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We present a mean-field calculation of the phase diagram of a simple model of localized moments, in
the hexagonal uranium heavy-fermion compounds. The model considers a non-Kramers quadrupolar
doublet ground state magnetically coupled with a singlet excited state, favoring in-plane van Vleck
magnetism, as has been conjectured for UPt3. The Hamiltonian that defines the model is Heisenberg-like
in both magnetic and quadrupolar moments. No Kondo-effect physics is included in the calculations.
Among our main results are (i) for zero intersite quadrupolar coupling, the magnetic order is achieved
by a first-order transition above a critical intersite magnetic coupling value, which becomes second order
at higher coupling strengths (ii) for finite intersite quadrupolar coupling, at temperatures below a
second-order quadrupolar ordering transition, the minimal magnetic coupling value is increased, but (a)
the magnetic ordering temperature is enhanced above this value, and (b) the ordering of first- and
second-order transitions in the phase diagram is reversed. By considering the general structure of the
Ginsburg-Landau free energy, we argue that the Kondo effect will not modify the shape of the phase dia-
gram, but will modify the quantitative values at which transitions occur.

I. INTRODUCTION

The unusual commensurate, reduced-moment-
magnetic order present in heavy-electron superconduc-
tors such as UPt3 [and its related alloys U(Pt, , Pd )3
and (U, „,Th„)Pt3], URu2Si2, and UPd2A13 has so far
resisted explanation in any simple terms. It is dificult to
believe the small moment order represents itinerant spin-
density wave formation, since, for example, UPt3 displays
no appropriate nesting features on the Fermi surface at
the appropriate antiferromagnetic wave vector. It is
difIicult to account for the order in terms of frustration
efFects since the ordered structures are remarkably sim-
ple. In the case of URu2Siz, moreover, there is evidence'
that the magnetic order parameter is not the primary"
one, in the sense that despite the large entropy involved
in the 17.5 K magnetic transition (the entropy involved is
larger than in the 1.2 K superconducting transition) the
effective moment is too small to be consistent with the
size of the ordered moment. Indeed, it has been suggest-
ed ' that some other "hidden" order drives the transition
(such as quadrupoles). Indeed, as noted elsewhere, the
absence of a divergence in the Si spin lattice relaxation
rate at the transition suggests that it is nonmagnetic in
origin. UPd2A13 has a complex phase diagram, with a
second-order transition at 14.5 K and an apparent first-
order transition at 12.5 K. The higher transition is
weakly dependent upon field up to -8 T, while the
second transition is rapidly suppressed by field. Hence,
the higher-temperature transition does not behave like
that of a conventional antiferromagnetic state.

Recent theoretical developments coming from different
directions altogether make it prudent to consider quadru-
polar (and octupolar) ordering possibilities in these ma-
terials: it has been noted that the quadrupolar Kondo
model believed to be previously restricted to cubic urani-
um based materials is in fact possible for hexagonal
(UPt3) and tetragonal (URu2Si2) materials as well. 6 In
this model the heavy fermions arise from local uranium
quadrupole moments associated with ground crystal-field
doublets quenched by (predominantly) the orbital motion
of itinerant electrons. Thus, the low lying degrees of free-
dom may be essentially quadrupolar.

The relevance of the quadrupolar Kondo model to this
class of materials has been put on firmer footing by the
discovery of the cubic material Y, U Pd3 (Ref. 7) and
Th, U Ru2Siz, which appear to display a dilute limit
quadrupolar Kondo effect. Moreover, all known heavy-
fermion superconductors possess the appropriate symme-
try groups to yield a quadrupolar Kondo effect or mag-
netic two-channel Kondo eff'ect (CeCu2Si2), a point bol-
stered by the recent discovery of two hexagonal heavy,
electron superconductors (UPd2A1~ and UNi2A13) which
also possess magnetic order.

In the quadrupolar Kondo picture, a context for weak
moment magnetic order can arise naturally from two dis-
tinct sources. (i) For cubic symmetry, all magnetic char-
acter is in excited states, and for hexagonal and tetrago-
nal symmetry, in-plane magnetic character is in excited
states. Thus, the magnetic response is van Vleck in char-
acter yielding a built-in stability against magnetic order-
ing and a region of weak moment order. The same is true
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for in-plane magnetic moments in hexagonal and tetrago-
nal symmetry. (ii) For hexagonal and tetragonal syinme-
try, the c-axis character of the local uranium doublets is
weakly magnetic, but primarily octupolar.

