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Free energy and phase diagram of chromium alloys
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The phase diagram of chromium alloys is remarkably rich. At the Neel temperature of 310 K, pure
chromium undergoes a weakly first-order phase transition into an incommensurate spin-density wave

(SDW) state. When doped with more than 0.2% manganese, this transition becomes second order and
the SDW becomes commensurate. Over 25 years ago, Koehler et al. and Komura, Hamaguchi, and
Kunitomi observed a first-order commensurate-to-incommensurate (CI) transition in CrMn alloys. The
temperature of this CI transition decreased to zero as the manganese concentration increases from about
0.2%%uo to about 1.5%. Using mean-field theory, we have constructed the free energy and phase diagram
of chromium alloys in the presence of electron scattering. In the absence of scattering, the phase dia-

gram allows a first-order phase transition from the incommensurate to the commensurate states with de-

creasing temperature. But if the damping is su%ciently large, the phase-separation curve flips from the
right side of the tricritical point to the left. So within a small window of manganese concentrations, the
commensurate state undergoes a first-order transition into the incommensurate state with decreasing
temperature, in agreement with the experiments of Koehler et al. At zero temperature, we find a first-
order phase transition from the incommensurate to the commensurate state with manganese doping, in
agreement with the work of Komura, Hamaguchi, and Kunitomi. In the absence of damping, the zero-
temperature energy gap A(0) in the commensurate regime is independent of manganese concentration.
But in the presence of damping 6(0) becomes an increasing function of the manganese concentration.

I. INTRODUCTION

The phase diagram of chromium alloys contains at
least four distinct phases. ' At 310 K, pure chromium
undergoes a weakly first-order phase transition from a
paramagnetic state into a state with an incommensurate
spin-density wave (SDW) polarized transverse to its wave
vector. At 122 K, the spin Hips into the longitudinal
direction' and the magnetic moment of the SDW drops
discontinuously. When chromium is doped with more
than about 0.2% manganese, the SDW becomes com-
mensurate near the Neel temperature. The temperature
of the spin-Aip transition decreases with manganese dop-
ing and vanishes at about 1% manganese concentration.
Early experiments by Koehler et al. also revealed that
CrMn alloys undergo a first-order commensurate-to-
incommensurate (CI) transition. The CI transition tem-
perature decreases to 0 as the manganese concentration
increases from about 0.2 to roughly 1.5%%uo. At zero tem-
perature, Komura, Hamaguchi, and Kunitomi also ob-
served a first-order transition from the incommensurate
to the commensurate states with increased manganese
doping. Since these measurements were performed over
25 years ago, there has been very little further experimen-
tal work on the first-order CI transition. In this paper,
we calculate the free energy and phase diagram of
chromium alloys, including the efFects of electron scatter-
ing. Without damping, the phase diagram of chromium
alloys admits a first-order transition from the
incommensurate-to-commensurate phases. But if the

electron damping is sufficiently large, the phase-
separation curve Aips from one side of the tricritical point
to the other and a first-order CI transition occurs within
a narrow range of manganese concentrations.

The SDW of chromium is produced by the coherent
motion of electrons and holes, which are coupled by the
Coulomb attraction v) 0. In pure chromium, the elec-
tron Fermi surface a is slightly smaller than the hole Fer-
mi surface b and both Fermi surfaces are roughly octahe-
dral in shape. As sketched in Fig. 1, the electron and
hole Fermi surfaces are imperfectly nested by the wave
vector Q=G(1 —B)z/2, where G is a reciprocal lattice
vector and 0 =0.04. With manganese or rhenium doping,
the size of the electron surface increases, 0 decreases, and
the wave vector Q approaches G j2. So the nesting im-
proves. With vanadium doping, on the other hand, the
size of the hole surface increases, Q decreases, and the
nesting becomes worse.

