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High-pressure liquid-liquid phase change in carbon
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The likelihood of a first-order liquid-liquid phase change in carbon from a mostly graphitic
configuration to one that is more tetrahedral in character is explored. Liquid-phase changes in other
materials are noted. Pertinent data on liquid carbon are reviewed and the model is brieAy described.
The model is consistent with a positive diamond-melting-line slope. Constraints on the strain energy be-

tween graphitic and diamondlike liquid clusters allow a phase diagram with a liquid-liquid transition
and a graphite-liquid-liquid triple point. An upper limit on the strain energy is the constraint that the

graphite melting line should have a reasonable curvature that agrees with melting-line data. The trans-

formation of liquid structure from graphitic to diamondlike under compression significantly increases
the compressibility.

I. INTRODUCTION

In previous work' a three-phase carbon-equation-of-
state (EOS) theory was developed to simulate the high-
pressure and temperature properties of carbon formed in
high-energy processes. We assumed there that the liquid
should consist of a single phase whose properties change
smoothly with pressure. Our recent examination of this
model, as well as work performed elsewhere on other
materials, indicates that this may be an incorrect assump-
tion. This paper presents results obtained by removing
this assumption.

Phase changes in the liquid state are not uncommon.
Recent pair-distribution and structure-factor data show
definite pressure-dependent changes in the near-neighbor
distances of Bi, Ga, and Se with rather startling changes
for Bi between 4.7 and 7.3 GPa. Popova has determined
the existence of three liquid phases in Bi. The slope of
the resistance vs temperature curve of Te indicates a
change from semiconducting to metallic character be-
tween 0.9 and 0.5 GPa, while Se has an apparently first-
order insulator-metal transition across a line defined by
the two (P, T) points (3.7 GPa, 900 K) and (1.5 GPa, 1250
K) with an apparent critical point near the higher (P, T)
point. In liquid iodine Brazhkin et al. found a band clo-
sure and a metal-metal transition with a dP/dT =0, indi-
cating a large volume change. Sulfur has at least three
liquid phases: ' two insulating phases and a metallic
phase.

The above observations suggest that liquid graphite
could also exhibit a multiphase liquid structure. We re-

view pertinent work on graphite and present a model that
exhibits graphitic and diamondlike liquid phases.

II. EXPERIMENTAL EVIDENCE

The suggestion that liquid carbon may have several
phases and may transform to a metallic liquid above 0.1

GPa was made more than 10 years ago, but has so far
not been substantiated with quantitative calculations. A
great deal of work has been done on graphite, and some
good review articles are available. ' ' Much still needs
to be learned about the relationship between the thermo-
dynamic properties of liquid carbon and its structure, al-
though some structural information is becoming available
from first-principles molecular-dynamics calculations. '

In particular, strain energy is reduced if atoms with simi-
lar electronic structure form clusters and this study
shows evidence of the existence of clusters of tetrahedral,
planar (ring), and linear structures in a low-pressure.
liquid. While such clustering is of special interest in the
study of amorphous carbons, it is also of interest in a
liquid near the melting transition at low pressure'
(0.01—g GPa) and at high pressure, ' since they suggest
that structural transitions are also likely in the liquid. In
the 100-GPa pressure range, large ring and chain struc-
tures disappear, as expected from the denser packing of
the atoms.

At high temperatures the interatomic distances and an-
gular relationships become random and first-order transi-
tions less likely. The quantitative connection of the elec-
tronic configuration to a macroscopic model as presented
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here can be made only with an accurate definition of sta-
tistical averages at those temperatures at which the dis-
tribution of possible structures is not too di6'use. Since
this must be done with first-principles calculations that
track the electronic degrees of freedom, it is still a very
time-consuming problem with today's computers.