In this paper, we shall focus our attention on (i), with
the particular goal of examining how quadrupolar order
can induce or at least enhance magnetic ordering tenden-
cies. While it is well known that quadrupolar order will
always be induced as a secondary-order parameter at a
magnetic transition, it seems to be less well known, at
least in the heavy-ferrnion field, for magnetic order to be
induced or enhanced by the coupling to quadrupolar de-
grees of freedom. Such physics is known in UOz, for ex-
ample, where the antiferrornagnetic phase transition is
first order due to a coupling between magnetic and qua-
drupolar order parameters. '

We have performed mean-field calculations on a simple
model of potential relevance to the hexagonal uranium
heavy-fermion super conductors. In this model, each
uranium ion possesses a doublet quadrupolar ground
state magnetically coupled to an excited singlet state.
The uranium ions are placed on a lattice with the struc-
ture of UPt3 (though the point symmetry is taken to be
D6I, rather than D3I, ). The results will also be relevant to
the hexagonal structure of UPdzA13 and tetragonal struc-
ture of URuzSiz, given that the crystal-field level scheme
can be essentially similar. We then turn on nearest-
neighbor in-plane and out-of-plane quadrupolar and mag-
netic coupling and study the resulting phase diagram.
We find a rich structure, ranging from van Vleck rnagne-
tism with a tricritical point and critical exchange
strength to alternately suppressed and enhanced magnet-
ic order below a second-order quadrupolar transition.
We discuss the phase diagram using both the full mean-
field calculations and Landau theory in regions of validi-
ty. We stress that the topology of the phase diagram is
unlikely to be altered by (i) inclusion of two-channel Kon-
do effect physics and (ii) fiuctuations near the tricritical
point. The former effect simply renormalizes the parame-
ters of the Landau free energy whose structure is fixed by
symmetry considerations alone. The latter produces log-
arithmic corrections to the singular behavior near the tri-
critical point, and may alter the value of couplings need-
ed to produce the tricritical point, but does not alter the
topology. We briefly discuss the connection of our model
to the more widely studied Blume-Emery-Griffiths model,
which produces similarly rich phase diagrams. "

While the model does not produce a full explanation of
the ordering in bulk UPt3 (for which the specific heat
shows no transition and the neutron elastic scattering
peaks are not true resolution limited Bragg peaks) it may
be of relevance to the Pd and Th doped alloys, to
URuzSiz, and to the new hexagonal superconductors. In
any case, it represents the beginning of an alternative
view of collective phenomena in the heavy-fermion ma-
terials which may ultimately provide a unifying view of
the heavy-fermion state, superconductivity, and magne-
tism.

The outline of the paper is as follows. Section II pro-
vides an overview of the model. Section III develops the
mean-field approximation to this model. Section IV

discusses our results in terms of Landau theory, paying
special attention to the role of the orientation dependent
coupling between quadrupolar and magnetic order pa-
rameters. Finally, in Sec. V we conclude and point out
explicit experimentally relevant features of our model.

II. MODEL

In Sec. IIA we write a single-site Hamiltonian, cou-
pling the quadrupolar moment of the ground state of the
uranium-ion with the electric-field gradient and the mag-
netic moment with an applied magnetic field. In the next
section we introduce intersite coupling of the XY-model
form for both quadrupolar and magnetic degrees of free-
dom. Within the mean-field approximation that Hamil-
tonian is equivalent to that of Sec. II A, but with coupling
coefficients which depend self-consistently on the mean

magnetic and quadrupolar moments.

aIld

i3&+i —3&

2

where ~m ) are the eigenstates of the z component of the
total angular momentum J. u and v are constants. The
relevant matrix elements for the model we are defining
are

aIld

(E+ I
J2+ IE+ ) =2&VV =b (4)

Since u + v = 1, the constants a and b defined here are
not independent.

The other J =4 multiplet levels are not considered, so
the model will be restricted to temperatures less than or

IB&

FICx. 1. Level structure of the model considered in this work.
The doublet ground-state ~E+ ) =u ~+4)+V~+2) is magnetic
coupled to a singlet excited-state &2~P) = ~3)+

~

—3), which
has energy h. Here ~m ) is the eigenstate of the z component of
the total angular momentum J=4. The other D6q crystal-Geld
levels are not included, thus restricting the model to tempera-
tures less than h.