FIG. 1. The imperfect nesting of the electron and hole Fermi
surfaces by the wave vector Q.
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When the hole Fermi surface is translated by + Q, the
energy mismatch between the resulting hole Fermi sur-
faces (called b+ ) at the Fermi wave vector is given by
zo=uFt)(2/&36). The energies of the translated Fermi
surfaces are shown in Fig. 2. The energy mismatch zo is
a direct measure of the impurity concentration: zo de-
creases with manganese doping and increases with vana-
dium doping. For pure chromium, tunneling experi-
ments suggest that zo is approximately 450 meV.

Until recently, the wave vector of the SDW was
thought to coincide with the nesting wave vector Q.
However, we have previously shown that the wave vec-
tor of the SDW is actually given by Q' =Q+ K, where
K=(G/2)At)z. The dimensionless parameter A lies be-
tween 0 and 1 and depends on the other model parame-
ters. When A=O, the SDW wave vector equals the nest-
ing wave vector Q; but when A= I, Q'=G/2 and the
SDW is commensurate with the lattice. Translating the
hole Fermi surface by Q' instead of by Q improves the
nesting of the electron and hole surfaces on one side but
worsens the nesting on the other side. However, the net
condensation energy is always a maximum for some
nonzero A and wave vector K.

At the Neel temperature, A increases with manganese
doping and reaches 1 when zo equals the tricritical value
z 0 =2~T&, which corresponds to about 0.2% man-
ganese concentration. With additional manganese dop-
ing, the SDW wave vector remains commensurate with
the lattice but the electron Fermi surface continues to
catch up in size with the hole Fermi surface and the Neel
temperature T~(zo) continues to grow. In the absence
of damping, the Neel temperature increases until 8 and zo
reach zero. This behavior can be found in the phase dia-
gram of Fig. 3. Both the Neel temperature and the ener-
gy mismatch zo are normalized by T&, which is the Neel
temperature in the absence of damping and with zo=0.
While the commensurate regime lies to the left of the tri-
critical point, the incommensurate regime lies to the
right.

Unlike the nesting wave vector Q, the SDW wave vec-
tor may depend on temperature and electron damping.
The temperature dependence of Q' was observed by
Werner, Arrott, and Kendrick, who found that the SDW
wave vector of pure chromium increases monotonically
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FIG. 3. The phase diagram of chromium alloys with I =0
(solid) and 1 /T& =0.3 (dashed).

with temperature. Within a narrow window of man-
ganese concentrations, the SDW wave vector jumps to
G/2 at the CI transition.

It is well known that electron scattering plays a very
important role in chromium alloys. Because impurities
scatter electron and holes with opposite signs, impurity
scattering competes with the Coulomb attraction v and
suppresses both the SDW order parameter g and the Neel
temperature. Due to impurity scattering, the weakly
first-order transition in pure chromium becomes second
order when the impurity concentration exceeds about
0.2%. In previous work, we have shown that impurity
scattering favors the nesting on one side of the Fermi sur-
face at the expense of nesting on the other side. So elec-
tron damping tends to decrease the SDW wave vector
and to favor the incommensurate over the commensurate
states. Of course, damping becomes more effective as
thermal Auctuations decrease. In this work, we find that
the phase diagram of chromium alloys depends very sen-
sitively on electron damping. Without damping, the
phase diagram contains a first-order transition from the
incommensurate to the commensurate SDW state; with
sufficient damping, the transition goes from the com-
mensurate to the incommensurate state.

In this paper, we construct the free energy and phase
diagram of chromium alloys using mean-field theory.
While Sec. II treats the case of nonzero temperatures,
Sec. III treats the case for T=O. After numerically
minimizing these free energies, we construct the phase di-
agram of chromium alloys in Sec. IV. Finally, Sec. V
contains a conclusion. Appendixes A and B contain cer-
tain technical details omitted in the text.

II. FINITE-TEMPERATURE FREE ENERGY

FIG. 2. The energy levels near the Fermi surface for k, )0,
with the hole surface translated by + Q.