A reasonable liquid electronic density of states' has,
however, been derived from such calculations. The com-
puted resistivity of 140 pQ cm is somewhat larger than
the a-axis resistivity (p, ) of the most highly ordered
graphite crystals or pyrolytic structures (40—60
pQcm), ' but lower than less ordered structures (up to
p, =500 pQ cm), or amorphous solids with values as high
as 1000 pQ cm, comparable to the resistivity across the
graphite planes of ordered crystals. Although the elec-
tronic degrees of freedom have a minor eA'ect on the
I', p, T properties computed with our model, they are an
important link to liquid structure. We therefore summa-
rize the principal experimental results.

The aforementioned low liquid resistivity is consistent
with the experimentally observed decrease in resistivity
on melting. At pressures between 1 and 10 GPa, the
work of Bundy' shows a definite resistivity decrease on
melting of 20% —50%. In addition, his electrical pulse
melting of graphite indicates some notable di6'erences be-
tween the pressure-independent resistivity p, o ( =400
pQ cm) of his annealed, cold, spectroscopic graphite and
its liquid phase. Bundy' heated spectroscopically pure
polycrystalline graphite into the melt in about 5 ms. The
liquid resistivity decreases with pressure. At pressures
between 5 and 10 GPa, he observed liquid resistivities
[pL(P)j down to 30%%uo below p, o. Between l and 5 GPa,
pL, (P) appears to be somewhat higher than p, o and is as
large as 2p, o at 0.9 GPa. The slope (Bp, /BT)~ of the
solid decreased with pressure, suggesting a more semi-
conducting character at higher pressures. However, a
possible discontinuous change in the resistivity of the
liquid, and, therefore, a phase change, is not obvious
from the data.

A similar trend is implied by the increase in reAectivity
of pyrolytic graphite when it is pulse heated well into the
liquid phase with a femtosecond laser pulse. ' These ex-
perirnents show that the resistivity drops on melting and
decreases with increasing pressure.

Below 0.4 GPa neither the polycrystalline carbon of
Gathers, Shaner, and Young' nor the graphite of Baitin
et al. showed any significant changes in resistivity
when they melt. Their samples were heated with current
pulses (respectively, -20 and -2000 ps long) in an argon
pressure medium, at pressures between 0.1 and 0.4 GPa.
The resistance of the sample increases smoothly through
the melting point. The resistivity of the melting poly-
crystalline carbon' is about 1000 pQ cm and increases as
the melt gets hotter, as might be expected under
constant-pressure heating of a metallic liquid. The resis-
tivity of the graphite of Baitin et al. ' was not listed, but
may be inferred from their sample description to be about
100 pQ cm in the melt and also increasing with tempera-
ture.

Two types of measurements initially appeared to yield
contradictory results for the resistivity change on melt-

ing. Namely, Steinbeck and co-workers reported that a
current pulse (20-A maximum) of 28-ps duration reduced
the a-axis resistance of carbon whiskers, annealed to 2000
and 3100 K at ambient pressure, by about a factor of 4—5
at the melting point. By contrast, Malvezzi, Bloember-
gen, and Huang ' showed that a 20-ps-long, X=0.53 pm
laser pulse produced a reduction in reAectivity in a pyro-
lytic graphite surface of up to 30%%uo for as long as 600 ps,
whereupon the surface presumably resolidified and/or va-
porized. This would suggest a decrease in the number of
free electrons on melting. However, more recent work by
Seibert et al. showed that the reduction in reAectivity
was due to expanded material. Femtosecond resolution is
required to see an increase of reAectivity' of the undis-
turbed but heated material between 1 and 4 ps after the
heating pulse. Resistivities computed from this work
(350—600 pQ cm) are in the same range as those mea-
sured by Bundy. ' The samples in this work reached
significant temperatures, which would ordinarily increase
the liquid resistivity. Instead, the temperature increased
the reAectivity and, therefore, the conductivity. Calculat-
ed temperatures range from 5000 to 100000 K depending
on the Auence of their heating pulse. But pressure is also
a factor to consider in making comparisons with other
data. Qn this experimental time scale, the heating occurs
essentially at constant density. At a density of 2.26
g/cln and 5000 K, I' =—5 GPa, and at 6000 K, I' =—8.5

GPa as determined by the model we present below. Here
too, therefore, pressure seems to enhance the metallic
character of the 1iquid as does melting increase the metal-
lic character of graphite. In any case, the pulse heating
of a graphite whisker and the femtosecond laser heating
agree on the decrease of resistivity on melting.

