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Self-trapping in quasi-one-dimensional electron- and exciton-phonon systems
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We study self-trapping of electrons (excitons) in one-dimensional systems with three realistic types of
coupling with phonons, applying a variational procedure valid for the whole range of system parameters.
Various types of self-trapped states are identified and mapped in the parameter space. Our results are
compared to the results of previous studies. The particular case of biological systems is studied and it is
shown that the Davydov-soliton concept can be used for the description of electron transport in biologi-
cal systems, but not for the energy transfer in terms of amide-I vibrations (CO stretching vibration
mode).

I. INTRODUCTION

A strong interaction of foreign particles or excitations
(electron, hole, exciton, etc. ) with lattice vibrations in de-
formable solids can highly affect their character, resulting
in novel features of transport properties and optical spec-
tra of such crystals. This is the result of the trapping of
these quasiparticles by a locally distorted surrounding
lattice. Such an entity (i.e., a bound state of the quasipar-
ticle and lattice distortion) is now known generally as a
polaron. ' This phenomenon, commonly called self
trapping (ST), is observed in a wide class of substances
while also predicted in others. ' Examples are
numerous, including alkali halide and rare-gas crystals,
metal hydrides, biological molecules such as a-helix pro-
teins and DNA, ' and magnetic and molecular crys-
tals, etc.

The character of ST states is highly dependent on the
type of coupling between the particle and host phonons,
the nature of the host-phonon dispersion, and the dimen-
sionality of the system as well. ' '" This especially con-
cerns ST on truly one-dimensional (1D) systems where, in
the case of a short-ranged electron- or exciton-phonon in-
teraction, the ST state will always be formed and, de-
pending on the values of basic parameters of system, it
could expand continuously in spatial extent to form a
stable, mobile pulse-shaped excitation: a soliton. '

The possibility of realizing solitonlike excitations in
quasi-1D systems has caused enormous growth of interest
in such materials where the soliton concept has been pro-
posed as a key for understanding the mechanisms of
charge and energy transport in Peirels dielectrics [poly-
mer chains of polyacetylene-(CH~) „with conjugated
bonds' ] and quasi-1D molecular crystals: a-helix pro-
teins are acetanylide (ACN). ' However, although
theoretical arguments in benefit of soliton existence are
rather convincing, the firm experimental evidence is still

missing and consequently the validity of the whole soliton
concept is doubtful.

This, in particular, concerns the so-called Davydov-
soliton (DS) model where a soliton mechanism has been
proposed as a basic theoretical framework for the ex-
planation of the way in which biological molecules (a-
helix) function in the processes of the charge and energy
transfer over long distances. The basic idea of Davydov
theory (DT) is that energy released in the hydrolysis of
adenosine triphosphate (0.42 eV) can be resonantly
transferred to the polypeptide chain of a-helix as a simul-
taneous absorption of two quanta of CO stretching vibra-
tions (amide-I mode). There it could be stabilized in the
form of a solitary wave (DS) due to the interaction with
long-wavelength acoustic phonons and then propagate
along the chain. Due to its assumed extreme stability
against thermal fluctuations and irregularities of crystal
lattice, DS could be the ideal candidate for the resolution
of the crisis in bioenergetics.

Soon after its appearance, the Davydov concept be-
came the subject of numerous critical reexaminations
where various aspects of his model have been discussed.
Part of these studies was focused on the formal side of
DT only, where the procedure of the derivation of the set
of evolution equations for an exciton- (electron-) phonon
system (i.e., Davydov Ansatz) has been criticized. '

The summary of criticism is that neither of the two ver-
sions of the variational states employed in DT reproduces
true quantum dynamics of the electron-phonon system
since these states do not satisfy the Schrodinger equation
for the system. ' ' Although true, this statement does
not offer any deeper insight into the problem of ST in the
electron-phonon system, since it just underlines the trivi-
al fact that DT is an approximate one. We believe that
any serious effort should be directed towards the analysis
of the validity of DT depending on the values of the pa-
rameters of the electron-phonon system.
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In this paper we shall discuss the phenomenon of ST in
1D media. In particular, we are interested in the cir-
cumstances under which the eigenstates of quasiparticles
in deformable media can be substantially affected by the
interaction with an underlying crystal lattice in the whole
range of system parameters and finally we wish to classify
various types of ST states.

For that purpose we shall apply the time-independent
version of the recently proposed variational method of
Brown and Ivic (BI) who have studied the relevance
of DT for the description of exciton (electron) transport
in 1D molecular crystals. This method gives the
comprehensive picture of ST in the 1D system covering
the whole range of system parameters. In various recent
applications of DT, e.g. , for the explanation of optical
spectra of ACN and other molecules, ' ' ' the original
Davydov model has been modified in the sense that it was
assumed that the dispersionless optical phonons could
have more significant role than the acoustical ones. For
that reason the BI variational method will be applied to
three different models which were employed for theoreti-
cal description of realistic biologically relevant materials.
First we analyze the possibility of ST in the original
Davydov model, then we discuss the antisymmetric de-
formation coupling of an electron (exciton) with neigh-
boring peptide groups, and finally we shall examine the
coupling to dispersionless optical phonons.

The structure of this paper is as follows: We introduce
the model and variational Ansatz in Sec. II. The various
types of solutions to variational equations are presented
in Sec. III, while the polaron energy is optimized in Sec.
IV. The conditions for the formation of the ST states and
their classification are formulated in Sec. V. The inAuence
of the nonlinearity parameter is studied in Sec. VI, while
the results are compared to the results of previous studies
in Sec. VII. The relevance of the approach for some bio-
logical problems is studied there, too. Some technical de-
tails are exposed in the Appendix.

II. THE MODEL AND VARIATIONAL ANSATZ

Theoretical study of the quasiparticle dynamics in de-
formable media is based on the well-known Frohlich
Hamiltonian (FH):

H = b,ga„a„—Jga„(a„+,+a„,) +QAco b b

+ I/Q~gy' eiqnzata„(b +bt ) .
nq

(2.1)

We shall restrict our analysis to the one-dimensional
problem where a„(a„)denotes an operator of creation
(annihilation) of an excitation on the nth site, while bz
(bz) are phonon creation (annihilation) operators. b, is
the single-site energy, while J is the overlap matrix ele-
ment of resonant electron (exciton) transfer between adja-
cent sites. The coupling parameter F and phonon fre-
quency co govern the character of ST states. Having in
mind the particular interest for the application of the
above model in understanding the role of ST states in the
functioning of biological substances, we shall consider the
following models.