A. Single-site Hamiltonian

Having in mind the motivations given in Sec. I, we
define a single-site model in which the uranium ion has a
non-Kramers quadrupolar doublet ground state magneti-
cally coupled only with an excited state. Such a crystal-
field scheme may arise for a U, 5f, 1=4 at a site of
hexagonal symmetry. Figure 1 defines the level structure
of the model, where the doublet ~E+ ) and the singlet
~B ) are defined by

~E ) =u ~+4)+U~+-2),
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equal to the first excitation energy h. It is clear from the
level structure considered that this model favors in-plane
van Vleck magnetism, and c-axis Pauli magnetism, as has
been conjectured for UPt3. The motivation for focusing
on the doublet level is that it is the only degenerate level
in hexagonal symmetry for U + ions, and we desire the
internal degrees of freedom associated with the doublet
level to allow for the Kondo effect. The formation of the
many-body Abiksov-Suhl-Kondo resonance is the basic
paradigm for the source of heavy fermions in these ma-
terials.

The doublet ground state corresponds to the Ez repre-
sentation of the point group D6&, where the eigenfunc-
tions transform like x —y and xy. This doublet has
magnetic character along the c axis, but only in-plane
quadrupolar tensors may couple the doublet levels to-
gether. This implies we can have a quadrupolar Kondo
effect. Using the Stevens operator representation, ' the
corresponding quadrupolar operators are (proportional
to) Q „=—Q =J —J and

Q„y=Q „=(J„J+J J, )/2 .

The magnetic moment operator is M=gJpz J, where

gJ 5
and pz is the Bohr magneton. The doublet is con-

nected by J, and J to the excited ~B) singlet. (Note
that while the actual point group at U sites in UPt3 is
D3&, the allowed crystal-field spectrum is essentially iden-
tical to that of D6&.)

A single-site Hamiltonian H is defined coupling the
quadrupolar operators with an electric-field gradient VE
and coupling the magnetic moment with an external
magnetic field H at the uranium site:

a self-consistent calculation is required to obtain these
moments at each temperature.

B. The intersite-coupling Hamiltonian

In order to determine the molecular fields H and E
present in Eq. (5) we have used a model Hamiltonian
which is Heisenberg-like in the magnetic moments as well
as in the quadrupolar moments, defined by

H =Ho —g (I'"M;.M +I'M; M. +I' Trg;. Q~.
(ij )

+I'TrQ; Q ), (10)

where I' (I' ) is the coupling between the nearest-
neighbor magnetic moments in the basal plane (c-axis
direction) of the hexagonal lattice; I' (I') has the same
meaning for the quadrupolar moments. Tr means trace
over the product of the quadrupolar tensors.

We are interested in studying the antiferromagnetic or-
der of the model defined by Eq. (10), so that the couplingsI' and I' are negative. Only ferroquadrupolar coupling
J has been considered. We have examined the effect of a
coupling of the form TrM, Ql Mk in the Hamiltonian
equation (10). It does not qualitatively change the mean-
field phase diagram of the model since the couplings al-
ready present in Eq. (10) give rise to a term proportional
to M Q in the free energy [see Eq. (20)]. Hence we will
drop this coupling from the Hamiltonian. The calcula-
tions are restricted to the case when M lies in x direction
(that is, the case for UPt3, as shown by neutron-scattering
data' ), although it is possible to consider the general
case.

H =Ho+ AJ++BJ+ +H. c. ,

where

(7)

2 = —(gJp~/2)(H iH )—
B = —(A, /2)(B„E BE—2iB„E) . —

The diagonalization of this Hamiltonian shows that there
is a crossing of levels depending upon H and E and an in-
terplay between the field gradient and magnetic field
which depends crucially on their orientation with respect
to one another. In the model defined in the next section,
the coeKcients A and B are interpreted as molecular
fields acting on the uranium sites. Since those molecular
fields depend on the magnetic and quadrupolar moments,

H =Ho —H M —g (V EI3)gp
a, P

where Ho is the Hamiltonian for the uranium ion in the
presence of the crystal field only (see Fig. 1):

Ho=A, B)(B
We are measuring energies from the doublet ground state
IE+ ).

For in-plane H and E, the Hamiltonian equation (5) is
written as

C. Connection to Blume-Emery-Gri5ths model

The Blume-Emery-Griffiths (BEG) model"' is widely
studied as a source of tricritical phenomena suitable for
describing, e.g. , He- He mixtures and metamagnets such
as DAG. ' In this model, every site has a spin-1 magnet-
ic moment, and the Hamiltonian is

