antisymmetric channel. Thus we
conclude that the triplet bound state must first form at
a total momentum below that of the inflection point in
the bottom of the two-magnon continuum. This result
is consistent with what is known so far about this part
of the spectrum, but it would be interesting to some-
how get more accurate information about this regime to
develop and test this phenomenological approach more
thoroughly.

V. CONCLUSIONS

Using density-matrix numerical renormalization-group
techniques, we have calculated a variety of properties of
the Heisenberg chain with unprecedented reliability and
accuracy. The results we have obtained largely support
conclusions obtained from a variety of other methods over
the last decade. In the case of the Haldane gap A, previ-
ous numerical work had established with reasonable cer-
tainty the existence of a gap, in agreement with Haldane’s
conjecture, with A = 0.41. Our results must remove all
remaining doubt, and provide an accurate value for the
gap, A = 0.41050(2). We were able to determine the
ground-state energy per site of the infinite chain to es-
pecially high accuracy, e; = —1.401484038971(4). The
correlation length was found to be identical to the decay
length of the local spin moment away from the effective
S = 1/2 spins on the ends of open S = 1 chains, with
£ = 6.03(1).

In the case of the string correlation function g(£), which
measures a form of topological long-range order similar
to that found in fractional quantum-Hall-effect systems,
previous numerical work had been limited to exact diago-
nalizations of chains with at most 14 sites. These results
suggested that there was long-range topological order,
with g(co) = —0.38. We were able to verify the exis-
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tence of long-range order beyond any doubt and found
g(o0) = —0.374325096(2).

We were able to determine the properties of a num-
ber of the lowest-lying excited states, including one- and
two-magnon states, for several different chain lengths, in-
cluding the determination of the magnon-magnon inter-
actions for magnons with momenta near . The magnon-
magnon interaction in the triplet channel is attractive,
while in the singlet and quintuplet channels it is repul-
sive. Since the numerical techniques used here use a real-
space basis, total momentum is not available to use as a
quantum number and high-lying one-magnon states with
momentum near /2 could not be studied. We hope to
develop techniques for studying these states in the future.

Note added in proof. We have received a paper from
Erik Sorensen and Ian Affleck that shows that the low-
lying multimagnon excited states are well approximated
by the eigenstates of hard-core bosons. These hard-core
boson eigenstates are in turn simply related to those of
noninteracting spinless fermions. This introduces a dif-
ferent, and physically more appropriate, way of labeling
the multimagnon states than we use above. The clas-
sification we have used, i.e., in Table III, is implicitly
based on noninteracting bosons as the reference states.
For multimagnon wave functions that are fully antisym-
metric in space, such as the triplet (S = 1) two-magnon
states, the eigenstates are identical in the noninteract-
ing and hard-core limits because they vanish whenever
two magnons are on the same site. However, for the

other states the eigenfunctions in the two limits differ
substantially. For example, the singlet (S = 0) or quin-
tuplet (S = 2) two-magnon eigenstate in the noninteract-
ing limit with orbitals n and n’ occupied, with n’ > n,
evolves continuously as an on-site repulsion is turned on
into the hard-core boson eigenstate which is obtained
from the two-fermion eigenstate with orbitals n; = n
and ns = n’ 4+ 1 occupied. Thus in the labeling scheme
of Sorensen and Affleck that derives from this hard-core
limit, the lowest-lying two-magnon state in each channel
has orbitals n; = 1 and ny = 2 occupied. It is clear from
the results of Sorensen and Affleck, as well as our results,
that the noninteracting limit is actually a rather poor
approximation for multimagnon eigenstates that are not
spatially fully antisymmetric. Thus we feel that Sorensen
and Affleck’s method of classifying multimagnon states
based on hard-core boson eigenstates should be preferred
over the labeling scheme we used in this paper. We thank
them for communicating their results prior to publica-
tion.
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FIG. 6. Schematic of the spectrum of low-lying states for
an infinite chain. E is the energy of the excited state, E, that
of the ground state, and A is the Haldane gap. Note that for
a given momentum, the one-magnon state, when present, is
separated from the continua above it by a gap where there
are no excited states.



