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orientational order parameters
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The microscopic model for quadrupolar glass freezing of axial quadrupoles in solid hydrogen is
considered in the mean-field approximation. While the glass order parameter exhibits continuous
growth with decreasing temperature and the quadrupolar susceptibility a smeared-out behavior,
stability analysis indicates a well-de6ned nonergodic region of a quadrupolar glass phase with many
degenerate thermodynamic states with irreversibility phenomena. We also analyze effects due to
quantum-mechanical tunneling between different quadrupole orientations at low temperatures. Fur-
thermore, by employing self-consistent equations for the order parameter we obtain the distribution
function P(p) for the local quadrupolarizations p which describe the extent to which the molecular
orientations of ortho species are frozen. The temperature evolution of P(p) shows a continuous
growth of the local order parameter p with a broad shape of the distribution function and with no
evidence for a sharp phase transition.

I. INTRODUCTION

There has been considerable experimental e8'ort during
the past decade to understand the orientational ordering
in dilute molecular systems such as solid ortho-para hy-
drogen mixtures. These systems represent random ar-
rays of interacting quadrupoles, which provide striking
examples of disorder and frustration. In the case of the
solid-H2 mixtures only the ortho-H~ molecular species
with orbital angular momentum J = 1 are orientable.
The para species with J = 0 are spherically symmetric,
thus have no electric quadrupole moment and play the
role as an almost perfect dilutant. In order to character-
ize the orientational order an order parameter has to be
deGned. In the case of solid hydrogen the lowest multi-
pole moment of the molecular orbital is the quadrupole
moment being a tensorial quantity. Of five linearly inde-
pendent quadrupolar components, three can be used to
define local axes, thus two nonvanishing quadrupole pa-
rameters p(T) = (3J, —2)T and rl(T) = (J J„)T repre-—
sent intrinsic degrees of freedom, with J (o. = x, y, z) be-
ing the orbital angular momentum operators and (. . )7
the statistical average, respectively. Here, p(T) measures
the alignment along the z axis, while rl(T) is a measure
for the departure from axial symmetry and is called ec-
centricity. At high ortho concentrations the ordered state
is characterized by a long-range order parameter p. How-
ever, for ortho-hydrogen concentrations less than approx-
imately 55'%%uo, nuclear magnetic resonance (NMR) studies
and thermodynamic measurements showed no evidence
of orientational ordering for temperatures T ) 0.4 K. In-
stead, NMR experiments at very low temperatures show
broad spectra whose features have been interpreted in
terms of the freezing of the orientational degrees of free-
dom of the ortho molecules into a state called quadrupo-

lar glass. Information on the local quadrupolar order
parameters are obtained from NMR data, making use
of the fact that NMR line shape is determined by the
intramolecular dipole-dipole interaction between the nu-
clear spins. This interaction depends directly on p and
g and on the polar angles between the local axes and the
magnetic field. The shape of the NMR profile is related
to the distribution of the local order parameters P(p).
Neglecting the eccentricity one has

P(p) = —) 8(p —(3J, —2)z)

qEA (T) = [(3J. —2) 2T]~V . (1 2)

This quadrupolar glass parameter also can be determined
directly Rom the NMR data as it is directly given by the
second moment of P(p),

GAEA= dip P p. (1.3)

The distribution P as a function of both quadrupole
parameters p and g was derived by Li, Meyer, and
Berlinsky based on an approximation to the one-particle
orientational density matrix for the randomly distributed
J = 1 molecules. However, this theory still remains

where [
.

] „denotes the average over the disorder
present in the system. Equation (1.1) implies that P(p)
is self-averaging, i.e., the two types of averaging in Eq.
(1.1) are equivalent.