HgEo:J g S S +K g (S ) (S ) +kg (S& )
(ij ) (ij ) 1

Clearly, the J term gives nearest-neighbor magnetic cou-
pling, the L term gives nearest-neighbor quadrupolar
coupling, and the 6 term gives a crystal-field splitting of
the type we are considering here. The key difference be-
tween HEEG and the model we are considering is that the
quantization axes are fixed in HEE& such that the quadru-
polar moment and magnetic moment are quantized in the
same direction and the 3X3 mean-field Hamiltonian is
diagonal. For a given set of parameters, our mean-field
Hamiltonian is nondiagonal. We can, of course, diago-
nalize it, and thus we can find a set of J, E, and 6 for
H8E~ appropriate to each set of parameters and each
temperature in our Hamiltonian by matching the eigen-
values of each mean-field Hamiltonian. However, be-
cause of the arbitrary quantization axes in our model, toe
cannot describe it by a single set ofBEGparameters for all
temperatures. Hence our model is more general than the
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III. MEAN-FIELD THEORY

A. Mean-field Hamiltonian

The mean-field approach consists of replacing the
operators in the Hamiltonian by their mean values plus
the respective Auctuations, and keeping the fluctuations
only up to first order. Denoting the mean value of the
magnetic and quadrupolar moment by M —=gJpzam and

Q =bq, res—pectively, where the matrix elements a and b
are defined in Eqs. (3) and (4), the mean field applied to
Eq. (10) results in

~o —&( Am+Bq)+2 + ( Am; +Bq;""),
l

(12)

where N is the number of sites of the hexagonal lattice,

(IM +IM )a m=J m, (13)

and

BEG model, but the models share some common
features, particularly the tricritical point.

are the same, although in Eqs. (13) and (14) A and B de-
pend on the order parameters m and q.

The site-independent terms of H are called the con-
densed energy; the other terms define a sum over an
effective one-site Hamiltonian H;, which can be written
in terms of the components of the total angular moment
as

H;=H o+A(J;++J; )+B(J;++J; ) . (15)

f= —J m +6Jq
6PJ q

—P(1 —6J q )
t ln( e—' +2e ' coshPC)

+t ln(2+e ~), (16)

where P= 1/t is the inverse of the dimensionless tempera-
ture t —= T/A. C is given by

21+6J q +2J2 —2

2
mm

1/2

Diagonalizing H,- in the subspace defined by the elec-
tronic levels shown in Fig. 1 we find the following expres-
sion for the free-energy per site and in units of 6:

(Iab+Ic )b2B=—6 q—:—6J q. (14) From the free energy, we obtain the following coupled
equations for the order parameters m and q:

The last equalities, Eqs. (13) and (14), define the dimen-
sionless magnetic coupling J and the dimensionless qua-
drupolar coupling J, respectively. We are deliberately
using the same notation A and B here as in Eqs. (8) and
(9) since in both cases the meaning of those parameters

I

arid

J m sinhPC
(18)

exp[@(1—18J q )/2]+2 coshPC

coshPC+ (1+6J q )/(2C)sinhPC —exp[@(1—18J q )/2]q=
2 exp [P( 1 —18J q) /2]+ 2 coshPC

(19)

Before solving Eqs. (18) and (19) numerically, we de-
scribe a few limits where it is possible to study these
equations analytically. There is no solution other than
the trivial m =0 and q=0 if J & —

—,
' and J =0. A

pure magnetic phase (m&O, q 0) does not exist, but
a pure quadrupolar phase (m =O, q&0) exists for
~J

~
((I+3J )/2 and J~XO. In that phase, for T &&6

one has q =0.5 tanh(6PJ q), which implies the quadru-
polar degrees of freed. om are playing the role of a pseu-
dospin —,. In this regime, a second-order critical line ap-
pears at t, =3J . The other regimes of Eqs. (18) and (19)
are studied numerically. The next section discusses the
phase diagram obtained by studying the stabilities of the
solutions m and q for different temperatures and values of
the coupling coefficients J~ and Jq.

B. Phase diagrams

Figure 2 shows the phase diagram of the model defined
by Eq. (12). The main features of this diagram are the
enhancement of the critical temperature and the inter-
change between first- and second-order transitions when
the quadrupolar coupling Jq is introduced.

We first consider the case when J =0. Both order pa-
rameters, m and q, are critical simultaneously and despite
the fact that we do not have quadrupolar coupling in this
case, the ground state described by &he Hamiltonian H,
Eq. (12), has quadrupolar degrees of freedom and for
different temperatures the stability of this ground state
against the intersite magnetic coupling causes the tricriti-
cal point (denoted by TP), separating the first- and
second-order transitions. The coordinates of this tricriti-
cal point are J = —1.05 and t, =0.300. The line of
second order is obtained from the limit m and q going to
zero in Eqs. (18) and (19) and is given by

e '=(J —
—,')/(J +1) .

