
PHYSICAL REVIEW B VOLUME 48, NUMBER 6 1 AUGUST 1993-II

Temperature dependence of the amplitude of power-law
growth in the spin-Hip kinetic Ising model
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A definition of the average size R of the domains observed during a erst-order phase transition,
which is based on the time-dependent excess internal energy, is introduced. The temperature de-
pendence of the growth law for R(t, T), where t is time and T is the quench temperature, has been
investigated over a wide range of temperature below and near T„ in the two-dimensional spin-flip
Ising model. The results obtained support the Allen-Cahn growth law, R(t, T) o(T)t, and allow
an estimate of the temperature dependence of the nonuniversal coefficient n(T). Nonmonotonic
behavior of n is observed at low temperature, which is attributed to lattice anisotropy.

I. INTRODUCTION

When the kinetic Ising model is quenched from an ini-
tial state at a temperature T above the critical tern-
perature T, to a temperature T ( T„ the average size
of ordered domains B(t, T) grows in time according to
a power law R(t, T) = [ci(T)t]". There is now strong
theoretical and experimental evidence that in the asymp-
totic long-time regime any linear scale of the pattern be-
comes proportional to B. Furthermore, in systems with
a nonconserved order parameter that belong to the uni-
versality class of model A, n = I/O, and is independent
of T. These results have been derived in different ways
by many authors, but the main theoretical insight is
due to Allen and Cahn. s It should be mentioned that
the universality class of model A encompasses a large
number of systems including, for example, order-disorder
transitions in binary alloys, time-dependent Ginzburg-
Landau equations, and the spin-fIip kinetic Ising model.
Common (and presumably universal) features shared by
all these systems have been observed in a number of
experiments ' as well as computer simulations.

The independence of the growth exponent n on tem-
perature can be heuristically understood as follows. In
systems described by a scalar-nonconserved order param-
eter, relevant length scales other than B are the thermal-
correlation length of the initial state (at T ), and more
importantly, since we shall always consider T = oo
hereafter, the finite correlation length at T, ((T). Since
(/R —+ 0 as t —& oo for T ( T„ it is natural to ex-
pect that only one length scale determines the universal
scaling properties. Since temperature-dependent effects
(or ffuctuations of thermal origin) are asymptotically ir-
relevant in the scaling regime, it is frequently said that
domain growth is controlled by a zero-temperature fixed
point, and that the growth exponent follows from dimen-

v„= opK, (2)

where K is defined to be negative for a sphere. In their
theory, ere is independent of surface tension p(T), and of
the thickness of domain walls [which one would expect
to be 0(() at sufficiently high temperatures when lattice
eifects are unimportant]. This is what is experimentally
observed in systems with negligible anisotropies. s In this
sense, their theory provided an important improvement
to earlier studies, which indeed predicted dependences
such as o.'p oc p.

The only temperature dependence in the theory of
Allen and Cahn comes from the mobility,

(T) A/ksT—

sional analysis. Nevertheless, there is a nonuniversal de-
pendence of the amplitude of the growth law on temper-
ature which can be important in some cases, and that
we investigate in this paper. The explicit form for the
asymptotic growth law is

R = ot(T)t

for sufFiciently late times. It is the purpose of this paper
to numerically obtain the temperature dependence of the
nonuniversal parameter cr(T) for an important specific
system, the two-dimensional spin-fIip kinetic Ising model,
and to investigate its dependence on anisotropy.

We first briefIy review the relevant theory. Allen and
Cahn obtained an equation for the normal speed of an
element of antiphase boundary v„, in terms of its local
mean curvature K and a mobility coefficient o.p. Their
analysis begins with a time-dependent Ginzburg-Landau
equation for a system described by a nonconserved scalar
order parameter. They found that v is proportional to
K:
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for low T, where k~ is Boltzmang. 's constant and A is
a (possibly zero) activation energy for the microscopic
processes responsible for interface motion. Such a tem-
perature dependence of the mobility has been seen to be
important, for example, in a recent experiment on the
late-stage kinetics of the B2/DOs transition in FesAI.
There, the rate of growth was found to decrease expo-
nentially with temperature over a wide range of temper-
atures.

At higher temperatures, however, the Allen-Cahn the-
ory fails to describe the effect of thermal fluctuations. In
order to incorporate their effect, a noise contribution was
added to Eq. (2). As argued previously, such a contri-
bution is not expected to change the growth exponent
n, but can change the temperature dependence of o,o,
leading to a new coefficient a(T), where the effects of
fluctuations are properly incorporated. Two important
manifestations of thermal fluctuations are capillary wave
roughening, which can be important 0 & T & T„and
critical fluctuations, which will be important for T T,.