In analogy to magnetic (dipolar) spin glasses one can
introduce the Edwards-Anderson (EA) order parameter
for quadrupolar systems as
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II. HAMILTONIAN AND DISORDER AVERAGE

We consider in the present paper, in the spirit of the
Sherrington-Kirkpatrick model, the infinite-range ver-
sion of the uniaxial quadrupolar system with the Hamil-
tonian

H= —) Jq q„—n) J., (2.1)

phenomenological since the properties of the distribution
function depends on the single temperature-dependent fit
parameter.

In the present paper we take a difFerent approach
in that we start from the microscopic model for the
quadrupolar glass and derive the shape of P(p) within the
full self-consistent theory. For simplicity we restrict our-
selves to the axial case. In Sec. II we introduce the mi-
croscopic Hamiltonian for the quadrupolar glass in terms
of the infinite-range Sherrington-Kirkpatrick model for
randomly interacting quadrupoles. Subsequently, we ob-
tain self-consistent equations for glass order parame-
ters. We show that within the mean-field approach the
equations for orientational glass order parameter have a
nonzero solution in the whole temperature and/or field
range, i.e., do not indicate phase transition. However,
the smooth behavior of the order parameter does not ex-
clude the possibility of having well-defined quadrupolar
glass transition, which marks the appearance of many
degenerate thermodynamic states separated by infinitely
high barriers. A similar situation occurs, for example, in
magnetic spin glasses in the presence of external fields
or nonzero mean of the bond probability distribution.
Experimentally, such glass features manifest as strong
metastability and irreversibility in response to external
fields. Therefore, another objective of ours is to deter-
mine the validity of the mean-field approach by perform-
ing the stability analysis in Sec. III. Finally, in Sec. IV,
we present predictions for the distribution functions of
local quadrupolarizations resulting from the microscopic
theory.

(zln, (J,,)]), =
~ E

ab

DR exp( —NL[R] + A[g])

(2.3)

where Z [rI, (J;i)] is the unaveraged generating func-
tional for fixed realization of random bonds and A[rI] =
Tr(Rg)/J denotes the source terin. Specifically in the
interaction picture with respect to the single-body Hamil-
tonian Hp ———0 P,. J; one obtains the efFective action
I [R] in the form

relative to the local coordinate system (chosen in a way
to coincide with the principal axes of the quadrupolar
momentum tensor) varies randomly from site to site, the
coupling constant J,~ itself becomes a random quantity.
In the limiting situation of long-range order in a nearly
pure J = 1 solid this picture will change, since molecular
alignments would be along well-defined directions. For-
tunately, for ortho-para hydrogen mixtures at ortho-H2
concentrations, relevant for quadrupolar-glass features,
it is plausible to suppose that; the distribution for the
couplings J,~ will be Gaussian about zero mean. The
assumption that the interactions between the molecules
are infinite ranged is, of course, a first-order approxima-
tion. A more sophisticated theory would require us to in-
clude the wave-vector dependence as well as the influence
of spatial fluctuations. However, within the theoretical
framework for spin glasses it would be extremely difIicult
to incorporate short-range interaction efFects even for the
simplest Ising-like models. The virtue of the assump-
tion about infinite-interaction range allows us to proceed
along the canonical procedures developed for the conven-
tional spin glasses.

Following the standard route of the thermo field
dynamic (TFD) approach for the quantum spin-glass
problem, we shall discuss the thermodynamics of the
system in terms of the disorder averaged generating func-
tional for the TFD causal Green's functions in func-
tional representation

L[R] = TrR —lnC[R] (2.4)

where q„= 3J2, —2 and J„,J; denote quadrupolar and
orbital angular momentum J = 1 operators, respectively,
at lattice site i. Furthermore, the last term in Eq. (2.1)
describes the quantum-mechanical tunneling between dif-
ferent quadrupole orientation, with 0 being the tunnel-
ing frequency, in analogy to quantum dipolar case. The
latter effect might be relevant at very low temperatures
where the quantum nature of the system becomes ap-
parent. The J,~ are quenched, independently distributed
exchange interactions with the probability distribution

where

dt dt' ) R'(t, t') R'(t', t),
ab

(2 5)

dt dt'HR(t, t')
~

while 4[R] = (0, P
~

U~( —oo;+oo)
~

0, P) with (0, P
~

. . .
~

0, P) = Tr exp( —PHp. . .)/Tr exp( PHp), P = I/kT—,
and the time-ordered exponential reads