Near this line m follows the usual (t, —t)'~ behavior
characteristic of the order parameter in mean-field
theory; q is proportional to m, which is characteristic of
the secondary order parameter. The first-order line ex-
tends from the tricritical point to J = —

—,'; below this
point no order is found for either m or q.

For nonzero J we have simultaneously first-order
transitions for both order parameters only above the crit-
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0.5

occurs when J WO. We believe this complicated effect of
the indirect magnetic-quadrupolar coupling generated by
the Hamiltonian equation (10) exists even for a very small
quadrupolar coupling. This is confirmed by Landau's
mean-field theory, which is discussed in Sec. IV.

0.3 C. Speci6c-heat jumps

0.2

0.1

FIG. 2. Mean-field phase diagram of the model defined by
the Hamiltonian, Eq. (12). J and J~ are the dimensionless
magnetic and quadr upolar coupling between the nearest-
neighboring sites, respectively, and t, —:k&T, /6 is the dimen-
sionless critical temperature. At the right of the critical end
point (denoted by CEP), both order parameters have the same
critical tempertures. At the left, the transitions are separated
into one pure second-order quadrupolar (horizontal straight
line) and one pure first-order magnetic transition (dashed line).
This last one ends at the tricritical point (denoted TP) where a
line of second-order magnetic transition begins and ends at t =0
and J = —0.5(1+3J~). The quadrupolar coupling enhances
the critical temperature t„ increases the absolute value of the
minimum magnetic coupling J necessary to have magnetic or-
der, and reverses the nature of the phase transitions respect to
the tricritical point.

ical end point, denoted by CEP in Fig. 2. Below this
point the transitions are separated in one line of second-
order purely quadrupolar transition at

t, =6J /(2+e ")
and another line of first-order purely magnetic transition.
This latter line has a TP, becoming second-order below
this point and finishing at t =0 and J = —(1+3J~)/2;
below this value of J one has only quadrupolar order.
In Table I we have listed positions of the points CEP and
TP for a few values of J . Figure 3 shows typical
behavior of both order parameters with temperature, in
different parts of the phase diagram.

Besides changing the values of the critical tempera-
tures and separating the phases below the CEP, the inter-
site quadrupolar coupling has a more dramatic effect on
the phase diagram, inverting the nature of the phases
with respect to the TP: the first-order transition occurs
below the TP when J =0, and exactly the opposite

TABLE I. Coordinates of the tricritical points (TP) and criti-
cal end points (CEP) in the phase diagram of Fig. 2, for different
quadrupolar coupling Jq.

0.0
0.05
0.1

0.2

0.30
0.12
0.27
0.52

JTP
m

1.06
0.64
0.79
1.01

0.14
0.29
0.55

JCEP

0.70
0.83
1.10

0.0 3 l L~rrrri I I L t I I I

05 06 07 08 09 10 11 12 13 14 15

Table II shows numerical calculations of the value of
the specific-heat jumps, AC, for the second-order magnet-
ic transitions for different quadrupolar coupling J . For
zero J, hC is never less than 6 J/mol K. For nonzero J,
b, C is a very sensitive function ofJ, giving values of hC
around 2 J/molK for J =0.05, and J = —0.6, which is
the experimental value of hC for the compound
U& ~Th~Pt3. For these J~ and Jq, and considering that
the Neel temperature is equal to 6 K for this compound,
the model also gives the value of energy splitting 6 of the
crystal field as 70 K, which is the order of magnitude ex-
pected for this material. Naturally, we will have correc-
tions to the specific-heat jump when including explicitly
the interaction with the conduction-band electrons. If
these corrections are not too large, the model shows that
a very small quadrupolar coupling, about one order of
magnitude smaller than the magnetic coupling, is neces-
sary to obtain the magnitude of the specific-heat jump.

IV. LANDAU'S MEAN-FIELD THEORY

Contrary to the previous section, which treated the
molecular-field-theory free energy exactly, we now want
to use the Landau's mean-field theory, which is valid in
the limit of small order parameters, i.e., near a second-
order transition. This theory, although limited, can de-
scribe some of the features of the phase diagrams.

A. Free energy

+Emqm q + (20)

where the coefficients are functions of the temperature t
and of the couplings J and J . They are listed in Table
III.

