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Anisotropic quantum XY spin chains in a quasiperiodic (QP) transverse field provide a very interesting
and a rich class of one-dimensional models exhibiting extended (E), localized (L), and critical (C) phases
in addition to a magnetic transition to long-range order. The interesting feature in this class of models is
the fact that the intermediate C phase exists in a finite window of size determined by the magnitude of
spin-space anisotropy. Furthermore, even a small amount of anisotropy in the spin space destroys the
fractal phase boundary between the E and L phases of the isotropic model.

One-dimensional (1D) quasiperiodic (QP) systems have
been the subject of many interesting studies in recent
years.! These systems provide a link for understanding
the crossover between random systems which cause local-
ization in 1D and the periodic systems which lead to en-
ergy bands and extended states. In addition, in 1D QP
systems, at the onset of transition between the E and L
phases, the systems exhibit fractal spectra and wave func-
tions known as the critical phase with power-law locali-
zation. Furthermore, the weak-coupling limit of this
problem shares a common mathematical foundation with
the small divisor perturbation theory of Kolmogorov, Ar-
nold, and Moser (KAM).? Therefore, there is a close con-
nection with the theory of nonintegrable Hamiltonian dy-
namics® relating KAM tori with the Bloch states and
Cantori with the localized states.

In this paper, I study a QP spin model which, in addi-
tion to the E, L, and C phases, also exhibits a magnetic
transition to long-range order (LRO) and, hence, pro-
vides a very interesting class of models which describe
the interplay between magnetic and spectral properties.
As shown below, the existence of a magnetic phase tran-
sition signaled by the appearance of a zero mode leads to
a different behavior of the fattening of the critical phase.
The model under investigation is the 1D anisotropic,
quantum spin chain (anisotropic XY model) in a QP mag-
netic field,

H=— 3 [0},0}+1T(1+g)oyoy ¢ th,oh]. (1)

n

The magnetic field is chosen to be a sinusoidal function
incommensurate with the periodicity of the lattice,

h,=Acos(2mron) . (2)

Here o is an irrational number. The irrationality of this
parameter is the heart of this problem as it introduces
two competing periodicities in the model. For conveni-
ence, I will choose the parameter o to be the inverse
golden mean o =[V/(5)—1]/2; however, none of the re-
sults of this paper depends on this choice. The parameter
A is the strength of the field and g is the spin-space an-
isotropy which breaks the O(2) symmetry of the spin
space in the model. For g =0, the model is an isotropic
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XY model, while for g = —1, the model reduces to the Is-
ing model.* For any finite value of g, the model is Ising-
like due to O(1) symmetry with the easy axis (the axis of
LRO in the absence of field) being the x axis for
—2<g <0 and the y axis for other values of g. The axis
perpendicular to the easy axis in the XY plane will be
called the hard axis.

Using the methods described by Lieb et al.,® the spin
models are mapped to fermion models, quadratic in fer-
mion degrees of freedom. Therefore, the spectral proper-
ties of the spin model (1) can be determined by diagonal-
izing the following tight-binding model (TBM):

G(¢n+2+¢n —2)+(Ghn—1+hn )d}n—l
+(Ghn+hn+l)¢n+1+(1+G2+h3)¢n:E2¢n s <3)

where 1+g is set equal to G. In the Ising limit (G =0 or
g =—1), the TBM involves only nearest-neighbor (NN)
interaction among the fermions. In the pure XY limit
(G =1), the above TBM reduces to the Harper equation
squared. Hence, the self-dual Harper equation given by
the following TBM,

¢n41+¢n+1+hn¢n=E¢n ’ (4)

with A, given by (2), describes the physics of an isotropic
XY model in a QP field. Using the self-duality of the
model, it was shown® to exhibit a transition from the E to
L phase at A=2. In this transition, referred to as the
breaking of analyticity, the E and L phases are separated
from each other by a critical phase which exists only at
the self-dual point A=2. The anisotropy destroys the
self-duality of the model and except for the Ising case,
introduces next-nearest-neighbor (NNN) interaction
among fermions. As shown below, the presence of the
anisotropy introduces a new scenario for the breaking of
analyticity by stabilizing the critical phase in a finite win-
dow in parameter space.