Pg(J;, ) = (N/2' J ) ~ exp( —NJ; /2J ) (2.2) (2.6)
with N being the number of lattice sites. It should be
pointed out that the randomness of the quadrupolar in-
teraction between two ortho-H2 molecules is not of the
same type as the randomness resulting from Rudderman-
Kittel-Kasuya- Yosida (RKKY) interaction in the conven-
tional (magnetic) spin-glass problem. iP However, since
the orientations of the ortho-H2 molecule at a given site

with the efI'ective Hamiltonian

H„(t, t') = —) (....)'~'JR'(t, t')q;(t)q,'(t'). (2 7)

Here, a, b = 1, 2 are the TFD "dynamic replicas" (ei ——

1, e2 ———1) (Ref. 11) labeling the collective fields R
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R (t, t') = —',(e.eb)'~'Jg'(t, t') (2.8)

which act as dynamic self-interactions in the effective
Hamiltonian (2.7) between time-dependent quadrupolar
operators Q, {t)= exp( —iHot) Q, exp(iIIot).

As usual in the N —+ oo limit the steepest descent
method can be used which amounts in finding the sta-
tionary point Rz determined. by the extremal conditions
bL[R]/bR = 0. Thus, one obtains a self-consistent
equation for the collective variable Ro (t, t'),

(2.12)

Combining Eq. (2.10) and (2.12) one obtains

C(~) = (C„s)(~) + 2~qb(~) (2.13)

modynamic correlation function being related to g (ur)
by means of the fluctuation-dissipation theorem. Fur-
thermore, it turns out that the time-persistent part
(g„.„s) (u) has the form

where

. (o, p ~ TQ;(t)Q,b(t')U~, (—~;+~)
~

0, p)
(0, P i

TU~, (—oo; +oo)
~

0, P)
(2.9)

in accordance with the standard dynamic definition of
the EA spin-glass order parameter.

III. ORDER PARAMETERS
The onset of the glassy phase is marked by a nonzero

value of the spin-glass order parameter. Within the con-
text of the dynamic theory the spin-glass order param-
eter has to be determined via time-persistent quanti-
ties. Therefore, we factorize the matrix of the causal
TFD Green's functions into finite-time (g„s) and
time-persistent parts (g„„s) as follows: g (t, t')
(g, s) (t —t') + (g„„s) ", and the correspondence with
physical observables is achieved by the following decom-
position of the Fourier transformed causal Green's func-
tion in the space of thermo-field components (cf. Ref. 11),

The time-persistent contribution to the effective
Hamiltonian can be represented by using auxiliary
Gaussian integration having the form of a static random
field to generate time-persistent autocorrelation. Ac-
cordingly, f'rom the condition (2.9) one obtains the self-
consistent equations for the spin-glass order parameter q
and the quadrupolar susceptibility y,

(3.1)

where y = lim ~o{g~(cu, x)) is the static quadrupolar
susceptibility, gR(u, x) is the unaveraged dynamic re-
sponse function, and the Gaussian average over the static
noise is given by

while

(2.1o)
(" ) = dx

exp( —x /2). . . .
2Ã

(3 2)

—ab (g ((d) 0
(~) =

I 0 gA( )

(1 0)
O —1)l

(2.11)

with g+l+l(w) being the retarded (advanced) Green's
functions. Correspondingly, (C„s)(w) refers to the ther-

The analytical expressions for the x-noise-dependent
quadrupolarization p(x) and susceptibility y(x) in the
general case (kT P 0, 0 g 0), while available, are too
massive to be presented here. Therefore, we consider the
classical and quantum limits separately. For the clasical
case (0 = 0) one obtains correspondingly