The mean-field formalism for chromium a11oys was
originally developed by Zittartz' and Young and Soko-
1off" for the case A=O. It is straightforward to general-
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ize this formalism to treat the SDW wave vector as a free
parameter. The SDW wave vector is then determined by
minimizing the mean-field free energy. At the Neel tern-
perature, our results agree with the paramagnetic results

I

of Sato and Maki. '

Because the electron and hole surfaces are imperfectly
nested, the inverse Green's function of chromium alloys
must be written as a 6 X 6 matrix in spin and band space:

G '(k, ico„)=
[ico'„—e, (k) ]1

—n-erg„
—n erg„

—n.og„
[ico„—eb (k)]1

0

0

[ico„—eb+(k)]1

n crg„=n erg+ f p'dp G b (p, ico„),
2mmkF o

(2)

where e, (k) is the energy of an electron and
eb+(k) =eb(k+Q') are the energies of the holes translat-
ed by + Q . Here n is the direction of polarization of the
SDW, co„=~T(2n+1) are the Matsubara frequencies, 1

is the unit matrix, and o. are the Pauli matrices in spin
space.

In this work, we neglect the b +b —and b —b + com-
ponents of 6 '(k, ico„), which arise from a charge-
density wave (CDW) with wave vector 2Q'. The CDW is
induced" by the Coulomb repulsion v' between holes on
the b+ Fermi surfaces. In pure chromium, the first-
order phase transition is induced by the proximity to a
CDW instability when v' is sufficiently large. We believe
that the b+b + components of the Green's function are
primarily important very close to the Neel temperature
and will not qualitatively affect the phase diagram of
chromium alloys.

The modified SDW order parameter g„and Matsubara
frequencies co'„' include corrections due to electron
scattering. These three complex quantities are evaluated
self-consistently in terms of the Green's function from the
expressions'

Finally, the self-consistent equation for the SDW order
parameter g is given by

n og= T yI G b —a~G b+
]a

2X nk

= —no Tg2X

~ -b2l co~ Cb Eb ~
D gn ~ (5)

where

eb+ Azo/2 —z; k )0,
eb =zO —AzO/2 —z .

, k, )0 .

(7b)

(7c)

D = (/CO„ E )(lCO Eb ~ )(lCO Eb )

—g„'(2'8„—
b eb )—

is the determinant of G(kico„,) and v) 0 is the attractive
Coulomb interaction between the electrons and holes. Of
course, the magnetic moment of the SDW is proportional
to g.

Near the Fermi surface, the electron and hole energies
may be linearized as '

1/co ' = 1/co p dp Gaa b ~b(p~& /co& )
2~mkF o

where

(3)

(4)

For k, (0, the expressions for eb+ and eb are reversed.
When A=O, the energy mismatch zo is given by

eb
—eb+. Now the momentum summations in Eqs. (2),

(3), and (5) can be converted into integrals over the ener-

gy z and evaluated by factoring the determinant D as

D (z) = —(z —z, )(z —zb+ )(z —
zb ) .

is the energy width produced by impurity scattering, and
~=A/r is the scattering lifetime of electrons and holes
near the Fermi surface. In addition, m is the mass of a
quasiparticle, kF is the Fermi wave vector, p„is the den-
sity of impurities, and u (8) is the impurity potential.

While the imaginary part of z, has the same sign as co„,
the imaginary parts of zb+ have the opposite sign.

After performing the energy integrals, the three com-
plex nonlinear equations for the modified order parame-
ter and frequencies can be rewritten as

2tco„+2z,—zog„sgn(co„),
2 " (z, zb+)(z, zb )— —

(i co„+z,—Azo/2)(i co„+z,+Azo/2 —zo)co„—67„+I
(z, —zb+)(z, —

zb )

(i co'„—z, )(2i co„+2z,+Azo /2 —zo ) —2g„
n ll (z, —zb+ )(z, zb )—

1 sgn(co„), (10)
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At the Neel temperature, g„=0and the modified Matsubara frequencies are identical:

co'„=co„=co„—=co„+—,
' I sgn(co„) .

Below the Neel temperature, however, co'„and co„differby terms of order g and higher.
Using the linearized energies, we can also rewrite the self-consistent equation for the order parameter as

(12)

T~ Tz „pT~ n+1/2 T~ "(z,—zb+)(z, —
zb )

-=0 (13)

where TN is the fictitious Neel temperature' in the absence of electron scattering and with z0=0. Appendix A pro-
vides detailed derivations of Eqs. (9)—(11)and (13).