(a) Interaction of a quasiparticle with an acoustic pho-
non through the short-ranged deformation potential
where the excitation sited on the nth peptide group has
no preferred orientation interacting symmetrically with
the (n +1)th and (n —1)th molecular groups. Further
on, we shall use the following abbreviation: symmetric
coupling ADP (acoustic deformation potential) polaron
model:

F =2g&i(R/2M' )'~ sinqR,

coq =coa sin
~ qR /2

(2.2)

F =y~(R/2M' )'~ (e'~ —1),
co =co~ sin qR /2

~

.
(2.3)

(c) Excitation point coupling with dispersionless opti-
cal phonons:

Fq =g3(A'/2Mcoz )
~ co:coo=const (2.4)

The above model introduced by Holstein' is now known
as Holstein's molecular crystal model or simply the
molecular crystal model (MCM).

Despite its simplicity, the exact eigenstates of FH are
yet unknown even in the simplest case defined by (2.1).
Exact solutions are known in the transportless limit
(J =0) only, where appropriate unitary transformation
exactly diagonalizes it. For small, but finite J further
diagonalization can be performed by means of perturba-
tion theory, usually expanded in terms of a small parame-
ter 2J/%cod. In this case, lattice distortion is concentrat-
ed around a small number of lattice sites (one) and instan-
taneously follows the slow motion of the particle. Such
ST states are usually called small or more precisely non-
adiabatic small polarons.

On the contrary, in the adiabatic limit 2J/A'co&))1,
lattice distortion is extended over a large number of sites
(large polaron or soliton) and it cannot follow the internal
motion of the particle inside the trap. The theory of large
polarons is mainly based on a simple Pekar variational
approach where adiabaticity allows one to neglect lattice
kinetic energy in the lowest order, and to treat it as a
small perturbation in further procedure. '"

In most of the practical applications, values of the
physical parameters lay in the intermediate region where
existing theories are less accurate. Therefore, there exists
an obvious need for the development of the comprehen-
sive method applicable in the whole range of values of the
physical parameters of the system.

There are three basic parameters featured in the energy

y is the electron- (exciton-) phonon coupling strength.
cos=2v'I~/M. ~ is the stiffness of the chain, while M is
the molecular mass (mass of the peptide group in a par-
ticular biological context), R is a lattice constant.

(b) Antisymmetric coupling of an excitation with
neighboring peptide groups. This model was introduced
by Scott (for details see Ref. 25) as a slight modification
of the Davydov model with the aim of a more realistic
description of the a-helix molecule. The general idea is
that stretching of the hydrogen bond immediately adja-
cent to a C =0 oscillatory is of primary significance.
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spectrum of an electron- (exciton-) phonon system whose
relations determine the character of ST states in the sys-
tem, if any: 2J is the electron bandwidth, A'con (or A'coo for
MCM) is the phonon bandwidth, and finally the so-called
small polaron binding energy En = I /Ng I

F /%co

(practically equal to the negative value of ground-state
energy in the transportless limit).

In order to achieve the above proposed goal, we apply
the method of Brown and Ivic based upon the appli-
cation of variational ansatz interpolating between two
well-known limits: nonadiabatic (2J/A'con « 1) and adia-
batic (2J/ficon)) 1), covering strong-, intermediate-, and
weak-coupling limits. We choose normalized BI trial

I

state in the form:

Ig& =pi)/„a„ IO&,„exp I/2+(a aq„—a'a „)

Xexp g(P „b 13*—„b ) IO& „,
q

(2.5)

where f„represents an electron (exciton) wave function
(amplitude) while aq, aq„, and Pq„=aq —aq„are varia-
tional parameters whose meaning is clear from the expec-
tation value of the lattice distortion in the variational
state:

(QIQ„IQ& =N —I/2y(g/2Mco )1/ eiqnR(a +a~ ) N
—I/2y(i'/2Mco )1 /eiqnR(a +a~ )

q qm

(2.6)

~=&BOIH vPly& . — (2.7)

Here we use the fact that although the trial function
(2.5) is not the eigenstate of the total momentum operator

I

It is clear that lattice distortion consists of two compet-
ing contributions. The first one measured by the magni-
tude of the coherent amplitude a defines the so-called
frozen distribution which does not follow internal motion
of the particle and there each phonon mode behaves in
the maximally classical manner. The second contribution
is unfrozen distortion which instantaneously follows the
motion of the particle. It is the consequence of the real
quantum nature of phonons and it also defines a degree of
the dressing of the particles by the virtual phonons. Here
we can choose a „=N ' f e 'q", where fq=f*q.
Such a choice satisfies the unitarity condition which
makes our results independent of the order of the succes-
sive application of two unitary transformations implicitly
involved in the definition of the trial state (2.5). We shall
treat aq and f as variational parameters whose optimal
values should be determined from the minimalization of
the energy under the condition of constant momentum P:

P,„=fig kaajk,
k

P h
=A'gqb tbq .

q

(2.8a)

(2.8b)

Here ai„ak are Fourier transforms of electron (exciton)
annihilation and creation operators.

After some algebra, the functional (2.7) becomes

I

P=P,„+P h of the system, this functional still gives an

upper bound to the lowest energy at the momentum P,
i.e., the ground-state energy E, for the constant
momentum. In this way, our approach is analogous to
the approach of Norris and Whitfield where the theory
of Buimistrov and Pekar, valid in the whole parameter
space, was used to study energy-momentum relations for
the continual ADP with arbitrary value of coupling con-
stants and adiabaticity.