(3Jq'~'*l (3J'~)
p(~) = 2 (3Jq'~'~) &3J'~)

2exp ] /+exp
(

(3.3)

and

x(~) = 1
18exp

(

(30
2kT)

kT (6Jq'~2x ) (30 ) ('3J2y )
4exp

/ /

+ 4exp
/ /

+ exp
/

I, kT ) q2kT) q kT

(3.4)

while

0~=2Jq/ x+J y. (3 5)

In the pure zero-temperature quantum case (0 g 0) the transition is controlled exclusively by the transverse field
and the resulting equations are

q = (po(*)) ~ = ho(*)) (3 6)
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with

1 Jql/2~ 9J2~
»(x) =—

(36J2qx2 —36Jsyqi/2x + 9J4~2 + 16@2)i/2
—1

and

14402
Xo(x) =

(36J2qx& —36Jsyqi/2x + 9J4/2 + 16fI2)s/2 gR(w, x) = Z~(w, x) 1 —J g~(ur)Ez(~, x) (4.2)

I

that the dynamic-response function g~(~) in turn obeys
a Dyson equation

(3.8)

IV. STABILITY ANALYSIS

In order to locate the transition to the nonergodic
phase we perform the stability analysis by observing that
the generalized damping function p(~),

~ '(~) =t gR'(~)
8&

(4.1)

where g~(w) = (g~(w, x)), diverges in the static limit
(u ~ 0) at the instability point. From Eq. (2.9) it follows

We plot the temperature dependence of the order pa-
rameter q and local quadrupolar susceptibility y in Fig. 1
by numerically solving the self-consistent equations (3.1)
and (3.6). However, in contrast to the dipolar glasses,
quadrupolar glass order parameter q exhibit nonzero
value in the whole temperature range. Quite interesting
behavior arises also in the quantum case (0 g 0) (Fig. 2).
Surprisingly, the action of the transverse field 0 does not
suppress quadrupolar glass order parameter q at any fi-
nite value of O. This is in contrast to the case of, e.g. , the
quantum Ising model in a transverse Geld, where tunnel-
ing eEects destroy glass order at some critical value of the
transverse field. We ascribe these behaviors to the non-
vanishing quadrupolar moment which enters Eqs. (3.1)
and (3.6) via y and couples to quadrupolar operators.

with ZR(u, x) being the self-energy part.
Specifically, difFerentiation of Eq. (4.2) with respect to

the frequency w and subsequent averaging over the static
noise results in the relation

1 —J'(~'(x)) & 0. (4.4)

Numerical solution of the self-consistent equations
(3.1) and (4.4) together with stability constraint (4.4)
reveals critical value kT, /J 1.38 for temperature, be-
low which unstable nonergodic phase is present. A sim-
ilar calculation for the quantum case [Eq. (3.6)t with
the stability condition 1 —J (yo(x)) & 0 results in the
stability threshold for the transverse field 0,/J = 1.53.
In physical terms it means that below these values one
enters the nonergodic region (i.e. , a multiple-valley struc-
ture of the phase space for N -+ oo). Precise theoreti-
cal description in this region would presumably require
a Parisi-like approach of the broken replica symmetry.
Unfortunately, the Parisi scheme successfully applied for
the Ising and vector models seems to fail for quadrupolar
glass system.

= (~R'(~, x)
Z

'
g~(~ x)) (43)

which leads to the marginal stability condition in the
form

1.75 1.75

1.5 1.5

1.25 1.25

0.75 0.75

0.5 0.5
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0

kT/3

0
6

B/3
FIG. 1. Temperature dependence of quadrupolar order

parameter q / and local susceptibility y for fI = 0 (classical
case). The arrow indicates the critical value kT, /J 1.38.