Finally, we construct the free energy by integrating this self-consistent equation with respect to the order parameter

F(g, A) g
k TN TN

ln + g
n=0

g 1 T g 2'"„(x) 2iz,—(x)+ izp
+4m Re dx g„(x)

n +1/2 T~2 p
" [z, (x) —zb+(x)][z, (x) —

zb (x)]

(14)

which neglects the constant free energy F(O, A) of the normal state. All quantities in the integrand above are evaluated
with x replacing g. The dimensionless coupling constant A, is given by A, =p(eF)v/2, where p(eF) is the density-of-states
at the Fermi surface for a single spin. Of course, minimizing Eq. (14) with respect to g produces the self-consistent ex-
pression of Eq. (13).

Because the roots z, , frequencies 6'„andco„,and order parameter g„alldepend on the wave vector parameter A, it is
not possible to construct a simple self-consistent equation for A. So in general, F(g, A) must be minimized with respect
to both g and A. However, by using the self-consistent equation for g, this minimization can be performed with a single
unknown parameter.

At the Neel temperature, the free energy and self-consistent equation can be simplified considerably. To first order in

g, g„is given by

(2i co„—Azp /2 )(2i6„—zp+ Azp /2)
=g

(2i co„—Azp /2)(2ico„—zp+ Azp /2)+i I (4i S„—zp )sgn(co„)/2

where the frequency co„is given by Eq. (12). It is then straightforward to show that the free energy near the Neel tem-
perature becomes

F(g A) g
XTN TN

2

. ln
TN 1

TN „0n +1/2+ g —Re
X„

X„+X„p/2+u (16)

where

X„=n+,'+ ,'p+i g, ——
1 I

P

(17)

(18)

1 ~0

8n T (19)

1 +0
Q = (A —1)

8m. T

ln

Re

are evaluated at TN. Minimizing this free energy with respect to g and A produces the two self-consistent relations

TN 1 +n+
Tg „p n +1/2 X +X„p/2+u

oo X„ .=0, A&1 .
p (X„+X„p/2+u)

(20)

(21)

(22)

When A=1 or the SDW is commensurate, the second expression is not valid. These two relations are identical to those
derived by Sato and Maki' from the spin susceptibility of the paramagnetic state.
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The free energy can also be simplified in the absence of damping, when the modified quantities g„,co'„,and co, reduce
to their "bare" values. In this limit, the free energy is given by

1 2

F(g, A) =-
TN

v T 2l COn 6b + Eh-
/in 1 —g4X T~ k (leo„e~)(le„Eb+')(leo„Eb') (23)

1

n +1/2ln

which again neglects the constant F (0,A). Minimizing this free energy with respect to g and A yields the expressions

X
Re

TN „0 X„+u
2l con zp+ 2z,

C

(z, zb@—)(z, —
zb )

2l COn + 2Z& Zp 1

(iso„+z,—z0/2) —z0(A —1) /4 (z, —
zt, + )(z, —

zb )

4l COn Zp
sgn(co„),(2ico„—z0/2) —z0(A —1) /4

(24)

(25)

where X„is now evaluated with p=0 and for general T.
These two expressions are much easier to evaluate than
to minimize the general free energy in the presence of
damping. Of course, Eqs. (24) and (25) reduce to Eqs.
(21) and (22) for g and A near the Neel temperature.

III. ZERO- TEMPERATURE FREE ENERGY

In this section, we derive the free energy of chromium
alloys at zero temperature. The results of this section
provide a useful check on the finite-temperature formal-
ism developed above.

At zero temperature, the sum over Matsubara frequen-
cies is replaced by an integral in the usual way:

T g f(co„)—+ f ™

dv f(u),
n = —oo

for any smooth function f (u). So at T=0, the self-
consistent relation of Eq. (5) becomes

2lU +2Z zp
g = dz du g(u),

2m — — (z —z, )(z —zb+ )(z —
zb )

(26)

where g(v), v', and V" replace g„,co'„,and co„,respective-
ly, in Eqs. (9)—(11).