For J =0, only the three first terms on the right-hand
side of Eq. (20) survive and the critical temperatures for
second-order transitions are obtained from the equation
a (t„J )=0, whose solutions agree with the numerical
results. The coefficient p (t,J ) is negative (positive) for
temperatures less (greater) than 0.30032, and y is posi-
tive (negative) for temperatures less (greater) than
0.46370, for all J . That means we have first (second)
order for critical temperatures less (greater) than
0.30032. The point where both coefficients, a and P
vanish simultaneously determines the tricritical point
(TP) and that is at tTP=0. 30032 and J = —1.07140,

The Landau's mean-field theory uses an approximation
for the free energy, valid near the region where the order
parameters m and q are small. Expanding the free energy
given by Eq. (16) around m =0 and q =0 we have

f=a m +p m +y m +a q +pq +5 m q
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0.04 0.06 0.08 0,04 0.06 0.08 0. 1 0.2 0.3 0.4

0.6

0.2

0.0

Jq ——0.00
J =—0.77

Jq ——0.00
J = —0.8'I

Jq= 0. 1 0
J = —1.10

c)

FIG. 3. Temperature dependence of the
magnetic moment m and quadrupolar moment

q, obtained from Eqs. (18) and (19). The tem-
peratures on the x axis are measured in units
of the crystal-field splitting 6, and are not in
the same scale; the units of all other quantities
are defined in the text. For J~ =0, (a), (b), and
(c), q has the same critical temperatures as m,
and behaves like a secondary order parameter.
For J~=0.1, (d), (e), and (f), the quadrupolar
transitions are separated from the magnetic
ones, except for J

I
& IJM =0.83. For the

same values of J the nature of the phase tran-
sitions changes according to whether J~ is
present or not. No magnetic order is found
without quadrupolar order.

0.22 0.24 0.26 0.28 0.24 0.26 0.28 0. 1 0.2 0.3 0.4 0.5

also in agreement with the phase diagram Fig. 2.
The quadrupolar-coupling Jq complicates the analysis

of the free energy Eq. (20). Now, the second-order mag-
netic transition (dashed line in Fig. 2) has nonzero qua-
drupolar order-parameter q=qo, so the free energy in
fact should be written as

f=a' (t,J,qo)m +P' (t,J,qo)m +. . . , (21)

where qo is the equilibrium value of q on the critical line
(m =0), and is given by qo=( —a /2P )'/ . The critical
temperature for the magnetic transition now is the solu-
tion of

a' (t„J,qo)=a +yqo+6qo+ =0,
which gives t, close to the numerical results, mainly near
(but at left of) the tricritical point where qo is not too big.
To calculate P' needs some care. Using the expansion
(20) p' will have divergent terms at t,„,which invalidate
its expansion around the tricritical point since this point
always occurs near t, . For J =0 those terms do not ex-
ist and P' =P . We have computed P' through its
definition:

~ = a'
ptl 4I

Bm

calculated at m =0 and q =qo, where qo is obtained from
the numerical solution of Eqs. (18) and (19). p' showed
no divergence and, although P can be negative, P' is
positive for t ~ tTp, which explains why we have a
second-order transition when J %0 instead of a first-
order one when J =0. Unfortunately, Landau's mean-
field theory does not work well right above the TP since
m does not go to zero and, in fact, m has a big jump at
the critical temperature and so q has a discontinuity at
this line [see Fig. 3(e)]. For large J, however, the jumps
in both order parameters at the critical line become
small, thus the expansion (20) gives a reasonable descrip-
tion of the model in this limit.

We note that the enhancement of magnetic ordering by
quadrupolar ordering for sufticiently high IM can be qual-
itatively understood from the Landau free energy. The
origin is the same third-order term in the free energy,
which has a negative definite contribution to the energy
since it depends upon the orientation of quadrupolar and
magnetic order parameters (deriving from a M Q M
term with full rotational symmetry retained). For fixed
Q, this enhances the second-order magnetic transition
temperature according to

Il'., IIQ I

TM~ TM+
Ba /dT ' (22)

0.00
0.05
0.1

0.2

1.10
0.60
0.68
0.85

6.52
1.50
0.92
1.31

TABLE II. Specific-heat jumps AC of the second-order mag-
netic transitions on the phase diagram Fig. 2, for a few values of
the quadrupolar coupling J~. The rnagneti. c coupling J are
near the minimum value to give second-order transitions.