Here P=P,„+P h defines the operator of the total
momentum of the electron- (exciton-) phonon system. v
is a Lagrange multiplier and can be interpreted as the po-
laron velocity, as will be proven later ( v will denote v

I
):

QFq(fq+—f—*q)+ N
g&coq f, I' QI4. I' JQW.*(it.+)+—f.

q

—Agv kl@i,l'+ I/N ' 'QF, e'q" Ig„'(a +a* q)++A'(coq —q v)laql'
qn

1/N gA(coq q'v)(fq*aqe'q" +f a*e 'q" )Ig„ I

qn

(2.9)

where J=J expl —(1/N)g If I
(1—cosqR)] represents the effective intersite transfer integral, while 1tk denotes the

Fourier transform of exciton (electron) wave function introduced here just for the sake of convenience. From
c)&/c)a =0, we find

aq= N'
I
F*/iri(co —q.v) f ]g g„ I

e'q"— — (2.10)

Substituting this result into (2.9) we obtain the following functional after applying the continuum approximation (up to
order R ):
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——&Fq(fq+f ' q)-+ g«q If, I' 2—J f I @(x)I'+JR' f lg. (x) I'
q q

—',. f (0*@. eO—:) f—f " &(x —y) ly(x) I'lq(y) I'

+&F,(f,+f*,)ff, e'"" "lg(»l'q(y)l' —g«, lf, 'ff, e'"" "ly(x) 'l@(y) '.
R R2 (2.11)

The kernel E (x —y) is defined as

K(x —y)=1/(2vrfi) f dq e'q'" ~'co IF I /(coq qv —) . (2.12)

III. TYPES OF SOLUTIONS

So far we did not specify the form of the electron (exci-
ton) wave function g(x) and the discussion is quite gen-
eral because the above functional allows one to study the
possibility of the formation of linear (Bloch band states
corresponding to the free excitations) as well as nonlinear
excitations —solitons are large polarons and small adia-
batic polarons. For that purpose we must find the opti-
mized values of the variational parameter f which obvi-
ously lies somewhere between two limiting cases: fq =0,
which should correspond to large polaron or soliton solu-
tions and fq =F /«q recovering a small polaron band
limit. However, one knows from the literature that
f =F /« in the transportless limit only, therefore

q q0(f (F /fico . A particular value of f should, in
principle, determine the character of the eigenstates of
the system and corresponding energy eigenvalues, but it
could also be used as a criterion for the applicability of
previous theoretical approaches. Comparing the BI trial
state (2.5) with previously utilized variational Ansatze,
one can see that the ad hoc choice f =0 corresponds to
Pekar's variational Ansatz or so-called Dz states accord-
ing to the currently accepted terminology in the theory of
DS. ' ' On the other hand, the choice f =F /«
corresponds to the so-called D, Ansatz which is exact in

the nonadiabatic limit (J—+0) so these states correspond
to nonadiabatic small polarons.

Let us assume the simple form of the dressing parame-
ter fq =5Fq/ficoq, where 5 measures the relative extent of
induced lattice distortion and consequently the degree of
dressing. This assumption implies equal dressing for all
phonon modes and at the first sight it looks like a very
strong assumption since the whole set of variational pa-
rameters (one for each mode) is substituted by a single
one. However, according to previous studies,
where this assumption was made, one can see that this
method gives the same qualitative predictions as the q-
dependent one, while the estimates of the ground-state
(g.s.) energy are slightly higher. For this reason the "5
approach" was mainly used for the qualitative analyses of
ST phenomena, while a detailed discussion of its accuracy
was not presented until now. In the present context, we
shall estimate the validity of the 5 approach by compar-
ing it to the translationally invariant (TI) theory of
Emin' and Ventzl and Fischer in Sec. VII.

Clearly, optimal values of 5 lies somewhere between 0
and 1, where 0 corresponds to soliton or large polaron ex-
citations, while 5=1 recovers the small polaron limit.
Substituting this simplified form into the functional
(2.11), we obtain

&=[a—5(2 —5)Ea —2J]f y(x)I'+JR'f Iy. (x)l' —'. f "(q"y, qq*)—
—f f «x —y) lq(x) I'l@(y)l'+«, 5(2—5)f "l@(x)l'. (3.1)

(3.2)

Here EB= I/Ng IF I /« is the small polaron binding energy, while the efFective tunneling term now has the form

J=Je

where

S=1/Ng[IF I /(«q) ](1—cosqR)
q

is the exciton-phonon coupling constant. For models of interest the explicit values of E& and 5 are

Ea —4y] /Mcoa, 5 —( 8 /3' )Ea /«ii
for the ADP symmetric mode,

EB=2y2/Mcoii, S = (8/qr)Ea /«B

(3.3)

(3.4)

(3.5)
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for the ADP antisymmetric coupling, and finally

EB—X3/2Mcoa, S =EB/AcuB (3.6)

for Holstein's MCM model.
Parameter a defines the degree of nonlinearity having values a =1 for MCM and the antisymmetric ADP model and

a =2 for the ADP symmetric model. It relates the coe%cient of the nonlinear term to the binding energy.

aE&5(x —y)/(1 —v /c ) ADP,
E(x —y)= '

Ea f (dq/2qr)e' ' 'l[1 —(qu/coo) ] MCM . (3.7)

The nonlinear functional (2.11) or (3.1) can be used as a
basis for the analysis of the existence of the various types
of ST states. However, if we wish to examine linear exci-
tations (Bloch band states, small polaron band), we must
neglect the nonlinear term since the plane waves are not
self-consistent solutions of the NL functional [(2.11),
(2.12), and (3.1)], as was explicitly shown by Rashba. ' '

It is not very hard to prove that neglecting the NL term
and choosing the exciton (electron) wave function in the
plane-wave form, our functional (2.11) is equivalent to
the previously used method of Emin' and Venzl and
Fischer. We shall use later such a linearized approach
in order to compare our 6 approach with previous
theories.

Let us now discuss the possible polaron (soliton) solu-
tions of the above functional. As the first step we shall
find the general expression for the polaron momentum,
effective mass and prove that U has the meaning of po-
laron (soliton) velocity. We choose the electron (exciton)
wave function in the form g(x)=e' P(x), where P(x) is

+~R

+aEa5(2 —5)f P(x) (3.8)

The energy of the system can be easily obtained from the
following relation:

E =&+P.v, (3.9)

where P is the total momentum of the system given by

P„,=m*v+A'gq aq —ga „~P„~ . (3.10)
n

Introducing the explicit forms of a and a „we arrive in
the continuum limit at the following expressions for the
momentum and energy:

I

the real function while k =Au /(2JR 2) =m *v /g
( m ' = fi /2 JR ).