FIG. 2. Transverse-field dependence of quadrupolar order
parameter q and local susceptibility y in the T = 0 case.
Indicated by arrow is the critical point fl, / 1—1.53.
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V. DISTRIBUTIONS
OF LOCAL QUADRUPOLARIZATIONS

while the second moment is just the quadrupolar glass
order parameter

A natural way to analyze the NMR data for ortho-para
hydrogen mixtures is to invoke a distribution of order
parameters [Eq. (1.1)] to account for the distribution of
local quadrupolarizations in the quenched alloy. In the
following, we present an evaluation of the distribution
of local quadrupolarizations based on the self-consistent
equations for the order parameters derived in Sec. III.

In terms of static noise-dependent quadrupolarization
p(x) the distribution function for the local quadrupolar-
ization (1.1) becomes

dm'P(p) . (5 3)

G(v) = dpP(p)+(~ p) . (5.4)

For example, the distribution function for the NMR line-
shape G(v) can be written in terms of the Pake line-shape
function F(v, p) as follows:

P(&) =
+OO 8x

2K
(5 1)

By using the well-known property of the Dirac delta func-
tion

In general P(p) satisfies the sum rule which follows from
Eq. (5.1),

~[&(&)1 = ~(* *o)I—I&'(»)
I (5 5)

dpP(p) =1, (5.2)

with xo being the solution of the equation f (z) = 0, we
can integrate out the static noise component in Eq. (1.1)
to give

1 (kryo'
exp &

—
/

/

In'
2q J)

(J'~q
exp( ((p+2) /

q2kT y

2&/~(1 —p)&/s
kT

P(&) =
(2-.)'/'(1 -p)(p+ 2)

(5.6)

where q and y are self-consistent solutions of Eq. (3.1).
The result of a numerical evaluation of the probability
distribution of local quadrupolarizations is presented in
Fig. 3 where P(p) is plotted against p in the interval

[
—2, 1] of the allowed values of quadrupolarization for

several temperatures. The temperature evolution of P(p)
exhibits a smooth displacement of the distribution center
of gravity to lower values of ~p~ as T increases, with a
broad shape for intermediate values of the temperature
in qualitative agreement with experiment. For T ~ oo

I

distribution function approaches h(p) whereas for T ~ 0
P(p) becomes sharply peaked at p = —2 and p = 1.

In order to simulate the effect of quantum effects at
very low temperatures we have calculated the distribu-
tion function Po(p) at T = 0 as a function of the trans-
verse field 0 representing the frequency of the tunnel-
ing between different quadrupolar states. By using the
equation for po(p) and taking into account Eq. (5.1) one
obtains for the local polarization distribution at zero tem-
perature the following result:

l20l22 + ll + 2J 2(1 2)~ ~(P+ 2)~ 2

)
exp

30 72J2q(1 —p) (p + 2)
P.(p) =

2J (2~9) '/'(1 —p) '/'(p + 2)'/' (5.7)

The function Po(p) plotted in Fig. 4 has a symmetric
shape, which becomes narrower for increasing values of
A. The broad shape of Po(p) for finite values of 0 indi-
cates that due to the quantum-mechanical efFect at zero
temperature perfect alignment at the ground-state con-
figuration of local quadrupolarizations is absent.

VI. SUMMARY

We have considered a microscopic model for ortho-
para hydrogen quadrupolar glass with axial symmetry.
Using the mean-field approach, the self-consistent equa-
tions for the quadrupolar glass order parameter and lo-

I

cal quadrupolar susceptibility have been derived. Since
both parameters do not exhibit any singularity, indicat-
ing well-defined glass transition temperature, stability
analysis was employed to single-out the nonergodic re-
gion. The behavior in quadrupolar glass appears to be
somewhat similar to the conventional dipolar glasses in
an applied longitudinal Beld which breaks spin-reversal
symmetry. In the later case the sharp transition is also
smeared out and the nonergodic region is located below
Almeida-Thouless line. In the quadrupolar glass case,
the spin reversal symmetry is broken even in the high-
temperature phase without applied field. Referring to
experimental work in quadrupolar systems, some exper-
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