The contribution from roughening fluctuations has al-
ready been studied within the framework of Ginzburg-
Landau models. In our model, thermal fluctuations
cause the interface to wander randomly, a fact that is
expected to cause a decrease in o.(T) as temperature is
increased. For example, Grant and Gunton incorpo-
rated additive noise into Eq. (2) and obtained a.(T) for
both a random distribution of interfaces and an initially
circular distribution of domains. For low temperatures,
both results yielded behavior of the form

n(T) oc(1 —bT), (4)

where 6 is a constant.
Near T„critical fluctuations should also be impor-

tant. Their effect can be estimated as follows: Power
law growth is expected to hold near T, provided that all
lengths are rescaled with the diverging correlation length

(T, T), and tim—es with the correlation time w (',
where v and z are critical exponents. Therefore, close to
Tc~

or

(6)

where P = v(z —2) ) 0. For a nonconserved order pa-
rameter, it is expected that z & 2 for dimensions d = 2
and 3. For example, in d = 2 where v = 1, we have
recently obtained z —2.13, and so P = 0.13, which is
rather small. This implies that the critical region in the
temperature for observing such behavior is also small.
Indeed, we do not think that critical fluctuations play an
important role in the numerical study presented below.

These three effects, Arrhenius dependence at low tem-
perature, capillary wave roughening at intermediate tem-
peratures, and critical fluctuations at high temperatures,
summarize our theoretical understanding of the tempera-
ture dependence a(T). Below, we numerically investigate
a(T) for the two-dimensional spin-flip Ising model, and

find an important contribution due to anisotropy, partic-
ularly as it is related to the underlying lattice structure,
which has not been previously studied.

Finally, we also have to note some earlier numer-
ical studies of the temperature dependence of a;(T).
For example, Kaski et at. analyzed the variation of
the dynamic structure factor and of the magnetization
squared of an Ising model quenched at different tem-
peratures. Although they used a system of reasonable
size (N = 602 spins), their results for the temperature
dependence of n were not conclusive. More recently, an
analysis of a related model concentrated on the time de-
pendence of the average size of the domains. The results
obtained indicate a decrease of the growth coeKcient a
with temperature.

II. METHOD

In order to study the influence of the quenching tem-
perature on growth rate, we study a ferromagnetic spin-
flip Ising model in two spatial dimensions, with peri-
odic boundary conditions. The Hamiltonian is 'H
—JP, cr,cr~, where the sum extends over all pairs (i, j)
of nearest neighbors in the system, J ) 0 is the cou-
pling constant, and the o., = +1 represent the two pos-
sible orientations of the N spins on sites i = 1, 2, . . . , N
of a square lattice. At time t = 0, the initial configu-
ration is comprised of randomly oriented spins (i.e. , at
T = oo) and this system is then quenched at various
temperatures T ( T,. The evolution of the system of
spins is defined according to a Metroplis-type algorithm:
A spin is chosen at random and flipped with probability
min(1, exp AM/T), where 4'H is the energy difFerence
between the spin configuration before and after flipping
the spin. The unit of time is one Monte Carlo time step
(MCS), defined to be equal to N attempts at flipping
one spin. We calculate the internal energy density (i.e. ,
per spin) u(t) = ('8)/N, with N = 2562, and where the
brackets denote an average over 320 independent runs.

A. Measure of the domain size

Previous numerical studies used a variety of methods
to measure the size of the domains, including the inverse
perimeter density (deflned from the number of broken
bonds in the system, a "broken bond" being a pair of
nearest-neighbor spins with difFerent orientations), the
ensemble average of the magnetization squared, and the
intensity of the peak of the structure factor. It is com-
monly accepted that the value of the average domain
size obtained from the perimeter density is less suscepti-
ble to statistical fluctuations than, for example, methods
based on the structure factor or its statistical moments.
However, the perimeter density ceases to be directly re-
lated to the size of the domains at high temperatures,
because thermal fluctuations become appreciable. For
this reason, we consider here an alternative method, and
estimate the domain size from the energy density.

Consider a large system of linear dimension L in equi-
librium such that N = I", where d is its spatial dimen-
sionality. Consider also a flat interface of perimeter L"
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B(t, T) —= I/p(t, T) =
u(t, T) —u(T)

' (9)

This is a convenient definition for us, since we directly
obtain u(t, T) from the numerical simulation, and the re-
sults for u(T) and e(T) follow from Onsager's solution
of the two-dimensional Ising model. In particular, from
the equation of motion for the interface and the hypoth-
esis of self-similarity one can obtain the growth law for
the average domain size,

- 2

R'(t, T) =
u(t) —u

= E (T) + o, (T)t, (10)

where E is a time-independent length. We will use this
form and the simulation results to obtain a(T).

B. Anisotropy

It is well known that the surface tension of the Ising
model p(T, 8) is anisotropic, where 8 is the relative ori-
entation of an antiphase boundary with respect to the
lattice. For the two-dimensional Ising model, the angular
dependence of p(T, 8) is well known. ' Given this angu-
lar dependence, it is then possible to determine the equi-
librium shape of a domain of fixed area by using Wulff's
construction. 5 This will be useful to us in what follows.