&=[6—5(2—5)E&—2J —m*u /2] f P(x)

p„,=m v+v x y e'q'dq dxdy 2~qq Pq ~

2qr R (iv2 —
q 2v ~)

(3.11)

E=[A—5(2—5)Ea —2J+m*u /2] f P(x) +JR f P, (x)

—f f E(x —y)P(x) P(y) +aEB5(2—5)f P(x) +vP h, (3.12)

where P h is the second term in (3.11).
Using the above two expressions we can easily prove

that

u =aE/aP =(aE/av )/(aP/au), (3.13)

which means that v can be interpreted as soliton (polaron)
velocity. The effective mass follows from the relation

m, =(aP„,/au),

A. ADP model

Inserting the explicit forms for F and co we have the
following eigenvalue problem which follows from
as/ay =0:
JR P +[6'—b, +5(2—5)E&+2J—m*v /2]P

—2aE&[5(2—5) —1/(1 u lc )]P =0, —(3.15)

which has the well-known soliton solution:
which gives the general expression for the soliton
effective mass: P(x) =&iM/2 sech(px/R), (3.16)

fff dqdxdy2q
277 R Q)

q

X y(x)2y(y)2eiq(x —y)

Let us discuss some particular cases.

(3.14)

where

aEa[(1—5) +5(2—5)u /c ]p- exp(5 S), (3.17)
2J(1—u /c )

while
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C=b, —5(2 —5)EB 2—J+m'U /2

a EB[(1—5) +5(2—5)v /c ]

2J(1—v /c )

denotes the internal electron (exciton) energy inside the
trap:

by the value of 5 which wiH be determined in the next
sections from the minimization of the soliton energy. The
ad hoc choice 5=0 recovers DS solutions at once, while
5=1 recovers the so-called soliton excitations of a small
polaron band obtained first by BI. Properties of both
kinds of solutions are well known and there is no need for
their extensive analysis here.

m, s.=m*e [I+@~S (1—5) ], (3.18)

where y equals —,
' for symmetric and —', for antisymmetric

coupling.
It is obvious that the character of ST states is governed

B. Soliton solutions for Holstein's model

In this case the eigenvalue problem has the form

e iq(x —y)
JR P„+[6 b, +5(2—5)—EB—2J —m*v /2]P —2E&5(2—5)P +2E&f f dy P (y)P(x)=0 .

1 —
q v /coo

(3.19)

R (x)=5(x)—(U/~, )'a'/Bx'5(x) . (3.20)

Assuming that the shape of slow solitons remains practi-
cally unchanged, we can use (3.11) as a trial state where p
is the parameter to be determined from the minimum
condition of the functional

&=[6,—5(2 —5)EB—2J —m*v /2]+ Jp /3

Eap(1 —5) /3—4EaU p /(15'—ooR ), (3.21)

which was obtained after substitution of (3.20) into (3.1).
So we have

The above equation cannot be solved exactly except in
the motionless case (U =0) and then these solutions are
given by (3.16) with p defined by (3.17) (with v =0). Un-
fortunately, moving Holstein's polaron was not investi-
gated in detail until now. Although (3.19) cannot be
solved exactly, some of the properties of the soliton solu-
tions can be analyzed qualitatively even without explicit
knowledge of P(x). We note first that, as in the case of
DS, there exists a velocity which cannot be exceeded by
our excitations. This limiting velocity equals the phase
speed of sound: U& =co /q =cop/q. A satisfactory qualita-
tive description of the behavior of slow solitons can be
achieved on the basis of direct variational method. For
slow solitons, we can adopt the following approximation
in (3.1):

excitations of the small polaron band in Holstein's model.
In the limit 5=1, p~0, which means that such excita-
tions are of the infinite radius so we conclude that in this
model "velocity solitons" do not appear.

Let us summarize the results of this section.
(a) Plane-wave solutions (band states) are not self-

consistent solutions of 1D exciton-phonon systems which
means that they do not arise in the systems under con-
sideration and consequently there is no possibility for the
coexistence of free (band) states and ST states (polarons,
solitons) characteristic for 3D exciton-phonon systems.

(b) In the case of the ADP model (both versions of cou-
pling) there appear three kinds of soliton states: (1) large
polaron, solitonlike states (Davydov solitons 5=0); (2)
soliton excitations of a small polaron band 5= 1; (3) inter-
mediate soliton states with 0 & 5 & 1.

(c) For the MC model, soliton excitations of the small
polaron band do not appear.

(d) Finally, let us note that in both models there also
appears a so-called adiabatic small polaron a special case
of nonlinear excitations in these systems, where p & 1 and
J/Ac@~ ))1.

Obviously, the character of these states is determined
by the value of physical parameters of the systems. In or-
der to distinguish various types of possible ST states of
the system, we must find 5 whose value controls the value
of soliton parameters.

p=2po(coo/qou ) [1—Q 1 —(1 —5) (qou/coo)~] .

(3.22)

IV. OPTIMIZATION OF POLARON ENERGY
AND CONDITIONS FOR THE FORMATION

OF SELF-TRAPPED STATES

pp =Eg /2 J is the inverse width of the immobile polaron,
cop/qp represents the maximal polaron velocity, while

qo =2E&/V5 JR =4po/&5R represents the maximal
momentum of virtual phonons engaged in the lattice dis-
tortion.

The e6'ective mass is given by

m =m*e [1+—„S (1—5) ] (3.23)

Although approximate, the above results can serve as the
basis for the analysis of the possibility of realizing soliton

We are now ready to look for the value of 5 which min-
imizes the energy, i.e., the degree of dressing correspond-
ing to stable ST states. In this section we shaH concen-
trate on some details of energy optimization and the con-
ditions which restrict the range in which the parameters
of the system occur. The physical interpretation of the
solutions obtained will be presented in the next section.

