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Magnetic-field-induced first-order transition in the frustrated X'Y model
on a stacked triangular lattice
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The results of extensive Monte Carlo simulations of magnetic-field-induced transitions in the
XY model on a stacked triangular lattice with antiferromagnetic intraplane and ferromagnetic
interplane interactions are discussed. A low-field transition from the paramagnetic to a three-state
(Potts) phase is found to be very weakly first order with behavior suggesting tricriticality at zero
field. In addition to clarifying some long-standing ambiguity concerning the nature of this Potts-like
transition, the present work also serves to further our understanding of the critical behavior at T~,
about which there has been much controversy.

The possibility of unusual critical behavior associated
with geometrically frustrated antiferromagnets has given
rise to a wide variety of speculation. In the cases of
Heisenberg and XY' models on the stacked triangular lat-
tice, Kawamura has argued, by means of symmetry anal-
ysis and a 4 —e renormalization-group expansion, in fa-
vor of a new chiral universality class with unusual critical
exponents as determined by Monte Carlo simulations. A
field-theoretic 2+ e expansion by Azaria, Delamotte, and
Jolicoeur, s however, has inspired the suggestion that such
systems exhibit nonuniversality where first-order, mean-
field tricritical, or O(4) criticality can occur depending on
unspecified details of the model (also see Ref. 4). Two
very recent Monte Carlo simulations on the Heisenberg
model have yielded different results dependent upon de-
tails of the analysis. Bhattacharya et al. 5 maintain that
this system exhibits O(4) umversality whereas the results
our own work are inconclusive, possibly consistent with
a pseudocritical region. 7 Two similar numerical studies
of the Ising model, although yielding substantially the
same results, have led to the speculation of yet another
universality class by one group, in contrast with our
interpretation that the previous suggestion of standard
XY universality is confirmed. It is also of interest to
note that the Monte Carlo results which led to the pro-
posal of a different universality class associated with the
frustrated pyrochlore antiferromagnetii have been rein-
terpreted in support of a first-order transition. It is be-
coming increasingly clear that the results of direct numer-
ical simulations of frustrated spin systems can be difIicult
to interpret. The present work represents an attempt to
reveal the critical behavior of the XY model on a stacked
triangular lattice by application of a magnetic field H.
The analysis of these Monte Carlo simulation results is
guided by expected behavior based on symmetry argu-
ments of a less controversial nature and lend support to
the proposal of tricriticality (or an extremely weak first-
order transition) for this system.

This work was inspired by the extensive study of Lee et
at. 3 who examined the XY antiferromagnet on a trian-

gular lattice (unstacked) in an applied magnetic field. At
H = 0, the transition exhibits Kosterlitz- Thouless behav-
ior, but the field breaks rotational symmetry and tran-
sitions involving true long-range spin order occur. For
H ) 0, but not too large, a colinear phase is stabilized
with the symmetry of the three-state Potts model. The
real three-state Potts model exhibits a continuous transi-
tion in two dimensions (2D) and, after numerous numer-
ical simulations over the past 20 years, it appears to be
generally accepted that the transition is weakly first order
for the 3D lattice. ~ For the so-called continuous three-
state Potts model, an effective Landau-Ginsburg-Wilson
(LGW) Hamiltonian is constructed which contains a term
cubic in the order parameter. Within mean-field theory,
such models yield a first-order transition, independent of
space dimensionality. The transition in 2D is thus driven
to be continuous by critical fluctuations, with known crit-
ical exponents verified by the work of Lee et at. Some
analyses of renormalization-group and series expansions
for the 3D case indicate a transition which may be contin-
uous, but most studies favor the first-order scenario.
The conclusion of an earlier Landau-type analysis, which
partially included effects of fluctuations, is that models
of this type may exhibit either a continuous or first-order
transition depending on relative parameter values. is Al-
though contrary results would have been surprising, it
was not a priori certain that the transition to the three-
state ordered phase considered here would be first order.
We find convincing evidence that the transition is in-
deed weakly first order. This study represents a detailed
Monte Carlo simulation of a model equivalent to the con-
tinuous three-state Potts Hamiltonian in 3D.

