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Motion of a quantum particle
in a random-flux field
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We consider a charged spinless quantum particle moving on a two-dimensional square lattice.
Each plaquette of the lattice is penetrated by a random magnetic flux with values homogeneously
distributed in the interval (0, 2vr) (in units of the elementary quantum flux h/e). The fluxes in
different plaquettes are statistically independent. With the path integral method, within the saddle-
point approximation, we evaluated the averaged density of states. Our results are compared with
the recent numerical-simulation predictions of Pryor and Zee.
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FEG. 1. Square lattice each cell of which contains a mag-
netic flux. Radii of the circles are meant to indicate the values
of the fluxes which point in and out of the plane.

The problem of a quantum particle moving in the ran-
dom potential field has been the subject of extensive
experimental and theoretical investigation. ~ In contrast,
very little is known about the behavior of the quantum
particle in presence of a random magnetic field. Recently
Pryor and Zee have analyzed the motion of a spinless
quantum particle in the presence of a random-magnetic-
flux arrangement using numerical methods. In this pa-
per we present an attempt to analyze this problem ana-
lytically.

The motion of a quantum particle in the field of ran-
dom magnetic fluxes is just one example out of the variety
of problems related to the motion of particles on mani-
folds with topological defects. Another problem of per-
haps even greater applicability is the diffusion of a clas-
sical particle in the field of many randomly distributed
dislocation lines. In a short paper we have set the frame-
work for the general theory of such a process by proposing
a Fokker-Planck equation for diffusion on the manifold
with stochastic aKne connection.

Imagine a two-dimensional square lattice (see Fig. 1)

and assume that each plaquette is penetrated by a mag-
netic flux P(x + a/2, y + a/2). The fluxes in different
plaquettes are assumed to be independent and homoge-
neously distributed over the interval (0, 2vr) . (The val-
ues of fluxes are measured in units of elementary flux
h/e. ) Furthermore, assume that a single, spinless, quan-
tum particle moves over this lattice, and that its motion
is governed by the tight binding Hamiltonian, which we
write in the form

(p iaA (x—a/2, y)
x&~..x+a~

—iaA (x+a/2, y)+ x xI ae y~y

iaA„(x,y —a/2)
y ( y, y'+a&

—iaAy (x,y+a/2) )py, y' —a& J xsx )

where K and Ky are the coupling constants along the x
and y directions of the lattice, respectively. A and A„
are the components of the magnetic Beld vector potential,
which, as in the lattice gauge theory, are defined on the
lattice bonds.

The main difference between the present problem and
that of a particle moving in a random potential rests on
later locality. Indeed, the particle needs to move just one
lattice constant to experience changes induced by a ran-
dom scalar potential. In our case of random magnetic
fluxes the particle must traverse a closed loop around
the region containing the flux to notice its presence at all.
This nonlocality, known from the theory of the Aharonov-
Bohm effect, results in technical difBculties in the anal-
ysis to follow.

If the magnetic fluxes were distributed periodically our
model will be similar to that analyzed theoretically by
Rammer and Schelankov and experimentally by Bend-
ing et al. 5 We believe that experimental arrangements of
fluxes analyzed in our paper can be achieved using one
of the new high-i, materials in which fluxes might form
random arrangements in contrast to usual superconduc-
tors in which fluxes form periodic lattices.

In this work we shall be interested in the averaged
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density of states (g(cu)), where (. ) denotes the average
over the flux distribution. g(u) is given by the difFerence
of the retarded and advanced propagators

this end let us define two vectors:

where

g(~) =i ) [G (r, r';~) —G (r, r';w)j, (2)
O(r, ~) = (j'(r, ~), —q'(r, ~)),

GRy~, , & - 4'(r)4,*(r'),
(l, l )4)) =)

and (t), (r) and e, are normalized eigenfunctions and
eigenenergies of the one-particle Hamiltonian H.

In order to calculate the above quantity we adopted
here a generating functional approach developed for the
random potential problem by Bausch and Leschke. To

I

z(i) DC DC2 exp (J + 8),

where Q and Q are complex fields, and the star denotes
complex conjugation. The generating functional Z(l)
depends on the matrix source field t and has the following
form:

o cu —ig) C (r~)
~

. 4(rw)+K e' i + ) '" C (xyw) 4(x+ayu))
r

+K e ' *+ ) '" C2(x+ a, y;~) C)(x, y;a) + K„e' " '"+ )C (x, y;~) C (x, y+ a;~)

+K„. *." f*~+-.i')O(x, y+~ } O(x, y

The functional S, the so-called source term, is given by

1S=—
2

d(d dM ) ) C) (rw) t p (race') 4p (res') .
~ -,p

The virtue of the generating functional approach is

that, by differentiating Z(l) with respect to source field
l p, we can obtain the relevant quantity. Indeed,

exp(iaA (x + a/2, y)), and y, (r), i = 1, . . . , 4 being ar-
bitrary functions of r.

