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Soluble supersymmetric quantum XY model
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We present a supersymmetric modification of the d-dimensional quantum rotor model whose
ground state is exactly soluble. The model undergoes a vortex-binding transition from insulator
to metal as the rotor coupling is varied. The Hamiltonian contains three-site terms which are
relevant: they change the universality class of the transition from that of the (d + 1)- to the d-

dimensional classical Xl' model. The metallic phase has algebraic off-diagonal long-range order but
the superAuid density is identically zero. Variational wave functions for single-particle and collective
excitations are presented.

This paper discusses an exactly soluble modified ver-
sion of the quantum XY model

A
Oo(8i, , 8iv) = exp — —&(8i, , 6r)

Qo = —U) ~
—J) cos (8s —8~~s),

j6

where j is summed on sites of a hypercubic lattice and 6
is summed on near-neighbor vectors. This model is of-
ten used to describe the superconductor-insulator transi-
tion in granular superconductors and Josephson junction
arrays. ~ The coupling constant J represents the strength
of the Josephson coupling between the order parameter
phases 8, and 6t& on neighboring grains. The parameter U
represents the charging energy of the grains. The boson
(Cooper pair) number operator conjugate to the phase
is the angular momentum ns—: iOg, While t—his is
correctly quantized in integer values, it can be negative.
Thus the model implicitly assumes a large background
number no of bosons per lattice site so that n~ repre-
sents local deviations (positive or negative) from this
mean (integer) value. We can view the cosine term as
a mutual torque which transfers quanta of angular mo-
mentum (bosons) from one site to the next. Thus the
quantum XY model is essentially equivalent to (i.e. , in
the same universality class as) the boson Hubbard model.
For large UjJ the ground state is a Mott-Hubbard in-
sulator and for small U/ J it is superfluid which exhibits
off-diagonal long range order (ODLRO) in the phase field
correlations (at zero temperature)

g (
is, —is~) (2)

for dimension d ) 1 (and algebraic ODLRO for d = 1).
The transition between the sup erfluid and Mott-Hubbard
insulating states is continuous and is in the universality
class of the d + 1-dimensional classical XY model.
The extra dimension arises from the fact that in the path
integral representation of the partition function, the Eu-
clidean time interval 0 & r & hP diverges at zero tem-
perature.

While the physics of this model is now completely un-
derstood, it has resisted exact solution in all dimensions.
It is interesting to consider a Jastrow-like variational
wave function

where A is a variational parameter and

V—:—J) cos (8s —8~~s)
jb

(4)

g(z) = exp her(-Az~)—j.

The variational state in Eq. (3) is thus in the spirit of
the harmonic spin-wave approximation in which one ex-
pands the cosine term to second order in deviations from
the classical ground state. The wave function is much
better than this however because it obeys the correct pe-
riodicity under 8s ~ 8~+2vr. This feature is crucial to the
existence of (quantum) vortices in the ground state and
hence allows for the possibility of a phase transition to
the insulating state physics which is completely missing
from the spin-wave approximation.

The purpose of the present paper is to examine the
variational wave function of Eq. (3) and to consider a
Hamiltonian for which go happens to be the exact ground
state. 5 The question of what Hamiltonians have Jastrow
wave functions for ground states has a long history
and this question has recently been reexamined from a
modern perspective by Kane et al. Except for special
cases, 7 the generic requirement is that the Hamiltonian
have three-body interactions of a particular form. We
will see shortly that the analog of this for the present
problem is three-site interactions. Kane et al. argue
that these three-body interactions are (perturbatively)
irrelevant in the renormalization-group sense. That is,
they have no effect on the long-distance properties of
the system (other than a trivial renormalization of the

is the potential energy from Eq. (1). This form is moti-
vated by the harmonic oscillator

2
~~2 (5)2m

for which the e~act ground state is
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speed of sound). This result is perturbative because it
neglects vortexlike excitations. While, strictly speaking,
the above statements are true, they can be quite mislead-
ing if the ground state of the system undergoes a phase
transition. We show explicitly below that the universal-
ity class of the transition is completely altered by the
inclusion of particular three-site interactions. This is a
nonperturbative effect precisely due to the role played by
vortices in the (zero temperature) transition. The discus-
sion below in readily generalized to any dimension, but
for definiteness we consider only the case d = 2.