Actually, the integral on the right-hand side of Eq. (26)
diverges logarithmically as z ~+~. In order to regulate
this integral, we subtract from both sides the value of the
right-hand side when g =0 and I =0. As shown in Ap-
pendix B, the divergent integral on the left-hand side of
the resulting expression can then be evaluated in terms of
TN. The self-consistent equation for the order parameter
at T =0 is then given by

g in[A(2 —A)]+21n
ZQ

TN

2V 2lz& + lZp 12f d—u Re ~ g+ . +
0 (z, —zb+)(z, —zb ) 2u +iAz0/2 2v +iz0 —iAz0/2

(27)

F(g, A)

kTN

where lny =0.577 is Euler's constant.
To construct the T =0 free energy, we integrate this self-consistent relation with respect to g:

'2 2
ZQ y. ln A(2 —A) +2 ln

T4 2
N 7r

f+2 dv Re dxg 2V 2lZ +lZQ g ] g
2

1+
0 0 (z, —zb+)(z, —zb ) T& 2 T& 2u +i Az0/2 2v+iz0 iAz0/2—

(28)

—=1.247; A=1g 0 &27r
TN 2 y

(29)

Once again, the integrand of the x integral is evaluated
with x in place of g.

In the absence of damping, the T =0 order parameter
can be evaluated explicitly in the commensurate regime
where A=1. As shown in Appendix B,

I

is independent of z0. In this limit, the energy gap b, (0)
between the electron and hole branches is given by
V 2g (0). So Eq. (29) yields the BCS-like relation
5(0)= l.764', . Since the Neel temperature only
reaches Tg, in the limit z0 =0, Eq. (29) also predicts that
the ratio g (0)/T& decreases as z0 decreases or as the
nesting improves.

In the presence of damping, g (0)/T& is no longer a
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constant in the commensurate regime. As discussed in
Sec. IV, g (0)/T~ is suppressed by electron damping and
increases with decreasing zo. 1.0

IV. PHASE DIAGRAM OF CHROMIUM ALLOYS

The free energies derived in the previous two sections
must be minimized with respect to both the wave vector
parameter A and the order parameter g. As mentioned
before, this minimization can be performed numerically
with one free parameter by using the self-consistent rela-
tions for g. Even so, the numerical calculation is quite
demanding.

If electron scattering is absent, the phase diagram of
chromium alloys is given by the solid lines in Fig. 3. As
shown, the tricritical point is fixed by zo/T~ =4.291 and
T&/T&=0. 554, in agreement with Sato and Maki. ' At
zero temperature, the phase-separation curve between the
commensurate and incommensurate states extends to
about zo/Tg. =4.53. Without damping, a first-order
incommensurate-to-commensurate (IC) transition occurs
with decreasing temperature.

In Fig. 4, we plot the normalized order parameter
g/Tg. versus the normalized temperature T/Tg. for I =0
and for several different values of zo/Tg . As discussed in

Sec. III, the zero-temperature limit of g/T& in the com-
mensurate regime is independent of zo/T&. But at any
nonzero temperature, g/Tg decreases with increasing
zo /TN

The wave vector parameter A is plotted versus T/T&
in Fig. 5 for three values of zo/Tg, between 4.29 and 4.53.
When zo/T&=4. 5, the SDW wave vector initially de-
creases with decreasing temperature. We shall return to
this behavior shortly. Remember that as A varies be-
tween 0 and I, the SDW wave vector Q' varies between
Q=0.48G and 0.50G. So the change in the SDW with
temperature is actually rather small.