The numerical study of the model (1) involves studying
a sequence of periodic systems with periods correspond-
ing to various rational approximants of the golden mean.
This requires diagonalizing the TBM [Eq. (3)] for various
Fibonacci orders. In my systematic study, for different
values of g, the energy spectrum and wave functions were

3511 ©1993 The American Physical Society



3512 BRIEF REPORTS 48

calculated. The spectral properties of the model were
determined from the wave functions and the scaling of
the bandwidths with the size of the system: the C and E
phases are, respectively, distinguished by the algebraic
and exponential decay of the total bandwidth (TBW) with
the size of the system.” Using the methods of Lieb
et al.,’ the long-range correlations between the site n and
N +n, Cr(n,N)=(0,0,+y), along the x, y, and z axes
were computed.

In analogy with the self-dual isotropic model, the an-
isotropic models for all values of g were found to exhibit
a pure spectrum, i.e., all the quantum states were either
E,C, or L. Figure 1 shows the TBW, the scaling ratio R
(which is the ratio of the lowest gap to the lowest band-
width), and the magnetic correlation along the easy axis
as a function of A for various values of g. Except in the
special cases of XY and Ising limits, the system is found
to exhibit three phases E,C, and L and makes transitions
between the E-C and C-L phases as the strength of the
magnetic field is varied. As the anisotropy g increases,
the zero measure critical phase of the isotropic model is
found to exist for a finite window in the A space, where
the width of the window is always equal to twice the an-
isotropy. The transition between the C-L phase is always
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accompanied by the appearance of a zero mode [see Fig.
2(a)] in the energy spectrum and the vanishing of long-
range correlations along the easy axis (Fig. 1). The tran-
sition between the E-C phase has no bearing on the mag-
netic properties of the system. The numerical results
show that the onset of the E-C transition is determined
by the strength of the spin-spin interaction along the
hard axis while the onset of the C-L transition is deter-
mined by the strength of the spin-spin interaction along
the easy axis. In the isotropic limit, where the easy and
hard axes degenerate, the E-C and C-L transitions also
degenerate to a single transition. As g increases from
zero to a positive value, the onset of the E-C transition
remains locked at A=2, twice the strength of the spin in-
teraction along the hard axis, for all positive values of g,
while the onset of the C-L transition is found to vary
with g and is given by A=2+2g, which is equal to twice
the strength of the spin interaction along the easy axis.
As g varies between —2 and 0, the x axis now becomes
the easy axis and the onset of the C-L transition remains
locked at A=2, while the onset of the E-C transition
varies, and is now given by A=2+2g. This explains why
the transition from the E-C phase does not affect the
long-range correlations in the system. In the Ising case,

FIG. 1. (a) TBW (solid line), R (dotted line), and Cr (dashed line) as a function of A for Ising model (g = —1). Cris the correlation
between the spin at site 1 and the spin at the midpoint of the periodic chain (in general, it varies from site to site) along the easy axis.
Note that all the quantities are normalized to unity. In the C phase, TBW increases from zero to a maximum value as A approaches
2, the onset of C-L transition. The dark squares show the TBW for the XY model, showing the E and L phases. (b)—(d) Same as (a)
for g =—0.5,g =0.5, and g =1. These figures show E,C, and L phases. As A is increased, TBW monotonically decreases in the E
phase, monotonically increases in the C phase and then drops exponentially to zero in the localized phase.
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there is no hard axis and, hence, no E phase and E-C
transition but there is a C-L transition at A=2, accom-
panied by a magnetic transition as reported previously.*

It is interesting to note that the E-C and C-L transi-
tions were respectively signaled by maxima and minima
in the ratio R (Fig. 1). In analogy with the previously
known results,® the minimum value of R signaling the on-
set of the C-L transition is always found to converge to a
universal value R; or R,, exhibiting period 3 as a se-
quence of Fibonacci periods are used. On the contrary,
the maxima in R signaling the transition from the E-C
phase show no convergence to any definite value.