For an arbitrary type of magnetic disorder, the calcu-
lation of those averages becomes a formidable mathemat-
ical task. In the case of the magnetic disorder we have
chosen, the average is conveniently done in the Landau
gauge:

bZ = —2vr6(~ —u) ) G (r, r;~) . (9)R
6'tii (r;u, cu') i

A„(x,y+ a/2) = ) P(xi + a/2, y+ a/2),

Now, since Z(l = 0) = 1 we may perform the av-

eraging over the (quenched) disorder before attempting
to calculate either of the propagators. In the process of
evaluation of the mean value of Z(l} one encounters the
problem of averaging expressions like

what implies that U factors, for diferent values of y co-
ordinate, are statistically independent. In the following
analysis outlined in the Appendix we obtain

exp ) (( (r)Xi(r) + ( '(r)re(r)) l)r

IP 2 g1 F g2 I', 12

+&(r)Xs(r) + &*(r)&4(r)1

with U(r) = exp(iaA„(x, y + a/2)) and V(r)

(10)
where Ip is the modified Bessel function.

The above result permits us to express the effective
functional Ji = ln(exp J) as

',:).e(, -) (', *"
r

+) leIe (2Kr/TrR(a, p)R(a, pea))
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MOTION OF A QUANTUM PARTICLE IN A RANDOM-FLUX FIELD

where we have introduced the matrix 8
1

R p (r; w; w') = —C (r; w) 4p (r; w') .
2

(14)

Here and in what follows Tr denotes usual matrix trace and the integration over w's.

Notice that the term with ln Io produces an infinite number of vertices. This should be compared with the random

potential case, where after averaging we get only one vertex of the fourth order in the fields g and g. This is the
direct manifestation of the nonlocality of the present problem.

The averaged value of the Z is then

(Z(l)) = DC D4 exp( Ji + S), (15)

where the source term is written as 9 = Q„Tr/(r)R(r).
In order to carry out the g fields integration in Eq. (15) we use the following functional identity:s

1 = (DRDs) exp
' )
k.. .p

ckd d4) 1-
s g (r, w, a')

~
Rp (r;w';w) ——c' (r;w) 4p (r;w'))

In the above equation the functional integration (DRDs)
is understood as the integration over independent ele-
ments of complex matrices satisfying the conditions

The quantity F p(K&,'x, y + pa) is defined as

Io (2K„Q) R p (x, y+ pa, ~, w')

Rp (r; ~', (u) = o" R~—p (r; w, w') o'~p,
sp (r;w', w) = cr" s~p(r;cu, w')cr~p,

with

Q = QTrR (x, y) R (x, y + p,a) .

(Z(l)) = (DRDs) exp(J, & + S),

where

J,s = —ln det G + ) Tr(sR)

+ ) lnlq (2K&QTrR(x, y)B(z, y+a)) (20)

and

G p (r, u; r', u') = ([(w6 p + iso'p) 6'

+K~(bz+~z~ + 6z ~+1 )]27l b(Ld —td )
—s p(r;~, ~')b )6y„. (21)

where cr'p (i = x, y, z) are Pauli's matrices.

Performing the integration over the Q and @ fields we
obtain

The prime here denotes the difFerentiation with respect
to the function's argument.

Since our physical system is spatially homogeneous, we
are looking for solutions of Eqs. (22) and (23) having the
form

s (~) = —2K„R (~), (24)

R p(r, ~, ~') =2vrb(~ —~')b pR (~),
so

p (r, ~, cu') = 2~b (~ —u)') b ps ((u) .

The poles of the retarded (advanced) propagator lie in
the lower (upper) half of the complex plane, and since
Eq. (22) says that R~ is just the propagator, we expect
that the integral J cku[R (w)]2 and consequently TrR2 in
Eq. (23) should varush. The vectors R (u) and s~ (w)
obey then the following equations:

Now we calculate the averaged density of states using the
saddle-point approximation. The saddle-point equations
for the functional J,g read

R (~) = —a
vaja 1

2vr u+ i' + 2K cos(ka) —s (w)

(25)

R p (r, w, ur') = —G p (r, u; r, cu'),

s p(r, ~, ~') = —) F p(K„;x,y+ pa) .
p,=+1

(22)

(23)
where gg ——g and g2 ———g.