The carbon whiskers mentioned above yielded a resis-
tivity of about 70 pQcm after annealing to 3100 K.
The resistivities of Heremans and co-workers and of
Steinbeck and co-workers were, therefore, lower than
those of Bundy' and Baitin et al. ' and considerably
lower than those of the amorphous samples of Gathers,
Shaner, and Young, ' in spite of the imperfections in the
crystal structure of the whisker. However, the large vari-
ability of whisker sizes complicates the determination of
the resistivity. Furthermore, the low resistivity of whisk-
ers may be due to contamination by the heavy metal
used in growing them. The di6'erence in observed resis-
tivities between Refs. 17 and 20 may, therefore, not be
significant. The absence of a resistivity change on melt-
ing (of carbon samples pressurized by an atmosphere of
compressed argon) observed by Baitin et al. and Gathers,
Shaner, and Young remains an important anomaly yet to
be resolved. But sample contamination by nonconduct-
ing species Inay explain the absence of a resistivity
change on melting.

More significant is the decrease of the liquid resistivity
with pressure observed by Bundy and by Reitze, Ahn,
and Downer. ' While neither source shows a sharp
discontinuity in liquid properties that would signal a
first-order phase transition, such a possibility cannot be
excluded. Feraz and March do interpret Bundy's experi-
ments as an indication of a hquid-liquid transition. The
phase change proposed in this work lies within the pres-
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sure range where Bundy observed a change from
pL(P) &p,p to pI (P))p, p. Below, we present additional
evidence that such a phase change may exist in liquid car-
bon.

III. THEORY

The major features of this model have been discussed
earlier, ' but will be highlighted here with the indicated
changes. The adiabatic approximation is assumed in the
description of the energy (E, ) and pressure (P, ) of the
solid:

E, ( V, T) =E~( V)+E,h t ( V, T)+E,h, ( T),
P, ( V, T) =P~( V)+P,h i( V, T)+P,h, ( V, T) .

The three terms to the right of the equal sign are a 0-K
term (subscript K) and thermal contributions from lattice
(subscript l) and electronic (subscript e) degrees of free-
dom.

We use the Birch equation to describe Pz( V),

and

Px(V)= —', Bp K[ Bkq +(1+2Bk—)r) ~

—(I+Bk)g ~ If(g),
fp(rj)=1 for g) 1

fr (rj) =(rj'+ r) ') /2 for r) & 1,

(2)

where the function f~(g) excludes high (and unphysical)
pressures at large volume expansions in the equation for
graphite (for diamond fp—= 1). Here Bp~ is the bulk
modulus at P =0 and T =0, BJ, =0.75(4—Bp ), Bp being
the pressure derivative of the bulk modulus at 0 K, and

We have used a macroscopic multiphase model of car-
bon to compute the EOS of liquid carbon and its phase
diagram. The algorithm is sufficiently simple and fast to
serve as a data source for more complex calculations that
require a carbon EOS.

In our model two liquid phases are produced based on
a scaling formalism, which, applied to the graphite phase,
produces a "graphitic" liquid and, applied to the dia-
mond solid phase, produces a "diamondlike" liquid. A
possible carbonic liquid has not been considered, since
the properties of the proposed solid phase are not
known. The concept of two materials mixing is here ex-
tended to the mixing of the two liquid types. The liquid
consists of "diamondlike" liquid clusters and "graphitic"
liquid clusters. The atomic configuration of these clusters
is not defined by this model, although one expects that
the graphitic liquid will have more open structures than
the more three-dimensional diamondlike liquid with its
essentially tetrahedral network. Changes in volume
across the phase lines can, in principle, offer some quali-
tative connection to microscopic structures when the
volume of such structures is quantified. The phase sepa-
ration in the mixed liquid is due to a strain energy in the
theory that mixes the graphitic and diamondlike liquids.