In order to find optimized values of 5, we shall consid-
er the static (v =0) case without loss of generality. Sub-
stituting the above-mentioned soliton solutions into the
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energy functional and using the explicit expression for p
in terms of 5, we obtain the energy of the system:

E = b, —5(2 —5)EB—2J exp( —5 S)

z (1—25 S)/5 S+2z
= 4g [

2 —y[ 9 —I/(2S5)]+3] (4.5)

2 (1 5) EB 5&S
4 2

12 J (4.1)

—6 S1+[2B/( I+K ) ]e
(4.3)

where

We are looking for the dressing parameter 5 as a func-
tion of the parameters of the system. The set of values of
the parameters which determines the stationary points of
E follows from the stationarity condition BE/B5=0.
Taking into account

EB 'B(E —6)/B5= —2(l —5)+2B5exp( —5 S)
3

+2a S e [1—S5(1—5)/2],3B

(4.2)

where B =2JS/E&=2J/A'coB for all of the mentioned
cases, we can find a transcendent equation for 5 in terms
of system parameters S and B:

where z =y (1+K) and y =S5(1—5).
We are now in the position to determine the conditions

for the existence of the possible kinds of stable ST states
which we have mentioned in previous sections. Our aim
is to determine 5 in terms of system parameters. We
choose to look for 6 as a function of S with B as a param-
eters. Equations (4.3) and (4.6) can only be solved numer-
ically. Prior to numerical treatment, we should mention
several restrictions which follow from certain mathemati-
cal and physical demands. The detailed discussion is
given in the Appendix and we just list them here, because
they largely simplify the numerics, by limiting the range
of the solutions.

First of all, there exists the condition of reality of 6,
which is important for a ) —,

' and leads to the appearance
of two boundaries in the S —5 plane. For the (

—
)

branch, there is also the condition 5)0, leading to y & 2.
Finally, the continuum approximation is valid or pr «1
so p=1 is the final boundary for the applicability of the
continuum approximation. For the (+ ) branch, the con-
dition is fulfilled for a (3, while for the ( —) branch, the
condition is —' & a & 3 and then the region is bounded by4

the two following curves:

K = [1—4a S5(1—5)[1—S5(1—5)/2] I' (4.4) S =(I/2a)/[5(1 —5)]

Relation (4.3) is going to be the initial point of our dis-
cussions. Let us first check if it can reproduce well-
known results. The limit 6~1 is realized either for
B—+0 or S~~. These are, in fact, two different ways of
describing the immobile exciton, i.e., the transportless
limit. On the other hand, the case 5~0 is achieved for
B~ ~ (for small S) and this is the case of strong adiaba-
ticity. We can recall here that we have mentioned that
our results will also offer the test for the applicability o
various trial states. This discussion already gives hints in
that direction and we shall be more specific later. It is
also important to notice that both limits are achieved in-
dependent on the sign of K.

Depending on the sign in front of K in Eq. (4.3), we can
h

'
rinciple two branches of solutions for 5(S,B)

f thedefining two possible types of ST states. Each o t e
branches defines in the (5,S) plane a set of points describ-
ing the extreme values of E. The very presence of two
branches implies that coexistence of ST stable states, in
the same region of parameters, which was not previously
noticed. So we shall pay special attention to the behavior
of the ( —) branch.

Stable states are defined by the minima of energy, that
is, by the points where 3 E/B5 )0. They are separated
from the maxima (B E/B5 (0) (unstable states) by the
line called the stability line. This line is the set of points

a'Egab'=0 and 9E/c)5=0, that is, which belongw ere
cide toto the lines defined by (4.3). Obviously, if we deci e o

lot (S,5) points for a given B, then the stable ST states
will occur on one side of this line only. First we derive
B (E —b. )/B5 and, combining the two above-mentioned
conditions, we obtain the equation for the stability line as

and

10'
S

5C2:

SC1

0.1 0.2 0.3 0.& 0.5 0.6 0.7 0.8 09 10

FICx. 1. Adiabates S =S(5) for a =1 corresponding to the
following values of B: 1, 8.0; 2, 4.0; 3, 2.0; 4, B =1.712' 5, 1.0;
6, 0.20;, stability line.

S =(6/a —2)/[55(1 —5)] .

We shall discuss the effect of these limitations on the
value of the parameter of nonlinearity, after we find solu-
tions of 5=5(S). The most convenient way of visualiza-
tion is to plot S —5 points corresponding to a fixed value
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FIG. 2. Important boundaries in the parameter space:
critical adiabate; , stability line; —.—- —,metastability
boundary; ———,continuum approximation validity limit.

of B in the S —5 diagram. We have plotted S(5) (Figs.
1 —3) for a few chosen values of B spanning the whole
range of adiabaticity. Please notice that we use S =S(5)
instead of 5=5(S) which is a more natural choice. ' The
most important practical reason for this is that the points
where both derivatives of the energy vanish correspond
to the points on the S =S(5) curve where the first deriva-
tive BS/85 vanishes. [This means that stability lines pass
through stationary points of S =S(5).]

V. CLASSIFICATION
OF STABLE SELF-TRAPPED STATES

Let us now review the results of our analysis. We have
considered two values of the NL parameter a relevant for
the models studied: a =1 and 2. Before going to these

) 0.00

8.00 —,'
I

I

6 00
I

I

4.DO

I

&.00

ooo +,
0.00 0.20 0.40 0.60 0.80 ) 00

FIG. 3. Adiabates S=S(5) for a =2 corresponding to the
following values of 8: 1, 10.0; 2, 4.0; 3, 3; 4, 0.55; 5, 0.4; 6, 0.34;
7, 0.30; 8, 0.20; 9, 0.10; ———,continuum approximation va-
lidity limit.

particular cases, let us look for some general properties.
One of the general properties is the behavior for 5~0.
We see that for S~O, 5~1/(1+B), which gives us a
good estimate of the parameter space region in which the
curve lies.