I next examine the question of the smoothness of boun-
daries between the various phases of the system as the
single harmonic modulating field is replaced by a more
generic periodic function containing multiple harmonics.
In a recent study,g’10 the Harper or XY model with the
magnetic field containing two harmonics, was studied,
ie.,

A
h,=——=—/[cos(2mon)+a+cos(4won)] . (5)
" V+dd)
The system was found to exhibit cascades of E-L transi-
tions in the lowest quantum states and the boundary be-
tween the existence and nonexistence of the E and L
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phases was a fractal in the A-a plane. Associated with
the fractal boundary were the cascades of band crossings
sandwiched between E-L phases which were found to
obey additive rules and a self-similar pattern of scaling
ratios R. My numerical studies confirmed that the spec-
tral states near zero energy (the lowest state for the XY
model) also exhibited a devil-fork phase diagram in the
two-parameter space. Underlying these cascades of tran-
sitions are the cascades of band crossings between the
two lowest-energy bands of the XY model. In view of the
exotic behavior of the isotropic XY model, I investigate
the effect of spin-space anisotropy on the fractal bound-
ary and the band crossings. One could, in principle,
speculate on the existence of a fractal boundary between
the E-C phase as well as between the C-L phase. Howev-
er, the absence of any convergence in R at the E-C transi-
tion suggests that the C and L phases are more likely can-
didates for the existence of a fractal boundary between
them. The single harmonic anisotropic model in analogy
with the isotropic model exhibits no band crossings [see
Fig. 2(a)]. Figures 2(b)—(d) show how the band crossings
of the two harmonic isotropic models begin to disappear
as an anisotropy is introduced in the system. Extensive
numerical studies showed that the anisotropy destroys
the additive rules for the band crossings and hence the
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FIG. 2. (a) Two lowest-energy bands vs A, for g =1, illustrating no band crossings in the single harmonic case. (b)—(d) Two lowest
bands in the two harmonic models for fixed A=2, for g =0 (showing four band crossings), g =0.01 (showing three crossings), and
g =0.1 (showing two band crossings), showing how the band crossings are wiped out as g increases.
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fractal boundary. This was also found to be the case
when in the g-h parameter space, where both g and A are
modulating functions of lattice sites with the same
period, which is incommensurate with the periodicity of
the lattice.

In conclusion, the breaking of O(2) symmetry of the
spin space, which is responsible for the long-range corre-
lations among spins, destroys the self-duality of the iso-
tropic model and stabilizes the critical phase (sandwiched
between the E and L phases) in a finite window in param-
eter space of size equals to twice the magnitude of anisot-
ropy. Whereas the easy axis determines the transition be-
tween the C-L phase (accompanied by infinite correlation
length and LRO), the hard axis is responsible for the
transition between the E-C phase. This explains why the
transition between the E-C phase does not lead to any
magnetic transition in the system. In the fermion repre-
sentation, the anisotropy introduces NNN interactions
among fermions. The fact that in the Ising model, the
NNN interaction term disappears suggests that the origin
of the NNN term in the fermion picture may be linked to
the presence of both easy and hard axes.

In addition to fattening the critical phase, it is interest-
ing that the long-range correlation preserves the smooth-
ness of the boundary between the E,C, and L phases in
contrast with the isotropic systems, where such perturba-
tions lead to a fractal boundary between the E and L
phases.
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In view of the similarity between the TBMs and area-
preserving maps of the dynamical system, it is interesting
to conjecture what analogies these results may have with
the Hamiltonian maps. One could speculate a new
scenario for the breakdown of KAM tori in the Hamil-
tonian systems in which, contrary to the existing scenario
where a given KAM torus breaks at a critical value of the
nonlinear parameter, a torus will remain critical for a
finite measure of nonlinear parameter space before break-
ing. If the NNN interaction among fermions is a key for
the three-phase diagram, with each phase existing for a
finite measure of parameter values, one may need to
search for the fat critical regime in the four-dimensional
Hamiltonian maps. If long-range correlations are the key
requirements for this behavior, the fat critical phase may
be found in the area-preserving maps obtained by study-
ing the ground-state configurations of classical spin mod-
els exhibiting LRO. Furthermore, it will be interesting to
see this stable critical phase in quantum maps such as the
Harper map!! which exhibits both E and L phases.
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