A. Solid carbon

where C&1 is the Einstein heat capacity of the lattice and

g, T is the electronic component. Thermal pressures for
the lattice and electrons are represented by a Gruneisen
description (P,h =yE,q ) with appropriate y's
[y= —V(dV/BE)~] for the electronic (y, ) and lattice
(yI ) terms:

y, ( V) =( V/Vp)yp, ( V),

y I ( V) = ( V/ Vp )yp I ( V)

=( V/Vp)ypp & [1+5&[1+tanh(z)]],

(4)

where z( =( Vr —V)/5Vr ) allows for the increase of the
graphite yp &(ypp I =0.35) when the in-plane and out-of-
plane vibron amplitudes become comparable at high pres-
sures. The constants Vr ( =2.64 cm /mol) and 5V&
( =0.78 cm /mol) define the density range for this change
in the graphite EOS with an amplitude of 5&=3. For the
cubic diamond lattice with a more normal yoor of 1.15,
5 is set to 0.

The electronic y for graphite and the corresponding
liquid (see below) is set to the free-electron value

(y, p=0. 24). Solid diamond is described as an insulator
even though a certain amount of hexagonal diamond is
formed in shock-compression experiments. The latter
has a Fermi energy that decreases with pressure, which
wi11 have a small effect on the thermal energy under
shock compression at megabar pressures.

Since this is a high-temperature model, we may use
Einstein functions for the nuclear thermal energy
E,h &

=Ez( V, T) in Eq. (1) and the solid-lattice heat capa-
city CV, =Cz( V, T) in Eq. (3). The volume dependence is
introduced through the Einstein temperature O( V) by

p( 1nO( V) yp, i

dlnV '
Vp

=y; V= (6)

The electronic heat capacity Cz, =g, T and energy
E,h, =0.5g, T are independent of volume. The low-T
value of g, was chosen for graphite, while g, for diamond
is set to 0. The low-temperature Einstein heat capacity is
known to be only approximate. The thermal energy and
entropy are, therefore, corrected with a constant term to
yield the experimental heat of formation and entropy at
298 K.

The equations of state for graphite and diamond are
well known from shock-wave data ' and theoretical
calculations on diamond, and are accurately represent-
ed by Eqs. (1)—(6).

B. Liquid carbon

The electronic degrees of freedom of graphitic liquid
are described by the same g, and y, as were used for the
solid phase. In view of the low-pressure results described

g= VOK/V. This equation is then integrated to yield
Ex( V) as a function of V.

Thermal energies are determined by integrating the
heat capacity

'vs —Cv~+ g. T
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in a previous section, we assigned the increase in conduc-
tivity to the diamondlike liquid. For liquid diamond we
have used the result from the INFERNO (Ref. 29) atom-
in-a-cell model to determine g, ( =6.038 10 R) and y, o
(=1.1).'

For the nuclear degrees of freedom, we adopt Grover's
model, which is based on melting calculations of hard-
sphere ' and soft-sphere systems. In addition, experi-
mental heat capacities are available for a number of low
melting metals over a sufficient temperature range in the
liquid region to show that the trends are similar. It was
noted that the heat capacity of the liquid can be scaled to
the melting temperature T with a reduced temperature
r= T/T by the function,

CX'T

C~l =C~)+g, I T —1.5R 1+0.'v
(7)

where the subscript I. refers to the liquid phase, R is the
gas constant, and C&& is the aforementioned Einstein
heat capacity of the solid. While Eq. (7) has the proper
limits near melting and at high temperatures, the details
of the behavior near the melting point are not accurately
represented. The observed curvature in the temperature
dependence of the solid and liquid heat capacities near
the melting point can, however, be attributed to pre- and
postmelting phenomena such as defect formation.
Grover noted that if the deviation from the above model
is calculated and added to the experimental entropy of
melting (b,S ), the hard-sphere entropy change is ob-
tained for a number of metals (Na, K,Pb, ln, Hg) within
10%%uo.