There is another region with a-independent behavior:
that is the limit 5~1 occurring for each adibate either
for S~oo or for 8 &&1, independent of the value of S.
This limit corresponds to the highly dressed, practically
immobile (i.e., self-trapped) polaron whose mass tends to
infinity, while its radius is smaller than lattice spacing.
The divergence of the polaron effective mass is the conse-
quence of the vanishing of the effective hopping integral:J=J(1—5)(1+If)/2B5 when 5~1. For that reason we
refer to such an entity as a nonadiabatic small polaron
rather than a "highly dressed" soliton of infinite radius,
as one could expect, at first glance, according to the ex-
pression for inverse soliton width where p~0 for 5~1.
Substituting the value 6=50=—1 in the stability condition
8 E/06 )0, we find the condition for the existence and
stability of these states:

5O—= 1~1—Be (1—2S))0~35OS exp( —5OS) ((1,
which is quite analogous to the one previously obtained
by Emin. '

On the other hand, in the weak-coupling regime
(S ((1), there appear 5 values which, depending on the
value of 8, can be significantly lower than unity, even in
the nonadiabatic case, yet they are also far from zero.
Such states should be called partially dressed soliton
states. We shall now study them for the two particular
cases of interest.

Let us study first the case a =1.Since here E is always
real, no restrictions come from that demand. On the oth-
er hand, the ( —) branch does not satisfy the condition
for the applicability of the continuum limit so there ap-
pears no (

—
) branch, which agrees with the fact that the

( —
) branch was never detected in the previous studies.

As for the (+ ) branch, it is detected only below the curve
S =0.8/[5(1 —5) ], where the continuum limit is valid.

It is important to notice that for small 8, the curve in-
cludes only minima. Yet, above a certain value
8, = 1.712, the curve has a region of maxima correspond-
ing to unstable states. The critical adibate corresponding
to 8, is determined from the condition of the tangent to
the stability line. Looking at Fig. 1 as the graph of
5=5(S), one can see that it is not a single-valued func-
tion, since for given S there appear new values, two of
them corresponding to minima, so there occurs an abrupt
transition between stable states.

We can classify stable states according to their spatial
extent and the degree of adiabaticity (Fig. 2). First of all,
close to 5=1, we definitely deal with a nonadiabatic small
polaron. In the region bounded from above by the curve
8 =8, and 5 =0.9, we still notice nonadiabatic behavior,
but these states lie well below the p= 1 curve, so they can
be classified as large but nonadiabatic polarons, whose ex-
istence was not predicted previously.

For 8 )8, and left from the p=1 curve, we deal with
an adiabatic large polaron. Since there exist two stable
states corresponding to given S and given 8, we can con-
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struct the metastability boundary, by drawing a horizon-
tal line (S =const) through the point where the given adi-
abate cuts the stability line. The point where this hor-
izontal line crosses the adiabate on the other side of the
stability line belongs to the metastability boundary (mb)
line. In Fig. 1, we have denoted these two points by S„
and S,z on curve 2 corresponding to B =4.0.

We notice three separate regions in the S —6 plane.
Below the mb line only stable states exist, which are
uniquely defined for a given S and B. Above the stability
line, there are no stable states. Between mb and the sta-
bility line, the states could be defined as metastable, since
there exist two stable states on each adiabate for a given
S, one corresponding to 6&6, and the other one for
5 & 5, (5, —=0.71). The curve p = 1 goes through the mid-
dle of the region on the left-hand side, so we can separate
large and small adiabatic polarons. On the right-hand
side (5)5, ), we encounter only small nonadiabatic po-
lar ons.

Let us now consider the case a =2 (Fig. 3). Here we
encounter both branches in principle. Each branch must
satisfy the condition of the reality of 6 which, in this par-
ticular case, has the form

S ( I —&5/8 =0.21, S & 1+&5/8= 1.79 .

These two curves bound a forbidden region in S —6
plane, where none of the branches should appear.

The condition K & 1 implies y &2, so there is another
upper boundary for the (

—
) branch. The most important

restriction comes from the demand for the validity of the
continuum approximation. We remember that there ex-
ists a necessary condition y ( I/(2a)= 4, which is taken
care of by the reality condition y &0.21. On the other
hand, (A9), y ) ( —,'—2)/5= —,'. We see that the ( —)

branch exists, yet it is defined in a small section of the
S —6 plane between the curves:

S &0.20/[5(1 —5)], S (0.21/[5(l —5)] .

So for all practical purposes, its existence could be
neglected.

As for the (+ ) branch, the condition for the validity of
continuum approximation is y & —,

' =0.20. This means

that the only region where the curve can appear is the
part of the S —6 plane below this curve, since it is lower
than the boundary following from the reality condition.
The problem is two asymptotic regions: 6—+0 and 6—+1.
If one substitutes the value y =y& in Eq. (4.4) one obtains

I+2B exp[ —5y&/(I —5)]=1/5 .

This equation has no solution 6 =0 but can have the solu-
tion 6=1. This implies that no curve defined in the re-
gion below the continuum curve can cross this curve and
appear again in the region for 6=0. On the other hand,
there can appear small polaron solutions.

These states are all stable since one can simply evaluate
the value of 3 E/c)6 and show that it is positive in the
whole area below the continuum limit boundary. So there
is no need to discuss the stability curve, etc. , because they
would obviously fall in the forbidden region. It seems

that the systems of lower value of a possess a larger
variety of possible states.

VI. THE INFLUENCE
OF THE NONLINEARITY PARAMETER

We have seen that the dependence of optimal 6 on sys-
tem parameters is strongly inAuenced by the value of
nonlinearity parameter a. Let us first remind the reader
that a represents the ratio of the coefficient of the non-
linear term to the linear small polaron binding energy
EB. We are going to analyze the e6'ect of a, following the
qualitative analysis proposed in Ref. 21.