We construct the desired Hamiltonian by defining the
operators

+ ) sin (8& —8&+&) + sin (8& —
8& p), (7a)

6

J+ ) sin(8~ —8~+b) +sin(8~ —8&. p) . (7b)
U

It is readily verified using Eq. (3) that

for every j (we take A = 1 hereafter).
The supersymmetric Hamiltonian

(9)

II = —U) 0~. —J) cos (8&
—8&+~)

jb
J2

+ ) sin (8~ —8~+p) sin (8~ —8~~g ).
U

(10)

The first two terms on the right-hand side are equiva-
lent to the usual quantum AY model of Eq. (1). The
remaining term is a perturbation consisting of two- and
three-site interactions. These terms represent the simul-
taneous hopping of a pair of bosons. The 6 = b' terms
give rise to a cos 28 coupling, a form which has been stud-
ied by I ee and Grinstein.

Now that we have the Hamiltonian and the exact
ground state, let us examine the nature of the ground
state as a function of the quantum fluctuation parame-
ter U/ J to see if the system undergoes a phase transition.
The (unnormalized) probability distribution of the phase
angles is

is clearly positive semideflnite and therefore @o is an ex-
act, zero-energy ground state of H. Using Eq. (7a) we
can write H in the form

whereas for U/2 J ( TP&z the correlations decay only al-

gebraically

G,, -IR, —R, I"
because vortices are confined. That is, virtual vortex-
antivortex "vacuum fluctuations" appear but do not pro-
liferate.

Knowing the ground state exactly, we use Feynman's
theory for superfluid He to motivate variational excited
state wave functions. In a Bose system the excited state
wave function has to be symmetric under exchange of two
particles, and must have a node to be orthogonal to the
ground state. From these two arguments, Feynman has
shown that the only low-lying excited states of a Bose
system are the long wavelength collective density waves.
We want to write an excited state wave function which
preserves the short-range correlations of the ground state
but is orthogonal to it. The following Feynman-Bijl-
type wave function, which is a product of the ground-
state wave function and another symmetric function pq,
satisfies this condition

@q = Pq@o (14)

As discussed below, the form of p~ depends on the choice
of excitation. If the excited state is orthogonal to the
ground state, i.e. ,

then we can use the variational principle to Gnd an upper
bound on the excitation energy (taking advantage of the
fact that the ground-state energy vanishes)

which is identical to the Boltzmann factor for the classi
cal two-dimensional (2D) XY model with U/2J playing
the role of dimensionless temperature. This model un-
dergoes a Kosterlitz-Thouless phase transition at a criti-
cal temperature U/2 J —0.9. This is clearly a different
universality class from that of the usual 2D quantum XY
model which is known to be in the universality class of
the 3D XY model. Thus we see that the three site terms
are relevant to the transition [at least when they have
the particular strength given in Eq. (10)].

If we knew the exact ground state C'(8i, . . . , 8') of the
usual quantum rotor problem, then IC I2 would of course
define a 2D classical statistical mechanics problem. How-

ever, the fake classical Hamiltonian would necessarily
contain long-range forces (in order to give the 3D XY
universality class in a 2D modeP).

We are used to the notion that thermal fluctuations
produce vortices. Here we see a nice illustration of the
fact that even at zero temperature, vortices can be pro-
duced by quantum fluctuations. For U/2J ) TPh the
largest amplitude configurations in the ground state con-
tain free vortices and the spin-spin correlation function
decays exponentially

(12)
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where (4~IHI4~) = f(q) is the oscillator strength, and

(@~I4~) = s(q) is the static structure factor. Writing @~
is terms of 4o'.

I I I I I I I I I I I I

f(q) = (+.IHI~. )
= (@oIIo- Hp I@o)

and writing the Hamiltonian in terms of Q's and using
the fact that Q~@o = 0,

f(q) = (+.II~-., Q,'] IQ, , ~.]I+.) (18)

By substituting an explicit form of p~ in the above re-
sults, f(q) can be calculated immediately.