The suggestion that the hard-sphere model should be a
prototype for melting phenomena is further supported by
applicability of the Lindemann law to the change of
melting temperature (T ) with pressure. In particular,
the observed linear behavior of T with pressure is pre-
dicted by the Lindemann law and the rapid decrease of
the Griineisen y with pressure. ' Since this melting

I

model is based essentially on repulsive forces, its useful-
ness suggests that the interatomic forces of graphite and
diamond at and above melting are controlled primarily
by the repulsive part of the nearest-neighbor potentials.

Deviations do, of course, exist. Insulators, metals, and
semiconductors such as Ar, Al, Bi, Sn, Ga, C, and Si
have relatively high entropies of melting, AS, between
1.8R and 3.5R as opposed to the hard-sphere entropy
change of 1.15R. But in the case of argon (bS =1.8R),
compression rapidly reduces AS to approximately the
hard-sphere value. Therefore, while the attractive part
of the potential still plays some role, pressure tends to
eliminate it. On the strength of the above argument, the
Grover model for graphite and diamond is the best avail-
able model for our purpose.

Given hS, the liquid energy is obtained by integrat-
ing Eq. (7) to yield

EL ( V, T)=EI( V, T)+Eh, (T)

AS
+RT 3 3

CX+ 7
4 2

ln( 1+ar )

(8a)

where

Ei( V, T) =E~( V)+E,h I( V, T)

and E,h &
is specific for the liquid. The third term on the

right-hand side of Eq. (8a) is a correction term due to the
entropy of melting and the liquid correction to the heat
capacity shown in Eq. (7). For graphite we have adopted
a value close to that measured by Bundy'
(bS /R =2.7), while for diamond we use the hard-
sphere value (b,S /R =1.15). Given the entropy of
melting, the liquid heat capacity [Eq. (7)] may also be in-
tegrated to give the entropy and, therefore, the
Helmholtz (F=E —TS) and the Gibbs (G =F +PV) free
energies of liquid graphite and diamond:

AS
G (P T) F(P T)=RT—(1—r) ——a+ —rL ~ I ~ m R 4 2

ln(1+ax) —1 +F,h, (T)+PV. .
a~

(9)

The pressure of the liquids, PI, is given by

Pl =P, +y,l E,„,+ A, (EI E, E,„,) /V, — —(10)

I

This yields the usual form of the Lindemann law,

T =constXO MV
d lnT

d lnV

This melting-line slope is defined by the Linemann law
discussed below.

C. Lindemann law

The Lindemann criterion states that the root-mean-
square vibrational amplitude (5) for cubic systems with
lattice parameter a at the melting point is

(6) =const . (12)
a

From Eqs. (6) and (11), we now get the simple form
A, =2y ——', , with y defined in Eq. (5).

This form is not applicable to highly anisotropic sys-
tems. Hence if it is applied to graphite (with a y =——', ), it
yields the wrong melting-line slope. The possibility that

y is too small at the melting point can be excluded. The
expansion coefficient is known to T=3000 K and is
well represented by the compressibility and y. If Eq. (6)
is modified to allow y( V) to increase sufficiently between
3000 and 4500 K to yield the proper melting-line slope,
Eq. (2) predicts a negative (dP/dp)T at high tempera-
tures, at densities defined by z in Eq. (5).
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The proper Lindemann criterion depends on the par-
ticular lattice type it is applied to. If the ratios of the lat-
tice constants are not constant with compression, one
cannot relate the vibrational amplitude of the mode that
is active in the melting process to a single lattice parame-
ter. The graphitic system is an extreme case. For a gra-
phitic system, the criterion can be rewritten as

(d)
(14)

(1—f)a +fc =const

T =constX8 MV (a/c) [(1 f)+f(cia)—] . (15)

This is the form used for graphite. For diamond the stan-
dard form [Eq. (13)] is used.

D. Mixed liquid

Equations (7)—(15) define the "scaled" liquid phases for
graphite or diamond based on the solid-phase equations
of state defined by Eqs. (1)—(6).