Angelescu, Nenciu, and Tonchev' and Machida and
Fujita' obtained similar phase diagrams in the absence of
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FIG. 4. The normalized order parameter g/T& vs T/T+ for
I /T~ =0 and the four different values of zo/T~ indicated.
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FIG. 5. The wave vector parameter A vs T/T& for 1 /T& =0
and three different values of zo/T&.

damping. In their work, Machida and Fujita included
higher harmonics of the SDW solution. Perhaps as a re-
sult, their calculation only produced a second-order tran-
sition between the commensurate and incommensurate
states. As in this work, Angelescu, Nenciu, and Tonchev
only included the first harmonic of the SDW and ob-
tained a first-order IC transition with decreasing temper-
ature in the absence of damping.

As anticipated earlier, the phase diagram of chromium
alloys depends very sensitively on electron scattering.
Because electron damping favors the nesting on one side
of the Fermi surface at the expense of the other, it also
favors the incommensurate over the commensurate
states. In Fig. 1, we find that electron damping may fIip
the phase-separation curve from one side of the tricritical
point to the other. So if the damping energy I is
sufficiently large, the phase diagram will allow a first-
order phase transition from the commensurate to the in-
commensurate regimes with decreasing temperature.

When I /Tz =0.3, the CI transition occurs when

zo/Tg lies between 3.36 and the tricritical value of 3.52
or, equivalently, when the manganese impurities lie
within a correspondingly narrow window of concentra-
tions. For pure chromium, zo/T& must be slightly larger
than the tricritical value. As shown in Fig. 6, the first-
order transition in CrMn alloys is characterized by a
discontinuous drop in the order parameter with decreas-
ing temperature. The size of this drop increases with the
manganese concentration.

In Fig. 7, we plot the wave vector parameter A versus
T/T& for the same two cases. We find that the wave vec-
tor Q' jumps discontinuously to G/2 with increasing
temperature, in agreement with the experimental results
of Koehler et al. Again, the size of this jump decreases
as zo increases.

At zero temperature, the order parameter and wave
vector change discontinuously with manganese doping as
zo crosses the phase-separation curve. With I /T& =0.3,
the zero-temperature phase transition occurs when zo is
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FIG. 6. The normalized order parameter g!T& vs T/T& for
I /T~ =0.3 and two different values of zp/T~.

FIG. 8. The T=0 normalized order parameter g(0)/T~ vs

zp/T& for I /T& =0 (solid) and 0.3 (dashed).

below the tricritical value zo. Experimentally, the tri-
critical point lies at about 0.2% manganese concentra-
tion, while the zero-temperature transition occurs be-
tween 1 and 1.5 % manganese concentration.

The normalized order parameter at zero temperature is
plotted versus zo/T& in Fig. 8. In agreement with experi-
ments, the order parameter jumps discontinuously as the
manganese concentration increases through the phase-
separation curve. Notice that the size of the jump in
g/T& decreases with damping. As expected, damping
suppresses the zero-temperature order parameter and
magnetic moment. In the commensurate regime,
g(0)/Tg, now increases with decreasing zo. This effec
can also be verified from the zero-temperature intercepts
of Fig. 6. As for finite temperatures, the first-order
change in the order parameter is characterized by hys-
teresis.

At zero temperature, the wave vector parameter A is
plotted versus zo/Tz in Fig. 9. For a fixed value of
zo /Tz, damping suppresses both A and the SDW wave
vector. We also find that electron scattering suppresses
the jump in the SDW wave vector at the CI transition.

Generally, the magnitude of the SDW free energy is an
increasing function of the order parameter g and a de-
creasing function of the wave vector parameter A. As
the temperature decreases through the phase-separation
curve, the free energy remains constant, while g and A
both drop discontinuously. As the SDW wave vector
continues to decrease in the incommensurate regime, the
order parameter may be a nonmonotonic function of tem-
perature, as found in Fig. 6. The slight maxima in g /T&
is most pronounced for zo/T& =3.46. Similarly, it is pos-
sible for the SDW wave vector to increase with decreas-
ing temperature, so long as the order parameter and the

1.0

0.9

0.8
0.8

O. P,
0, 0 0.P.

!

0.4 0

T/TN

1.0
0.0

3.0 3.5 4.0

z, /TN

!

4.5 5.0

FIG. 7. The wave vector parameter A vs T/T& for the same
values of I /Tz and zp/T~ as in Fig. 6.