First we consider an excited-state wave function which
describes a single-particle excitation:

where

4~ ——6 4o (19) 0a
0.0 0.4 0.8 1.0

1 iq Rj i8~

vN

is the spatial Fourier transform of the operator that adds
a unit of angular momentum at site j. Using Eq. (20)

FIG. 1. Excitation energy A~ as a function of q for
U/J = 0.8 and 0.9. The (x) are for q in the (1,0) direc-
tion and the (Q) are for q in the (1,1) direction. For small q,
the single-particle model is isotropic.

[Q, b ] = QU/Ne'~ ' e' ' (21) A(q = 0) U(
it follows that f~ = (@oIb ~Hb~I@o) = U. The static
structure factor is given by the spin susceptibility of the
classical XY model at wave vector q

Using the Kosterlitz-Thouless (KT) theoryis prediction
for the correlation length we have

s(q) = —) e"' ' '(+.I"" "I~.) (22)
( J& . -'/'

4(o) exp (
—2b ——

I

—
IU).. (28)

which we know from Kosterlitz-Thouless theory:
where 6 is a positive constant.

Figures (1) and (2) illustrate the basic features of the

~ is, -'s, i -I '- 'I/(' T Tc)

where T, is the critical temperature, or critical coupling
(U/J), in our case, with rl ranging from 0 to 4 as tem-
perature varies from 0 to T, . In the spin-wave approx-
imation rl =

4 &
for our model. Substituting Eq. (23)

in Eq. (22), and changing summations to integrals for an
infinitely large system with U/ J below the critical point

1
s(q) ~

27r
r "+ Jo(qr)dr q +", (24) 0. 1

where r = IR, —R~ I
and since f(q) = U

A(q) Uq
U

s(q)
(25)

For U/J above the critical point and q( (( 1

1
s(q) = (26)

1.0
V/J

2.0

and hence the quantum system has an excitation gap
(within the single mode approximation)

FIG. 2. Single-particle excitation energy vs coupling at
q = 0, for difFerent system sizes. Notice that A~ —+ 0 as
the system size increases for U/J below the critical point.



SOLUBLE SUPERSYMMETRIC QUANTUM XYMODEL 363

T I T I

c=4.5

+
1.0

+
0.9

16
12
8

7
6 ~
4

0.90
U/Z

FIG. 3. Estimation of critical coupling for the sin-
gle-particle model. L ~ A(0) is independent of system size
L at the critical point according to the Kosterlitz-Thouless
theory. The logarithmic factor is a correction to scaling (see
text). The parameter C 4.5 was adjusted to obtain the
best scaling.

excitation energy. In the thermodynamic limit the sys-
tem is gapless below the critical point and has a gap
which rises from zero above the critical point with the
essential singularity characteristic of the KT transition.
In the ordinary quantum XY model, the Bogoliubov pro-
cess mixes the single-particle and density excitations to
produce a linearly dispersing collective Goldstone mode
in contrast to the w q2 dispersion of free bosons. We
see here from Eq. (25) a curious contrast to the generic
behavior. The collective mode dispersion cu q " grad-

ually stiffens with increasing U/J but never becomes lin-
ear since rl & 1/4 below the transition. We note that
since we have only a variational excited state, our ex-
cited state energy is only an upper bound to the true
energy. However, this does not afFect our conclusion that
the mode dispersion is soRer than linear. It is at least as
soft as w q~

Notice that right at the critical point the q = 0 single-
particle energy only vanishes in the thermodynamic limit
L ~ oo since the classical XY model susceptibility
obeys s(q) f d r r ~ I "~ . Thus we expect
L7~44(0) to be scale-invariant (i.e. , independent of L)
at the critical point, provided L is large enough. Us-
ing data from lattices with 8 & I & 24 we found
the scale-invariant point to be U/J 0.905. On gen-
eral renormalization-group grounds we expect logarith-
mic corrections to scaling for small L in the 2D XY
model. We include these corrections in Fig. 3 where
we plot L"~46(0)/[1+1/(2 ln L+4.5)] vs U/ J. We again
find the critical value U/J 0.905 but the scaling now
works well all the way down to I = 4. Our value for
the critical coupling is close to, but somewhat above, the
value of U/J 0.895 found by Olsson and Minnhagenii
using the scaling of the superfIuid density.