We return first to the NL functional (3.1) and substi-
tute the explicit value of the ADP kernel IC(x —y) (3.7)
which gives

+JR f g (x)
~

—aEa(1 —5) f f(x)
~

(6.1)

Let us now compare the leading linear contribution and
nonlinear term. Both of these terms lower the energy, so
they both stabilize the system. We define a function b (5)
as the sum of the two coefficients which stand in front of
E

b(5) =5(2 5)+a (—1 —5) (6.2)

VII. DISCUSSION

After presenting the above analysis, we are now finally
in the position to turn our attention to the problem of the
occurrence of various types of ST states in more realistic
conditions, especially in some relevant biological sub-
stances where the assumption of a possible model of soli-
tonic (polaronic) energy and charge transfer is a relevant
one. Since the 6 approach predicts the existence of
several types of NL ST states, except small polaron band
states, we must compare our results with the results of
previous theories: solitonic ones, as well as TI theories,
so that we could determine the limit to which our predic-
tions can be accepted as reliable. We are going to esti-
mate the ground-state energy E, for various ap-
proaches.

We have already mentioned that our Ansatz can repro-
duce the results of the original Davydov (or better Pekar)
D, Ansatz with the choice 6=0. Substituting 6=0 into
the expression for the energy (4.1), we obtain

a' Es
E (5=0)= —2J—

g. S. 12 J (7 1)

This expression has the boundary values b(0)=a and
b(1)=1 for any value of a. It is important that b is al-
ways lower than 1 for a & 1, while it is higher than 1 for
a ) 1. Only for a =1, b =1, so only then are the two
terms in perfect balance. In fact, for a &1, the linear
term is a more stabilizing factor, while for a ) 1 it is the
nonlinear term which contributes mostly to the stabiliza-
tion.
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so the difference in energies is

bE, =E, (5)—Es, (5=0)
= —5(2—5)E&—2J[exp( —5 S)—1]

Eg 2I2 +I3 2J+

A =exp( I—, ) .

Here, we have

(7.8)

(7.9)

E2
[(1—5) e —1]

12 J (7.2)

We expect soliton solutions in the range of large adia-
baticity and for S & B . This allows us to expand the ex-
ponent up to S. Dividing expression (7.2) by Ea,

2JS6
b E /E = —5(2—5)—

g.s. 8
B

1I2= —X
q

=1I3=-
N

1 —cosqR
(fico ) [1+2JA /(A'co )(1—cosqR)]

IF, I' 1

A'co 1+2JA /(Ace )(1—cosqR)

IF, I' 1

A'coq [1+2JA/(A'co )(1 cosqR)]

(7.1 1)

(7.12)

a' EB+ 5(2 —5)(2—25+5 ) .
12 J (7.3)

We have neglected 5 S in the last term, since Ea/J is al-
ready proportional to S. Rearrangement of the terms
leads to

a EB2

bE, /En = —2+(1+8)5+

=——2+a EB/3J .

a E
6J 5(3—25 )

(7.4)

E gF (f +f* )+ +fico fqI 2—JAlin

q

(7.5)

A =exp ——gIf I
(1 —cosqR)

1
q

(7.6)

From here on, we shaH neglect the constant term 6 be-
cause it has no inAuence on our further analysis.

If we vary E"", over f, we obtain

A'co +2JA (1—cosqR )
(7.7)

As we have previously mentioned, this is the equation
which was previously derived for various particular cases
by Emin' (in the context of the MC model), Venzl and
Fischer (symmetric ADP model), and finally Kongeter
and Wagner in the special case when only one varia-
tional parameter is retained. The result is

This is the lowest-order estimate, which shows that our
approach always gives lower energy, since a pure soliton
demands EB/J «1, sufficient to compensate even for
a =4.

Now, let us compare E, (5) to Es, obtained by linear
(TI) theories. Naturally, in the region where E, (5) is
lower, NL excitations described in the previous section
give a better description of the system, while in the oppo-
site case, the band picture is more favorable. For that
purpose, let us look only at the linear part of the energy
functional [(2.11), (2.12), and (3.1)], before introducing
the assumption of equal dressing of each phonon mode.
Taking g„ in the form of the plane wave and remember-
ing that the ground state corresponds to a vanishing wave
vector, we have

There exist formal relations between three integrals and
we are going to use them in particular cases.

Let us first study the MC model as an example. Using
the notation of Secs. III and IV, we obtain

I, =S(1+2BA)

I2=Ea(1+2BA)

I3 =(1+BA)(1+28A)

(7.13)

(7.14)

(7.15)

The self-consistent equation for the determination of A

(or S) is

A =exp[ —S(1+28A) ] . (7.16)

Using (7.8), (7.13), and (7.14), we obtain

E"", /A'coo = —2S ( 1+28 A )

+S(1+BA)(1+28A) 'i BA-
= ( 1+38 A ) ln A BA—(7.17)

A —=e (1+38e ) (7.18)

giving

Expression (7.17) defines energy in terms of 8 and A.
One can treat B as a parameter and study the dependence
on A. On the other hand, 3 is just an auxiliary variable,
which is related to the proper parameter of the system S
by (7.16).

Before studying the energy, we must look at
A = A (S), which is represented for several values of 8
on Fig. 4. A varies in the range between 0 (S~~ ) and 1

(S =0). For small 8, their relation is unique, but for
higher B, there appear three values of 3 for a given value
of S. There exists a critical value B,=e /3=1. 76483,
where the behavior of adiabates changes. If one looks at
S =S(A), one finds two minima, one for A =0 and the
other one for 3 —= 1 and a maximum between them. We
have also plotted the stability curve which is the locus of
the points where the first derivative of S ( A ) vanishes be-
cause that corresponds to the set of points where the
second derivative of E, vanishes, so that the points
below the curve correspond to stable states (minima)
while points above the curve correspond to the maxima
of energy (unstable states).

For srnaH B, we can expand the exponent
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that both approaches converge to the same result for
large B and strong coupling.

From the point of view of qualitative behavior, our re-
sults allow us to look for the solution of a particular
problem: the applicability of the soliton concept, i.e.,
Davidov-soliton theory for the explanation of the mecha-
nism of the charge and energy transport in biological sys-
tems (a-helix, for example).

Using often cited values of the parameters for u-helix
or ACN, we can estimate the relevance of the soliton
model. We shall use here the values summarized in Ref.
25, remembering that they refer to the problem of the
transport of the energy of amide-I oscillations through
the resonant coupling of adjacent peptide groups. We
must calculate the values of relevant parameters and then
test the stability of ST states by checking if the condition—5 S35 Se ((1 is satisfied.