Far from the graphite-diamond-liquid triple point, the
diamond-liquid transition may be defined by the Gibbs
free energies of the solid and its scaled liquid EOS and
similarly for graphite. But near the triple point, the two
types of liquid must be allowed to mix. Otherwise, the
model would predict a quadruple point that includes a
liquid-liquid transition (instead of a triple point), a situa-
tion excluded by the Gibbs phase rule. To satisfy this
constraint, we use the theory of mixtures ' and minimize
G»q with respect to the atom fraction x of liquid diamond
to obtain

G»q =xGLd+ (1 —x)GLg

+RT[x lnx+(1 —x)ln(l —x)]+ A, (T,P,x),
(16a)

where we use

~s, o
A, (T,P,x) =RT x(1—x) .

1+(P/Po)
(16b)

This allows the mixing of the two types of liquid. GId
and GI are defined by Eq. (9) for diamondlike and
graphitelike liquids. The distribution of the two liquid
structures is random ' with fractions x and 1 —x, respec-
tively, resulting in the ideal logarithmic entropy of mix-
ing terms in Eq. (16). The random mixture of graphitic
and diamondlike structures can be either atoms or clus-
ters of equal size (n). Then we can unambiguously define

to allow for a weak effect of changes in the c-axis dimen-
sion. The value of f=0.01p'~ (with p in g/cm ) is deter-
mined by the low-pressure slope of the melting line, the
approximate symmetry of the (P, T ) curve around P =5
GPa, offers a maximum for the difference (T,„T,p)—
between the maximum in the graphite melting point and
the lower triple point, and affords the best melting-line
fit. It is further constrained by the known density depen-
dence of the c/a ratio (=0.25+2.53/p, with p in
g/cm ). Following the derivation as for cubic systems, 3

the melting temperature for the laminar structure of
graphite is

Nd ln

Nd /n+N~/n

Nd

Xd +X
independent of n, with Xbeing the total number of atoms
in the mixture. The strain energy ( A, ) does of course de-
pend on n. Since the strain energy is a surface effect
(nA, -n ), the temperature dependence of A,
( —1/n' ) in Eq. (16b) implies that n' —1/T, which
was arbitrarily chosen for computational convenience.
But the pressure dependence is consistent with the bar-
rier to transformation computed by Fahy, Louie, and
Cohen, in so far as the quantity in square brackets [Eq.
(16b)] is small at their spontaneous transformation pres-
sure near 80 GPa. The magnitude of 3, affects the
compressibility of the liquid near 6 GPa where the value
of x, and the diamondlike character of the liquid, rapidly
increases. Sufficiently large values of A, cause the liquid
to separate into two phases.

IV. LIQUID STRAIN ENERGY

The boundaries between graphitic and diamondlike
liquid clusters (and for sufficiently small clusters the clus-
ters themselves) are energetically of the order of a transi-
tion state as defined in Arhenius kinetics. Experimental
data of diamond-to-graphite transformation rates near
the melting line are the best source for this transition en-
ergy. Diamond with a vibrational shear mode frequency
v=3. 8X 10' s ' would have a transformation probabili-
ty

8=0.5v exp( —c.' lkT), (18a)

if a single atom could define the activated state. Here the
exponential term gives the fraction of atoms in the ac-
tivated state and v the frequency with which the transi-
tion configuration is approached. But a single atom
transforming from a diamond to a graphitic configuration
does not form a stable nucleus. If a stable nucleus con-
sists of n atoms vibrating in phase to and over the transi-
tion barrier, the probability may be written

P' =0.5v'exp( —n E'/k T) . (18b)

The rate has been determined experimentally near
the melting line of graphite. A hot graphite rod insulated
with diamond powder initiates a transformation of the di-
amond to graphite at about T=3800—4200 K in the
graphite stable region of the phase diagram and over a
time interval of about 1 ms. Using that as the e-fold time
[for dN/N(t)=P'dt] and using v'=tt" 'v, where/t is
the probability that a neighboring atom has the proper
phase relationship, we may compute e =c,*(n) from

—ng =kT ln
2

ehtv'
=3.7 eV (19)

and get the results in Fig. 1 for two reasonable values of
/t and the probable extremes of the uncertainty range of
the experimental temperature. The range of possible
cluster sizes is between 2 and 12 or 16 atoms for the two
vibrational phase constraints chosen and with the given
transformation temperature.
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FIG. 1. Arhenius activation energy per atom for a carbon
cluster of n particles that, at the given temperatures, gives the
1-ms transformation time indicated by Bundy (Ref. 44). The
quantum-mechanical lattice transformation energy of Fahy,
Louie, and Cohen (Ref. 40) is indicated by a labeled arrow.