FIG. 9. The T=0 wave vector parameter A(0) vs zp/Tz for
the same damping as in Fig. 8.
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magnitude of the free energy also grow. This kind of
behavior was found in Fig. 5 for I =0 and zo/T+=4. 5.
By contrast, Angelescu, Nenciu, and Tonchev' found
that in the absence of damping, the SDW wave vector Q'
always decreases with decreasing temperature.

In this work, we have evaluated the phase diagram of
chromium alloys for a fixed value of the damping energy.
Actually, I increases linearly with the density p„ofim-
purities. So it is possible that the incommensurate por-
tion of the phase-separation curve will be larger than in-
dicated in Fig. 3. Because of the importance of electron
scattering, a realistic calculation of the phase diagram for
chromium alloys must also account for electron-phonon
scattering. Since the electron-phonon damping energy
I „his proportional to the temperature, we do not expect
this form of damping to qualitatively change the shape of
the phase diagram.

While this work reveals that electron damping may be
responsible for the shape of the phase diagram and the CI
transition in CrMn alloys, other factors may also play a
role. Angelescu, Nenciu, and Tonchev' and Machida
and Fujita' have found that a finite electron reservoir,
which is depleted by the formation of the SDW, can also
Aip the phase-separation curve from one side of the tri-
critical point to the other. However, perhaps because
their SDW solution contains higher harmonics, Machida
and Fujita only obtained a second-order transition from
the commensurate-to-incommensurate states. On the
other hand, Angelescu, Nenciu, and Tonchev obtained a
first-order transition for any value of the reservoir power.
By changing the positions of the phase boundaries, the
electron reservoir plays a similar role in their calculations
that electron damping plays in our work. Of course, both
electron damping and a finite electron reservoir may be
responsible for the detailed shape of the phase diagram
for chromium alloys.

V. CONCLUSIONS

In this paper, we have constructed the mean-field free
energy for chromium alloys. If the electron damping is
sufficiently large, the phase diagram of chromium alloys
contains a first-order transition from the commensurate-
to-incommensurate phases with decreasing temperature.
Such a phase transition was observed by two groups '" in
experiments performed over 25 years ago but has not
been duplicated since, as far as we know.

Because of the importance of electron damping, it
would be interesting to test the predictions of this paper
with isoelectronic impurities such as molybdenum or
tungsten. Such impurities increase the damping energy
but do not affect the energy mismatch zo. Because elec-
tron scattering favors the incommensurate regime,
isoelectronic impurities should enlarge the incommensu-
rate portion of the phase diagram. If T« is the tempera-
ture for the CI transition, then the ratio T«/T& should
increase with the concentration of molybdenum or
tungsten.

Clearly, the condensation free energy alone cannot ex-
plain the spin-Aip transition in CrMn alloys. This transi-
tion occurs below the CI transition and within an even

narrower range of manganese concentrations between 0
and about 1%. In at least one sample of 0.35% Mn,
Koehler et al. observed both the CI and the spin-Aip
transitions. While the spin-Aip transition is also charac-
terized by a discontinuous drop in the order parameter
with decreasing temperature, the SDW wave vector does
not seem to change through this transition. We believe
that the spin-Aip transition involves the elastic coupling
between the SDW and the lattice. The net condensation
and elastic free energies must remain constant across the
spin-Aip transition.

To conclude, the first-order CI transition in chromium
alloys may be produced by electron damping. Hopefully
future measurements will test the predictions of this pa-
per and map out the CI phase boundary in this fascinat-
ing system.
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APPENDIX A

In this Appendix, we derive the free energy of chromi-
um alloys for finite temperatures. Our starting points are
the complex expressions for g„,co'„,and co„given by Eqs.
(2) and (3), and the self-consistent relation for g given by
Eq. (5). Formally undefined integrals over the energy z
must be regulated by multiplying by

K
lim

&~oo K +Z

For example,

f oo 1 oo 1 K2

dz —+ lim dz—co l CO„Z rc~ co —oo l CO„Z (Z +LK)(Z LK)