The angular dependence of the interface internal en-

ergy, obtained from p(T, 8), is approximately included in
our analysis in the following way. We perform a weighted
average to obtain an effective isotropic interface internal
energy e. If the interface of an equilibrium domain is
parametrized by a contour variable s, then the average is

separating two coexisting phases. Clearly the internal
energy density u is increased by the presence of this in-
terface by a term proportional to the interface density
p = 1/L T.hat is,

u = u+ ep(L),

where u is the internal energy density in the absence
of the interface (bulk contribution), and e is the excess
surface internal energy density (per unit length). e is
related to the surface tension p(T) by the relation

Op6=p —T
OT

where (Op/B—T) is the excess surface entropy.
During domain growth, local equilibrium is reached in

a time scale small compared to the time scale of motion
of the interfaces that separate the coexisting phases. For
an Ising system, this means that the interface density
p(t) can be obtained directly from the internal energy
except at very early times after the quench. At low tem-
peratures, this approach is equivalent to obtaining the
interface density from the perimeter density measured
from the number of broken bonds. That is, as T ~ 0,
e —+ 2J, in agreement with the definition of R from the
number of broken bonds. We define the average domain
size by

4.0

3.5-

3.0-

2.5-

2.0-

1.5-

1.0-

0.5-

0.0
,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

\

1
1
I

I

I
I

I

3.5 4.0

FIG. 1. Polar plot of the interface internal energy e(8, Q)
for the indicated temperature values. Temperatures are in
units of T, and increase outwards.

$ e(T, 8(s))ds
GS

for each quench temperature. Figure 1 shows a polar plot
of the interface internal energy e(T, 8), whereas Fig. 2
shows the equilibrium shape of a domain obtained from
Wulff's construction. The observation of the evolution of
the domains during the quenches supports this method;
for quenches at very low temperature the domains tend
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as built from Wul8''s theorem and Onsager's expression of
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8 = 0, vr/2 values of the interface free energy p(8, T) in units
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FIG. 3. Various interface characteristic quantities as ex-
tracted from the Onsager solution. These values are calcu-
lated along the direction of the lattice axes. The WulfI' av-
erage represents the internal interface energy as corrected for
the angular distribution found in the equilibrium construction
of a droplet. Energy is in units of J.

FIG. 4. Evolution of the interface density R = [e/u(t)—
u] for various quenches. R is measured in units of the lattice
constant which is taken to be unity. The values of the quench-
ing temperatures are 0.00 (10 ), 0.20, 0.40, 0.60, and 0.80,
in units of T, . Results were averaged over 320 representations
of the initial conditions, on a system of size 256 . Time in
Monte Carlo steps (MCS).

to be aligned along the lattice axes, whereas quenches at
higher temperatures show smoother and more curved in-
terfaces, in agreement with the shape given by the Wulff
construction. Other methods to obtain an effective e may
also be reasonable.

Figure 3 shows a plot of the temperature dependence
of the various equilibrium interface quantities for an in-
terface normal to the e = 0 direction (i.e. , aligned with
the square lattice). It can be seen from this figure that
corrections to the excess internal energy are largest at
low temperatures (cf. Ref. 33).

III. B.ESULTS

The temporal evolution of the internal energy density u
for various quenches at different temperatures is shown
in Fig. 4. The data have been fitted to Eq. (10) both
for e (Wulff corrected) or e (noncorrected). The fitted
values of u(t ~ oo) agree with the exact equilibrium
values u within the accuracy of our study. Therefore,
late-time metastable states, commonly observed at low
temperatures in the form of stripes across the system,
and that are attributed to finite-size effects due to the
periodic boundary conditions, do not seem to have any
influence on our results. In general, finite-size effects have
been argued to be significant for R & 0.4L.2o The time
range used in our study is well below this approximate
limit.

The estimated value of o. at various quench tempera-
tures is shown in Fig. 5. We see no evidence of activated
processes as T —+ 0 or evidence of slowing down in the
temperature range we consider, T & 0.95T,. Neither re-
sult is surprising: At low temperatures, we expect that

the Ising ferromagnet with spin-flip dynamics does not re-
quire activated spin-flip processes for domain growth; and
we are not suKciently close to T, to see critical slowing
down. At intermediate temperatures, where roughening
should be relevant, the shape of the curve is not consis-
tent with the theoretical expression obtained by Grant
and Gunton. Contrary to the predicted behavior at low
temperatures, our data show that a increases with tem-
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FIG. 5. Temperature dependence of the growth coefFicient
a(T), with and without anisotropy averaged from the Wulff
construction. Note that even at T = 0.95T, o. is well above
zero, indicating that critical slowing down is not affecting its
behavior.
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perature. The form of the Wulff-corrected data serves
to give a possible explanation for the discrepancy with
theory. We note that the Wulff-corrected and noncor-
rected values of n(T) agree for T ) 0.7T„ implying that
anisotropy is irrelevant in that range. This is also the
regime where the nonmonotonic behavior of n, (T) ceases.
Hence, it appears the ingredient necessary to explain our
observations is anisotropy. Furthermore, we expect this
effect to be more pronounced in three dimensions, since
anisotropy can cause a roughening transition to occur in
d=3.

Therefore, in conclusion, we have shown that the linear
scale of the domains during growth can be extracted from
the internal energy for arbitrary temperatures. By using
this method, we found at low temperatures a nonmono-

tonic dependence of the growth rate a on temperature,
which we attribute to anisotropy.
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