A minimum strain energy per atom may be estimated
from a priori quantum-mechanical calculations of the
crystal along its minimum-energy transformation path.
Local-density theory predicts a maximum along that
path of 0.67 eV per two-atom unit cell. Similar although
somewhat higher values are calculated for diamond-BC8
transformations with a pseudopotential method. This is
the energy for two atoms transforming simultaneously
with the rest of the lattice and neglects the strain energy
at the boundary of a nucleus of transformed material.
We therefore may take 0.33 eV/atom as the minimum en-

ergy of the activated state. Referring to Fig. 1, we note
that the largest possible clusters consist of 8 —11 atoms.

More detailed graphite-to-diamond transformation
measurements than the diamond-to-graphite transforma-
tion of Ref. 44 have been made over 5-min time inter-
vals at 2500—3500 K in the diamond stable region and at
9 GPa. The analysis yields a nucleus size of about 16
atoms and n c= 1.0 eV. At these lower temperatures and
longer transformation times, the mechanisms may be
quite different. This exercise, therefore, offers a fairly
broad range of values for A, o in Eq. (16). By this
analysis, the value of A, o may therefore be small for
large clusters and approaches the sublimation energy for
one- or two-atom clusters. Considerations of the struc-
ture of the phase diagram offers a closer estimate of the
liquid cluster size.

V. DISCUSSION

Minimizing Gi; in Eq. (16) with respect to x and deter-
mining the condition Gi; (T,P)=G, ;(T,P) (where i is d
for diamond or g for graphite) gives the melting lines in
the phase diagram in Fig. 2. The graphite-to-diamond
transition is similarly determined by the condition
G, d(T, P)=G, g(T, P). A significant quantity that con-
strains 3, o is the large difference between the minimum
and maximum experimental T values of the graphite-

FIG. 2. Phase diagram of carbon in the graphite stable pres-
sure range. The measurements of Fateeva and Vereshchagin
(Ref. 47) A and Bundy's measurements (Ref. 16) (~). Melting
and liquid-liquid transitions this theory: A, o=2.0 (long-dashed
line), A, 0=2.4 (solid line), A, O=2. 8 (short-dashed line), and

A, 0=2.8, with T o (diamond) reduced by 12% (short and long
dashes). A possible liquid-liquid critical point (X) is also
shown.

liquid phase boundary. The curvature of a graphite-
liquid boundary has been determined experimentally by
Bundy's electrical' measurements and the optical mea-
surements of Fateeva and Vereshchagin. The low-
pressure slope given by the model is determined by f in
Eq. (14) and y& in Eq. (5). The latter controls the slope of
e [Eq. (6)]. Both control the slope of the melting line
through the liquid-graphite component. Equation (16)
shows that the largest contribution of 3, to G occurs
near x =

—,'. As A, o is increased, the difference between

small values of x below and large values above 5 GPa be-
comes larger, as does the difference between the lower
and upper limits of the melting temperature.

The data of Fateeva and Vereshchagin and Bundy's in-
terpretation of their data indicate a gas-liquid-graphite
triple-point temperature of 4000 K, the best data avail-
able at the time that the high-pressure melting line was
measured. The more recent measurements of the48

graphite-liquid-vapor triple point place its temperature
between 4500, according to Cezairliyan and Miller, and
5000 K, according to Baitin et al. ' The higher triple-
point temperatures imply the need for a correction to the
melting lines, but they do not change the shape of the
curves. The experimental data was corrected to the 4500
K triple point by adding the same hT to all points.