= —iver sgn(co„) . (A 1)

gIj =—
~ -b2l Co~ 6b+ Eb

2N „„D(g)
TT

2i@,—eb+ —eb g„
D(0) g o

(A2)

2i co„—eb + —eb g„I, =1+ Tg2N, k D(0) g o
(A3)

The integrals over z are then evaluated using the factori-
zation of the denominator D in Eq. (8). It can be verified
that the imaginary parts of two roots always have the op-
posite sign as cu„and that the imaginary part of the other
root is always the same as co„.By construction, the latter
root is denoted z, and the former are labeled zb+. It is
then straightforward to derive Eqs. (9)—(11).

After subtracting off the g =0 pieces from both sides of
Eq. (5), we obtain the new self-consistent relation
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where D (g) is the full determinant of Eq. (6), D (0) is the g =0 determinant, and (g„/g )o is the ratio given by Eq. (15) to
zero order in g.

The integral I& is logarithmically divergent and must be rewritten as

Ii =1—2A, T g f dz

2l con +2z Zp gn 2
AT—$ dz.

(z —ice„)(z+i&„—Azo /2)(z +icy„+Azo/2 —zo ) g (z —i co„)(z+ice„) (A4)

where eo is an energy cutoff. This cutoff has the same significance as in the BCS theory of superconductivity: Quasipar-
ticles are only well-defined within +ep of the Fermi energy. This cutoff energy can be exchanged for the Neel tempera-
ture TN, which is defined in terms of ep and X by

Te 7 ~ e
—1/2A.=2

Epe (A5)

T 1+2k, g —Re
TN n +1/2 (A6)

This expression is also formally identical to the BCS relation for the superconducting transition temperature. As we
shall see, neither A, nor ep appears explicitly in any final results.

Evaluating the remaining convergent z integrals in I& and using Eq. (15) for (g„/g )o produces the final result

X„
I, =2k, ln X„+X„p/2+u

which employs the definitions in Eqs. (17)—(20). Finally, performing the z integral on the right-hand side of Eq. (A2)
produces the self-consistent relation of Eq. (13), which does not contain either eo or A, .

APPENDIX 8

In this Appendix, we derive the self-consistent equation for g and the free energy at T =0. Our starting point is the
self-consistent expression given by Eq. (26). After subtracting from both sides the value of the right-hand side when

g =0 and I =0, we obtain

2lV +2Z Zp 2lV +2Z Zp
gI2 = dz dv g+ g'~

2m —~ —~ (z —z, )(z —z&+ )(z —
zb ) (iv z)(iu +—z Azo/2)(i—u+z +Azo/2 —zo)

p oo 2lV +2Z ZpI2=1+ dv dz
2m

—
~o —~ (iu z)(iv +—z —Azo/2)(iv +z +Azo/2 —zo)

(B1)

(B2)

where the cutoff energy has the same significance as in
Appendix A.

After performing the z integral in I2, we obtain

' 1 1I2=1—ik dv. +
0 2lU Azp /2 2lU +Azp /2 Zp

+ iA, du +0 1 1

2iu —Azp/2 2iu +Azp/2 —zp

(B3)

I

which uses the definition of T& in Eq. (A5). Finally, after
evaluating the z integral on the right-hand side of Eq.
(Bl), we obtain the self-consistent expression of Eq. (27).

When I =0, the zero-temperature self-consistent equa-
tion for the order parameter given by Eq. (26) can be
rewritten as

11=—— dz dv
'o — (iu z)(iv +z——zo/2) —2g

(B5)

4ep
I, =1—kin

Azp

4ep—A, ln
(A —2)zo

=2k. ln —+A. lny zoA(A —2)
4T*N

Then after performing the u integral, we impose the con-
dition that the energy cutoff ep is much larger than the
energy mismatch zp:

After evaluating the v integral, we find

1 =~f" d.
Q(z —zo/4) +2g

So for eo))zo and zo (4+2g,

2E'()
1 =2k. ln

2g

or g (0)=(~/yv'2)T&, as given by Eq. (29).

(B6)

(B7)
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