TABLE III. Coefficients of the expansion of the free energy
defined in Eq. (20). Here d =(2e~ +e ~ )

a = —4dJ sinh(P/2) —J
P =2 d j~ [(2—P)es —5P—1 —e s]
y =8J (3P d —4d)sinh(P/2)+8J Pd ( 5e+)e
a, =6dj~ee (2+e e—6J,P)
P =108d'J P'(4e —1)
5 = 12 dj j [Pe~~ —2 sinh(P/2) ]
e „=36d j j (4Pe~ ' 4ee ' 3P'+2—P+2+—2e e)
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where the derivative is to be evaluated at the ordering
temperature. This is valid provided one can ignore the
fourth-order quadrupolar-magnetic coupling, which
tends to be positive, and thus suppresses the ordering
temperature. This term becomes more important at low
T where the quadrupolar order is highly developed.
Hence, if IM is sufficiently large, the rapid growth of Q
near the quadrupolar transition can significantly enhance
the magnetic ordering tendencies, while if I~ is close to
the critical value, the higher-order couplings cut in and
suppress the tendency to magnetic order. This explains
the increase in the critical magnetic coupling strength
relative to the I& =0 limit.

B. Robustness of phase diagram

y( T)=y(0)(1 —A Q T/Tx ), (23)

where y(0) is the zero-temperature limit, to within an or-
der of unity the same as in the absence of the Kondo
effect, TK is the Kondo temperature, and A is a number
of order unity. This gives a very shallow rise to the tem-
perature T~ at which ~~ cha~ges sign. In contrast to
the behavior for TK =0 which, upon solving for aM=0
gives

»[1.SX/(II~I —~)]
(24)

In contrast, for TK &0, we obtain for T~ ((TK
TK

which is generically smaller than the T~ =0 result (given

Tx &(6 to be likely) .and produces an increase of T~
with zero slope (as opposed to infinite for Tz=0). On
the other hand, for T~ ))6, the Curie law form must re-
turn to the magnetic susceptibility, with no distinction

By examining the Landau theory, we can obtain some
idea about the robustness of the phase diagram under the
introduction of realistic fluctuation effects, specifically
the quantum Auctuations induced by the Kondo effect,
and the critical fluctuations in three dimensions.

ICondo effect. First, we note that the form of the free
energy is fixed by symmetry considerations alone, as is al-
ways the case. Thus the introduction of the Kondo effect
cannot modify the form of the free energy, merely modify
the size of the coefficients.

Second, we note that the Kondo effect will have little
effect on the magnitude of coef5cients in the Landau free
energy associated only with M, because the magnetism is
van Vleck in character. Numerical studies of the single
ion quadrupolar Kondo effect confirm that the van Vleck
susceptibility is affected little in magnitude by the Kondo
effect. However, it does acquire stronger temperature
dependence than in the ionic limit, which wiH modify in
detail the position of various features in the phase dia-
gram and the temperature dependence of M in the or-
dered phase. In particular, the single ion susceptibility

due to van Vleck terms is expected to acquire up-
ward curvature of the form'

between TK=0 and TK &0 cases. Thus for large cou-
pling, the curve must match onto that of the TK =0 cal-
culations. Since the first-order phase boundary depends
upon identifying a change of sign in PM, for I& =0 we
cannot safely say the magnetic phase boundary will retain
its topology.

Third, we inquire about the inQuence of the Kondo
effect on the terms involving Q. When the 1/T factor ap-
pears in our expressions in the table, that corresponds to
the Curie law susceptibility of the ionic quadrupole mo-
ment. This will still apply should the intersite coupling
greatly exceed the Kondo temperature, since then each
ion yields a Curie law quadrupolar susceptibility. To
handle, roughly, the case where I& & TK, in the simplest
possible approximation which captures the competition
between the intersite coupling and the quantum Auctua-
tions of the Kondo effect, ' we simply use the single-site
partition function for one quadrupolar Kondo ion in the
presence of the molecular field. This means all the Curie
law P factors in the table will be replaced by the
ln(Tx /T)/2mTr, (Re.f. 19) form expected for the quadru-
polar Kondo effect. Solving for the second-order quadru-
polar transition temperature T& by setting a =0 where
we replace the Curie law with the above expression, we
see that it is never zero, and is given by

T& = Txexp( 2m Tx/I—&),

which, while smaller than the noninteracting value I&, al-

ways intersects the curve for TM.
The structure of the phase diagram near the tricritical

point for nonzero J appears essentially due to the terms
5 m q and e m q in the free energy, Eq. (16), gen-
erated by the Hamiltonian (12). Gufan et al. using
Landau's mean-field theory have analyzed the phase dia-
gram of a free energy of the form given by (20), and they
also found the same topology we have around the mul-
ticritical points. Those terms in our model are always
present as long as we have ferroquadrupolar coupling and
the hexagonal symmetry.

To summarize these considerations, then, we anticipate
for large couplings IM ))6, I& » TK, the phase diagram
will be unaltered by the Kondo effect. For I~,I~ compa-
rable to 6, TK, the tendency to magnetic and quadrupolar
line will still intersect the second-order magnetic line, we
anticipate the same tricritical behavior and critical end
point as seen without the Kondo effect. We cannot say
without further calculation what will happen to the phase
diagram in the absence of quadrupolar coupling.