We turn now to a study of the collective density mode
excited state by taking pq to be the Fourier transform of
the number density

p~ = ) e'~ ~'f( —iojg, ) (29)

so that

iJ q@~ = —) e' i' ' (sin (8, —8,+g) + sin (8, —8, 6))@p.
i6

(30)

The static structure factor is

s(q) =
2 ) e'~'~ ' 'l (4'p~ [sin(8, —8,+p) + sin(8, —8, b)][sin(8~ —8~+p ) + sin(8~ —8~ p )]~Op).U2

Following the steps in the calculation of oscillator strength for the single-particle model, we find f(q) for the density-
wave state to be

J2
f(q) = (@p~ ) ((1 —e' '

)(1 —e '
) cos(8~ —8~+b) cos(8~ —8~+~ ) + (1 —e ' )(1 —e '

)
j66~

~ 6lx cos (8~ —8~ ~) cos (8~ —8~+~ ) + (1 —e'~ )(1 —e'~ ) cos (8~ —8~+~) cos (8~ —8~ ~ )

+(1 —e 'i' )(1 —e'~ ) cos(8~ —8~ g) cos(8~ —8~ p ))[4p) (32)

We performed Monte Carlo simulations of the 2D XY
model to find the excited-state energy e~ & f(q)/s(q) for
systems of finite size. Though one expects some physi-
cal connection between single-particle and density-mode
approximations, our results for the two excitations are

quite difFerent. We found that unlike single-particle exci-
tation, the density wave is gapped and nearly dispersion-
less. Consequently, the results do not change significantly
with the system size in the latter case. The excited-state
energy e~ vs q is shown in Fig. 4, with q in (1,0) direc-
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FIG. 4. Excitation energy eq vs. g for single-mode den-
sity-wave approximation. g is in the (1,0) direction. The
value of the coupling U/ J is shown next to each curve.

FIG. 5. The density-wave excitation energy e~ increases
gradually as a function of U/J in the single-mode approxi-
mation. The results are for cl = ( s2, 0), the smallest nonzero
allowed wave vector on a 32 x 32 lattice.

tion. Figure 5 is a plot of e~ vs U/J for the smallest
nonzero allowed vector on a 32 x 32 lattice, i.e., ( &&, 0).
We notice that the excited-state energy for this model
increases gradually with coupling U/J, contrary to the
single-particle case, where the energy is close to zero be-
low the critical point, and then abruptly increases. We
do not have independent evidence for the accuracy of
our variational excited states. We must therefore inter-
pret the collective gap as simply an upper bound to the
exciation energy. We again emphasize however that our
variational results for the very soft single-particle mode
rigorously prove that the generic Bagoliubov process fails
to occur for this model.

We conclude with some comments on additional cu-
rious features of this model. The model is readily ex-
tended to include exact solutions for arbitrary random
bond strengths J; s and frustration vector potential A, s.
One might imagine that since the ground-state energy is
identically zero independent of the disorder realization,

one could compute ensemble-averaged correlation func-
tions without having to invoke the replica trick. This is
not possible however since the norm of the ground wave
function

4(8q, . . . , 8~) = exp & ) ' cos(8s —8~+s+ Ass) &

26

(33)

does depend on the disorder. A second consequence of
the ground-state energy being zero for all A~ s is that the
superftuid density is identically zero at T = 0 even though
the system exhibits (algebraic) ODLRO helot the critical
value of U/J.

We are grateful for useful discussions with D. P.
Arovas, M. Wallin, and K. Mullen. This work was sup-
ported by NSF Grant No. DMR-9113911.

To avoid double counting 6 is summed on half the near
neighbors. For example in two dimensions 6 is summed on
neighbors above and to the right of j.
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