Under these circumstances, band theory breaks down
and polaron transport should have activation character
by random hopping between neighboring sites rather
than being achieved Uia band mechanism. This practical-
ly means that the initiation of the polaron motion (hop-
ping) in realistic conditions needs certain activation ener-
gy which is temperature dependent. According to the
early papers of Holstein' and others, ' ' hopping
arises when temperature increases over some critical
value T, which depends on system parameters. Unfor-
tunately, we cannot estimate T, within the framework of
the present temperature-independent variational ap-
proach. Details concerning the validity of band theory
for small polaron transport with respect to the activation
(hopping) mechanism can be found in the above-
mentioned papers of Holstein' and in numerous review
articles dealing with polaron dynamics.

In the context of biological applications, the main
problem is the smallness of the adiabaticity parameter.
For a-helix J = 1.55 X 10 J and A'coB=(18—21) X 10
J (independent of the factor 3 especially discussed in Ref.
25) we obtain B =0.14—0. 16. This adiabate lies very
close to the 5=1 axis (0.84 —0.88). For a given value of
coupling y=35 —62 pN, we obtain E&—= 10 —10 J,
so S—=0.01—0. 1. (The difference of ground-state energies
calculated by linear theories and the 6 approach is less
than 1%.) On the basis of presented estimates, it seems
that we are dealing with Bloch band states which would
rapidly turn into ST states with increasing S. This effect
is enhanced by the temperature increase. ' '

On the other hand, for ACN J =4 cm ' and Acta to 75
cm giving B=—0. 1 leading to 6)0.92, which should
correspond to strong localization, so we conclude that
the energy transport due to amide I in ACN should have
predominantly activation character.

On the contrary, it seems that a-helix supports the ex-
istence of DS consisting of an electron and the lattice,
since model-independent estimates for electron hop-
ping terms give J-=1 eV -=10 ' J. In this case obvious-
ly B ))1, so the theoretical description based on DS
theory (factorization of wave function) seems to be
justified.

Let us finally summarize the features of our approach.
Its main advantages are high simplicity (single variational

parameter) and the ability to give good qualitative esti-
mates and reproduce most of the previous theories. The
main disadvantage is its "insensitivity" to the type of
coupling because it treats various models in mostly the
same way. Yet we think that all the above-listed features
qualify this approach to be a good candidate for the ex-
tension to finite temperatures and anisotropic problems
(where the electron and phonon subsystems have different
dimensionalities).

We must mention that this study is inspired by, and in
many ways complementary to, the one presented in Refs.
21 and 29. The general approach is the same, but, of
course, there are some essential differences. Previous au-
thors take as the most important result for the compar-
ison the results obtained by the linearization. , We avoid
linearization and study the constraints which appear
completely analytically and not as the result of numerical
analysis. (We have reason to believe that some of our
boundaries would show up in the analysis of previous pa-
pers if the space of parameters was larger. ) The appear-
ance of the negative branch is essential and it is impor-
tant to prove that these solutions are spurious in the
present context. On the other hand, relaxing the condi-
tion of the strict validity of the continuum approximation
would lead to the appearance of excitations belonging to
the negative branch. Also, the spectrum of detected exci-
tations is much broader. Our approach pointed to the
importance of nonlinearity parameter a, a fact not ex-
pected from previous calculations because they were per-
formed on a qualitative level giving good behavior for
a =1.
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APPENDIX

Here we present the detailed discussion of the limita-
tions which follow from the mathematical and physical
demands imposed on the solution of our basic equation
(4.3).

(a) Reality of 5 demands the reality of the square root
K (4.4), i.e., positive definiteness of the algebraic expres-
sion f(y)=2/3a y —4/3a y+1. f(y) treated as a
quadratic form is positive always for a (—,'. There are no
restrictions on the values for 5 and S then, arising from
this demand. However, when the nonlinearity parameter
a exceeds the value —,', f (y) is positive only in the re-
gions 0 &y &y& and y )y2 where y, ( )0) and y2 ( &y&)
are zeros off (y), y&&2=1+ [1—3/(2a ) j'~ . This condi-
tion introduces restrictions on the allowed area in the
S —6 plane. We must exclude the part lying between the
curves:

S =y, /[5(1 —5)], S =yz/[5(1 —5)] .

(b) Condition 5 )0 which immediately implies
1+E &0. This demand, in fact, concerns only the nega-
tive sign (since K &0). So, for the (

—) branch, we have
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K & 1 which results in the condition y (1/(2a) . (A7)

y&2. (A2)

2aS5(1 —5) 2ay
1+% 1+%

The validity of continuum approximation demands

(A3)

(c) Continuum approximation is valid if the soliton oc-
cupies a large number of lattice sites. This demands
p «1. Therefore, p=1 is the final boundary for the ap-
plicability of the continuum approximation.

Combining (4.3) and (3.22) (with U =0), we have

1 —2ay)K, (A8)

leading to y )(6/a —2)/5. As before, positivity of y
gives a &3. Therefore, besides this one, necessary, but
not sufficient, conditions for the existence of polaron
solutions defined by the ( —) branch are y (2 [see (4.8)]
and the stronger condition y (1/(2a).

Therefore, physically meaningful solutions should be
looked for in the region between the curves:

In case it is satisfied, we have —(1—2ay) (—K, which
gives

2ay —1 &+E, (A4) S = ( 1/2a) /[5(1 —5) ]

y ((6/a —2)/5,
which is meaningful if 3/a —1 )0, i.e., for

a &3.

(A5)

(A6)

As for the ( —) branch, 2ay —1 ( —K cannot be satisfied
unless

which must be analyzed for each sign separately. For the
(+ ) branch, we have the following situation: if
2ay —1 )0, then (A4) can be squared and we arrive at the
following condition:

(6/a —2)/[55(1 —5) ] .

(A9)

These two curves bound a region in the S —6 plane
where the ( —) branch satisfies the conditions for the va-
lidity of the continuum limit. However, it is possible that
the inequalities (A7) —(A9) are not satisfied anywhere. It
is a simple algebraic problem to show that inequalities
can have simultaneous solutions only for a )—,', so the
proper set of values is —,

' & a & 3.
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