From Eqs. (24) and (25) we obtain the equation for
R (cu):

R (~) =—
[~ + 2K + 2K~R~(~)] [~ —2K + 2K~R ((u)]

(26)
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from which we may obtain the averaged density of states.
It is given by the imaginary part of R (cu). ImR (u) is
nonzero for ~w~ ( wc where wo is given by the following
formula:

2.0-

p((u) K„

cue/K = 4(Q++ Q —sn )
4/s(Q + Q 1 4/3)1/2 (27)

lncosh 2K&(C (x, y;w) C (x, y+ a;u)
+4 (x, y+ a; w) 4 (x, y; ~) ) . (28)

In the saddle-point method, which must be slightly mod-
ified in the present case, we obtain the same density of
states as previously. It is tempting to interpret results
such as a mean field indicator of some sort of statistical
universality.

In conclusion, we have analyzed the hopping of a quan-
tum particle over the lattice penetrated by the randomly
distributed magnetic fluxes. Using a properly tailored

I

Q~ = (1 6 gl —n4/27)2/s and o; = K„/K . In princi-
ple, because Eq. (26) reduces to the polynomial equation
of fourth order, it is possible to obtain the analytical ex-
pression for the averaged density of states. However, this
formula is not particularly transparent and we decided
to present the solution in the graphical form. In Fig. 2
we display g(cu) for three difFerent values of a.

Now, the main result is the narrowing of the band.
In the case of the free particle the allowed energies lie
between 2K& 2Ky and 2K~ + 2Ky . In the presence
of magnetic disorder the band is shrinker (~o ( 2K +
2K„). This is in contrast with the potential fluctuation
case where we observe the tails of the averaged density of
states in the energy range forbidden for the free particle.

For the symmetric lattice, Ky = K, we may com-
pare our result with those of Pryor and Zee. 2 In Ref. 2
the motion of a quantum particles was analyzed on a fi-
nite lattice in the presence of the magnetic flux disorder
analogous to that discussed in our paper. The calculated
quantity was p(E), defined as the probability density of
finding the state with its energy between E and E+ dE.
The main results in Ref. 2 were the narrowing of the
band. States with eigenenergies 3.4K„( ~E~ ( 4K„
were found to be extremely improbable. This result co-
incides with our band shrinking (lowest curve in Fig. 2)
obtained within the mean field approximation. Further-
more, Pryor and Zee considered a different type of mag-
netic disorder than those discussed so far. Namely, they
assumed that each plaquette of the lattice may be pen-
etrated by the magnetic flux which takes two values, 0
or vr only, and with equal probability. Our analysis can
be directly applied also to that case by averaging the
generating functional Z(l) over such magnetic disorder.

Instead of the term lnI0 2Ky TrB x, g R x, y+ c
in Eq. (13), we obtain
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APPENDIX

Following Eq. (10) we have introduced the quanti-
ties U which, in the Landau gauge and for different
values of the y coordinate, are statistically indepen-
dent. It is sufhcient, therefore, to consider the average of
exp(g (U yi + U~y2 )) (recall that x 6 Z)

FIG. 2. The averaged density of states plotted for various

values of the parameter a. Dotted, broken, and solid lines

correspond to a = 0.1,0.5, and 1, respectively.

Bausch and Leschke formulation, we have derived the
mean field expression for the density of states which ex-
hibits properties analogous to those suggested in com-
puter simulations of Pryor and Zee. 2 In order to appre-
ciate the physical significance of the predicted band nar-
rowing we should analyze two-point Green functions for
our particle. Only then we would be able to compare
the case of random fluxes to that discussed in Ref. 4.
Whether the departure form ~B~ (periodic fluxes) or the
usual Bz ( homogeneous field) (Ref. 9) behavior of the
magnetoresistivity will be observed also in that case re-
mains an open question. Some work along this line is
now in progress.
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For a given set (n, m j the average of

(A2)

chose the greatest x ( 2:o for which condition (A3) is
satisfied and in the same way we prove that n = m .
Repeating this procedure we Bnd

is equal to 1 provided n = m, and vanishes otherwise.
Indeed, let us choose the greatest xo for which

U„.U*m

n» g 0 or m~, P 0 . (A3) and, therefore,

If n» g m~, then the product (A2) contains the factor

exp(i(n, —m, )P (xo —a/2, y)),
the average of which is zero. Thus n» must be equal to
m», otherwise the average of (A2) vanishes. Next we where Io is the modified Bessel function.
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