Critical fluctuations One might . be concerned that
critical fluctuations should alter the topology of the phase
diagram and possibly the order of the transitions. We be-
lieve that this is not the case. First, critical fluctuations
will certainly suppress all the ordering temperatures, but
this is expected and generic. Second, critical Auctuations
will certainly change the critical exponents at the
second-order quadrupolar boundary in the phase diagram
from mean-field values, but as long as that transition is
ferroquadrupolar, they should not alter the order of the
transition. Third, since the tricritical point occurs in the
quadrupolar ordered phase, it is essentially magnetic in
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character, i.e., it is derived from the magnetic order pa-
rameter alone. It is well-known that for a one-
component order parameter, three dimensions is the
lower critical dimension for the tricritical point, so that
fluctuations, apart from reducing the ordering tempera-
ture, serve to induce logarithmic corrections to critical
quantities. Such logarithmic corrections are difficult to
detect. Fourth, we anticipate that the inclusion of the
Kondo effect will enhance the applicability of the mean-
field theory. This is because all critical temperatures are
suppressed by the Kondo effect to much lower values (un-
less the couplings are quite strong). As the temperature
is driven to zero, the dimensionality heads toward 3+ 1

from the growth of the imaginary-time axis. Thus, the
width of the critical regime must shrink.

The one possible downfall to the scenario in the previ-
ous paragraph is if the real magnetic order accesses mul-
tiple q values, i.e., corresponds to ordered phases in
which the possible order parameter transforms as a large
space-group representation, rather than the single q
structure taken here. As has been extensively discussed
in the context of the t expansion, ' this situation may
produce fluctuation induced first-order transitions. This
cannot be ruled out by our simple considerations, and
remains a subject for further investigations.

V. SUMMARY AND CONCLUSIONS

We have calculated the phase diagram of a simple
model which includes intersite quadrupolar coupling be-
tween uranium ions in the hexagonal lattice. The model
has some of the physics found in the hexagonal uranium-
based materials, like the in-plane van Vleck magnetism,
magnetic character along the c axis and degree of free-
dom to allow the possibility of quadrupolar-Kondo effect.
We have shown that the intersite quadrupolar coupling
between uranium ions enhances the critical temperature
and plays the fundamental role in defining the nature of
the transitions in the phase diagram. We have argued
that the inclusion of the Kondo effect and critical fluctua-
tions are unlikely to alter the essential structure of the
phase diagram, provided I&NO, but acknowledge that
multiple q ordering can, in principle, alter these con-
clusions. We intend to explore these issues further.

We now briefly explore the potential relevance of our
study to the uranium based heavy-electron materials.

Based on the magnitudes of the specific-heat jumps and
the magnetic moment m given by the model around the
tricritical point (TP) when J~ is of order ~J /10, we
speculate this region as most probable to find the hexago-
nal doped compounds UPt3 derived compounds U(Pt,
Pdz)3 and (Ui „Th )Pt3 when x,y=0. 05. We are per-
forming a model calculation based on the Coqblin-
Schrieffer ' formalism to determine whether this coupling
constant ratio can be realized in practice. We speculate
that the phase diagram of UPdz A13 (Ref. 9) might be un-

derstood by assuming the magnetic coupling to be in the
region between the tricritical point and the critical end
point. In this case, the higher-temperature transition
would be quadrupolar, and the lower-temperature one
antiferromagnetic and first order. Finally, the same kind
of modeling can, in principle, apply to URu2Si2 due to
the similarity of the ground non-Kramers doublets in
hexagonal and tetragonal symmetry. However, the neu-
tron Bragg peaks in that material correspond to a cell
doubling along the c direction, so that a ferroquadrupolar
ordering is unrealistic. Because of this, it is impossible to
construct a third-order invariant in the free energy which
couples the presumed quadrupolar order parameter to a
single magnetic order parameter. Hence, the mechanism
for enhancing the magnetic transition temperature and
producing a magnetic tricritical point is eliminated, so
that only a second-order quadrupolar transition would be
likely.

In addition to this exploration of how the Kondo effect
and critical fluctuation effects modify our already in-
teresting results, we would like to explore the effects of
magnetic field through magnetorestrictive coupling to see
whether we can understand the metamagnetic transition
observed in pure UPt3 below 20 K in fields of order 20
T. Sharp metamagnetic transitions have also been ob-
served in UPt2A13.
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