But aside from the uncertainty in the absolute location
of the melting points, both sets of data indicate a larger
curvature than the theoretical results. Changing the
value of A, o allows some adjustments of the curvature of
the theoretical graphite melting line. Several choices of
this strain energy are shown in Fig. 2. Previous work has
favored a negative slope for the diamond melting line,
which allows a better fit of Bundy's graphite-melting-line
data, but recent experimental results indicate that the
slope of the diamond melting line should be positive both
below 30 Gpa (Ref. 51) and above 100 CxPa. The model
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FIG. 5. Structure factors S(k =0) for the isotherms in Fig.
4. Symbols A, 0, 0 as shown in Fig. 4; (+) result of Dharma-
wardana and Perrot (Ref. 53).

density-functional calculations of Dharma-Wardana and
Perrot show a significantly large structure factor
S(0)=0.36 near p=2 glcm and T=5000 K (P —5 GPa
based on the present model).

Some 5000- and 6000-K isotherms are shown in Fig. 4
for both 3,o=2.0 and 2.4. The 5000-K isotherm, for the
case 3,0=2.4, contains a solid graphite section of inter-
mediate density with lower- and higher-density sections
in the liquid phase. The other two isotherms are in the
uniform liquid phase and show no volume discontinuities.
The volume excursion is large in the transition region be-
tween graphitic and diamondlike liquids. Figure 5 details
the behavior of S (0). The value of S (0)= ~ in the tran-
sition regions between liquid and solid. As a result of
these large volume excursions, the values of S(0) calcu-
lated here are also large in the diamondlike-to-graphitic
transition region of the liquid. The 2-g/cm density, used
by Ref. 53, falls in the middle of this region. Their value
of S(0) (=0.36) is comparatively modest compared to
the results of this model and closer to the value for hot
graphite. It will be important to explore the above P,p, T
region with methods such as those of Ref. 13 and 53.
Determining the pressures that correspond to the p and T
selected offers a more accurate comparison with experi-
ment.

mental and theoretical investigation. A review of the
available data for liquid graphite indicates general agree-
ment on the conductivity within a factor of 3 (except for
liquefied amorphous graphite) and an indication of a pos-
sible structural change between the upper and lower tri-
ple points because of an increase in conductivity with
pressure.

We described the significant aspects of a multiphase
carbon model that includes a liquid-mixture model. The
solid Gruneisen equations of state for diamond and
graphite are fitted to experimental shock-wave and
static-compression data with a Birch form for T=O K
and a thermodynamically consistent Gruneisen yI for nu-

clear thermal pressures. An electronic Gruneisen term is
added to correct for the small electronic thermal pres-
sures and energies at high P and T. Solid nuclear heat
capacities are Einstein forms with entropy and energy
corrected to give the exact experimental values at stan-
dard temperature and pressure. Graphite and diamond-
liquid equations of state are obtained with a scaling mod-
el, developed by Grover, that is based on a scaled liquid
heat capacity and an entropy of melting term that are
consistent with experimental heat capacities of low melt-
ing metals and melting calculations of soft- and hard-
sphere systems. Selected entropies of melting are listed in
the text. The model also uses an isotropic Lindemann
melting model, which was modified for graphite because
of its anisotropy. The c-axis scaling function Lf ( V)] was
selected to maximize the curvature of the graphite melt-
ing line.

A liquid-mixing model contains a strain energy
We have shown that Arhenius kinetics and a priori
quantum-mechanical calculations offer a range of liquid-
liquid strain energies, kTA, o in Eq. (16), between 7 and
0.33 eV. The phase diagram is presented and the experi-
mental data indicate that kTA, 0= 1.1 eV is a reasonable
number. With this strain energy, the present model offers
good agreement with the experimental shape of the
graphite and the diamond melting lines. Such an energy
also results in a liquid-liquid phase separation, which ter-
minates in a critical point. The model predicts large
compressibilities in the p, T range where the graphitic
structure of the liquid changes to a diamondlike struc-
ture, qualitatively consistent with results from density-
functional theory.
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