We study the Hamiltonian

where the spins lie in the basal plane, J~~ is the inter-
plane interaction, J~ ) 0 indicates the antiferromagnetic
coupling which is frustrated for the triangular geometry,
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(i, j) and (k, l) represent near-neighbor sums along the
hexagonal c axis and in the basal plane, respectively,
and the field is applied in the basal plane direction x.
The magnetic order realized by this model can be conve-
niently described in terms of a spin density expressed as
a low-order Fourier expansioni

s(r) = m+ Se'&'+ S*e-'&', (2)

where m is the uniform component induced by the mag-
netic field, Q is the wave vector, and the complex po-
larization vector can be written in terms of real vectors,
S = S + iSb. The 120' spin structure known to oc-
cur at zero field below the Neel temperature T~ is de-
scribed by a period-3 basal-plane modulation, along with
a helical polarization for S. At H = 0, the critical be-
havior is independent of the sign of the interaction J~~.
For J~~ & 0 there is no interplane modulation, but for
J~~ ) 0 a period-2 structure is stabilized. This difference
gives rise to a term cubic in S in a Landau-type free en-
ergy, or LGW Hamiltonian, only for the case J~~ ( 0:
Fq (m. S)S . S+c.c. For a linearly polarized spin den-
sity, one can write S = S„e'~, where S„~~rn is real, to get a
contribution Fs mSs cos(3$). The three (Potts) states
arise from the three inequivalent choices of the phase an-
gle P = nor/3, where n is an integer. Higher-order terms
in the free energy can stabilize P = (2n+ 1)m/6 depend-
ing on field and temperature values. 9 In this case the
cubic term is zero.

In order to determine the magnetic-Geld temperature
phase diagram, standard Monte Carlo simulations were
performed on the Hamiltonian (1) with J~~

= —1 and
J~ = 1 for lattices L x L x L with I=12—24. Runs of
1—2xl04 Monte Carlo steps (MCS) per spin were made,
with the initial 4—8xl0 MCS discarded for thermaliza-
tion. Boundary lines were estimated as in our previous
work. Not surprisingly, the result shown in Fig. 1 is
similar to the 2D case studied by Lee et al. In particu-

lar, in addition to the paramagnetic phase 1, there are
two ordered phases, 6 and 9, with a linear polarization
of the spin density and an elliptical phase 7 (phases are
numbered following a previous convention). At H = 0,
the expected 120' spin configuration was observed, with
the Neel temperature T~ 1.45 in agreement with
Kawamura and Ref. 20. These phases have the same
symmetry as determined in the 2D case. Phase 6 with
S~~H is the three-state Potts phase discussed by Lee et
alt.

A molecular-field treatment of this model, ~~ which
yields results independent of dimension, gives a phase
diagram where the linear state 6 is absent and two criti-
cal lines which merge at T~. This is somewhat puzzling
since the cubic term responsible for the stability of phase
6 occurs in the expansion of the free energy, in powers
of s(r), which can be derived within this mean-field the-
ory. Such an expansion gives an expression for F(m, S),
which is identical in structure to what is obtained for
a phenomenological Landau-type free energy (also mean
field). is 2o The only difference is that in the latter case
each of the (six) fourth-order terms have an independent
coefficient B, (since each term is an independent invari-
ant), whereas in the molecular-field treatment all these
coeKcients are equal. We find that by making just one of
the B, diferent from the others, a phase diagram with the
correct structure (Fig. 1) is found, where the 1-6 bound-
ary is first order as expected. Molecular-field theory
appears to somewhat accidentally exclude phase 6. This
model also yields the result that the 1-9 phase boundary
represents a line of continuous transitions since the phase
angle P approaches the value ir/6 at this boundary line,
and so the cubic term is not relevant.

The criticality of the 1-6 transition boundary was stud-
ied at two points using the Ferrenberg-Swendsen his-
togram method of analyzing Monte Carlo data. This
technique is well suited for the study of transitions which
may be very weakly first order, particularly when used
to determine the internal-energy cumulant

(3)
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FIG. 1. Phase diagram determined by standard Monte
Carlo simulations (points with error bars). Indicated are the
paramagnetic phase 1, phases 6 and 9 having colinear order,
and phase 7 with an elliptical (chiral) spin structure. Squares
at H = 0.7 and 1.5 indicate boundary points determined by
highly accurate histogram analyses. Solid and dashed lines
are guides to the eye and indicate first- and second-order tran-
sitions, respectively.

This quantity exhibits a minima near T~, which achieves
the value U* =

3 in the limit L ~ oo for continuous
phase transitions. In the case of a first-order transition,
U* & 3 is expected. The histogram method may also
be used to determine precisely the location of extrema
near T~ which occur in other thermodynamic functions.
These are expected to demonstrate simple asymptotic
volume dependence in the case of first-order transitions
or have an L dependence governed by critical-exponent
ratios in the case of continuous transitions. In addition
to U, results are given here for the specific heat (C) and
staggered susceptibility (y) as well as the logarithmic
derivative of the order parameter (V), which is equiv-
alent to'6

V(T) = (ME)/(M) —(E), (4)

where the relevant order parameter M is defined as in
Ref. 20. Simulations were performed at H = 0.7 and H =
1.5 on lattices with L =12—33. Thermodynamic averages
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were made using 1 x 10 MCS for the smaller lattices
and up to 2.6 x 10s MCS for the larger lattices, after
discarding the initial 2—3x10 MCS for thermalization. If
necessary, several runs at different T were made to ensure
that the extrema of the desired function occurred close
to at least one simulation temperature. The estimated
critical temperatures are 1.488(2) and 1.522(2) for H =
0.7 and 1.5, respectively.

Asymptotic scaling of the extrema with volume for the
case H = 0.7 demonstrated in Figs. 2—4 is consistent
with a first-order transition. 7 An indication that it is only
weakly first order is revealed by noting that the estimate
U* = 0.66660(3) from Fig. 2 is more than an order of
magnitude closer to 3 than the value determined for the
five-state Potts model in 2D, 25 0.66612, considered to be
one of the weakest first-order transitions known. It is also
of interest to note that the value U* = 0.6460(2) was de-
termined by Fukugita et at. for the discrete three-state
Potts model on a cubic lattice, also known to be only
weakly first order. 7 Independent estimates for the latent
heat, ET+ —ET-, can be made from our results for U*

N N
as well as the slope of the specific-heat data in Fig. 3, by
comparison with analytic expressions given in Ref. 25 and
the fact that ET+ E&-. Both of these methods yield

N N

the same estimate (an indication of the accuracy of these
data), 0.017, which is very small (cf. 0.059 for the 2D
five-state Potts model and 0.222 for the 3D, three-state
Potts modelss). Similar first-order behavior was found in
the data at H = 1.5. Evidence that the 1-6 transition be-
comes more strongly first order as H increases is given by
the estimates U' = 0.66643(3) and FT+ —ET 0.032-

N N
at this higher-field value. Histogram data were also taken
at H=0.7 for the 6-7 transition, which has a critical tem-
perature estimated to be 1.425(4). In a manner similar
to our analysis of a continuous transition on the stacked
triangular lattice, scaling consistent with the Ising uni-
versality class is evident. This is the expected result as
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this transition involves only the order parameter Sb„. De-
tails of these results, along with histogram analyses of the
other two transition lines, will be presented elsewhere.
Preliminary results for the 1-9 transition indicate this
transition is continuous, as it is within the phenomeno-
logical Landau-type model discussed above.

The corresponding phase diagram for the case of an-
tiferromagnetic interplane coupling has only one linear
state with SZH and two critical lines emanating from
Tiv, which are transitions of XY (Si) and Ising (Z2)
universality. This structure nicely reveals the Z2 x S~
symmetry of the order parameter2 for the transition at
T~. The results of the present study suggest that this
picture does not occur in the case of J~~ ( 0 (or for J~~ ) 0
with an applied field staggered along the c axis).

The Monte Carlo histogram simulations of this work
give a clear indication that the present version of the

FIG. 3. Scaling behavior of the specific-heat maxima with
volume as in Fig. 2.
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FIG. 2. Scaling of the energy-cumulant minima with vol-

ume for the 1-6 transition at H = 0.7. Data for I = 12 and
15 have been omitted to allow for an expanded scale, empha-
sizing the larger I results. The straight line represents a fit
to the four largest lattice sizes.
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FIG. 4. Scaling behavior of the maxima of the susceptibil-
ity g and logarithmic derivative of the order parameter V as
in Fig. 2.
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continuous three-state Potts model exhibits a very weak
first-order transition in 3D. In addition, our results sug-
gest that this transition becomes more weakly first order
as the field is lowered. T~ thus appears to have char-
acteristics in common with a tricritical point, a possi-
bility suggested by Azaria, Delamotte, and Jolicoeur. s

This scenario is made somewhat ambiguous by the fact
that T~ is also a multicritical point where more than
one phase meet. The conventional Monte Carlo simu-
lations of Kawamura2 were used to estimate critical ex-
ponents associated with his proposed chiral universality
class which are not very diferent from those expected for
mean-field tricriticality (a possibility that was considered
in Ref. 2). In view of these results and the recent ambi-
guity in interpreting Monte Carlo data for the frustrated

Heisenberg model, 's as well as the discussion by Peczak
and Landau7 of pseudocritical behavior associated with
weakly first-order transitions, our results are consistent
with the transition at T~ for the XY model being tri-
critical or very weakly first order. It appears that only
histogram Monte Carlo simulations at T~ which are very
extensive (long runs on large lattices) have the possibil-
ity to add new information on this problem. As a final
point, we note that hexagonal La2Coq 7 appears to be a
system described by the present model Hamiltonian.
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