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We have recently studied the magnetization and specific heat for two- and three-dimensional super-
conductors, starting from Landau-Ginzburg theory. In this paper we compare the results of this study
with available experimental data. All our results have been calculated for a strong magnetic field along
the c¢ axis in the region near the H, line where the lowest-Landau-level approximation is valid. We
show that the theoretical two-dimensional magnetization compares very well with that measured for the
high-T, superconductor Bi 2:2:2:3, which is a quasi-two-dimensional system. Our comparison leads to
an estimate of «, the Ginzburg-Landau parameter as k= 140. In three dimensions a reasonable fit to the
specific heat for a conventional superconductor (niobium) is obtained, but the anisotropic Landau-
Ginzburg theory cannot be made to fit YBa,Cu;O,_5 over any sizable temperature range. It is only
when the Lawrence-Doniach model is considered (which takes into account the layered structure of the
system) that a fit becomes possible over any temperature range. At high temperatures the form of this
function is the same as the two-dimensional Landau-Ginzburg theory and the fact that this fits the exper-
imental data indicates that the layers are acting independently.

I. INTRODUCTION

The phenomenological Landau-Ginzburg model has
long been used in the theoretical investigation of super-
conductivity. Using the techniques developed in a previ-
ous paper! we compare the specific-heat and magnetiza-
tion functions with experimental data for a number of
materials, whose superconductivity is either two or three
dimensional, in the region near the H_, line where the
lowest-Landau-level approximation (LLL) is valid.

We will begin with a brief review of Landau-Ginzburg
theory, in order to define our notation. This will be fol-
lowed by a summary of the techniques which have been
used to evaluate the magnetization and specific heat over
the complete temperature range. The difficulty in using
Landau-Ginzburg theory is that when one goes beyond
mean-field theory the only systematic analytical tech-
nique available is to expand the free energy in terms of a
perturbation series in the coupling parameter.>® This
series, which gives us the free energy as a function of the
reduced temperature, is asymptotic in nature, so in order
to apply it over any temperature range it must be extra-
polated. This is done using a resummation technique,
usually a Padé or Padé-Borel approximant. However, in
Ref. 1 we pointed out that the result of this resummation
was highly dependent on the precise technique used. We
found that writing the series as an expansion in the entro-
py and then resumming improved the self-consistency of
the series, especially at low temperatures. We will there-
fore use this technique to calculate the specific heat and
magnetization and then compare them with experimental
data.

We will consider data for materials whose supercon-
ductivity is either quasi-two or three dimensional. An ex-
ample of the former is a layered superconductor where
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the coupling between the layers has become small. The
data will then be compared with the appropriate two- or
three-dimensional Landau-Ginzburg theory results. The
data has been plotted against a “reduced” temperature
variable, which makes data at different fields and temper-
atures collapse on a universal curve.

We show that the theoretical two-dimensional magne-
tization compares very well with the experimental data of
Li et al.* for the high-temperature superconductor Bi
2:2:2:3, which is a quasi-two-dimensional system. More-
over, after fitting the theoretical curve we are left with
two relationships for L,, k and, B’, the interlayer spacing,
Landau-Ginzburg ratio, and the gradient of the B,, line.
If we fix L, at the value determined by neutron scattering
of 18.6 A we obtain k~140 and B'~5 T/K. A previous
calculation by Li et al.* following the method of Hao and
Clem® gave k=170 and the value of B’ used by Li et al.
is 3.4 T/K, although they say that the plot is fairly in-
sensitive to the value used. The comparison of the two-
dimensional theoretical results with the specific-heat data
of Urbach et al.® for the multilayer system of supercon-
ducting Mo,,Ge,; separated by insulating amorphous
germanium is less successful. We are unable to obtain
agreement between theory and experiment. This may be
because the experimental system cannot be adequately
described by a disorder free two-dimensional model.

In three dimensions we have a reasonable fit to the
specific-heat data for a conventional isotropic supercon-
ductor, niobium, as measured by Farrant and Gough.7
However, we were completely unable to manipulate the
anisotropic  Ginzburg-Landau theory to fit the
YBa,Cu,;0,_s data of Welp et al.? over any sizable tem-
perature range. We then considered using the
Lawrence-Doniach model,” which takes the layered
structure into account. We found that at high tempera-
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tures the system is, in fact, two dimensional, which
means physically that the layers have become indepen-
dent.

Finally, the resistivity data of Worthington er al.'®
predicts a melting criterion for the vortex lattice as a
function of field and temperature. We have evaluated
this criterion in terms of our reduced temperature vari-
able.
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II. REVIEW OF LANDAU-GINZBURG THEORY
RESULTS

To fix notations, we briefly describe anisotropic
Landau-Ginzburg theory for a superconductor, where 1,
the wave function is our spatially dependent order pa-
rameter. For a fuller explanation and justification, see
Refs. 1-3.

We start with the free-energy functional,
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Here a(T) is a temperature variable, 3 is the coupling
constant, and m, is the effective mass. In the cases we
consider the masses in the ab plane are taken as equal and
are denoted by m,,, and the mass in the ¢ direction is
written as m,.. The temperature dependence of a(T) is
taken to be linear, a(T)=(T—T,)a’. We also assume
the lowest-Landau-level approximation, which is valid
near the H,, line. If fluctuations in the vector potential
A, are ignored, which again is a valid approximation
near the H, line, we can write the free energy in terms of
the reduced temperature: a, =a+eu.H#%/m,,. This is
zero along the H_, line. With the use of Feynman dia-
grams it is now possible to evaluate the free energy as a
perturbation series in terms of the coupling constant, 8.2
The free energy per unit volume in two dimensions is now
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The field H is in units A /m. The reduced temperature
variable (a; or ar, its dimensionless analog) is connected
in two dimensions with the perturbation series variable x
by
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and in three dimensions by
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We will use the temperature variable a in our calcula-
tions. (This is similar to the variable y in Refs. 11 and
12.) The temperature variable used on the experimental
scaling plots is either this variable or proportional to it,
so that the experimental data taken at different fields col-
lapses onto one universal curve. The temperature depen-
dence of the a variable is such that high temperature is
represented by a;— o, low temperature by ar— — o,
and a;=0 corresponds to being on the H,, line. The
above treatment is valid where the lowest-Landau-level
approximation can be trusted, which probably requires at
least that H > H,/f, where f =3 according to TeSanovic
et al.'®* In general, scaling plots in which data at
different fields and temperature collapse onto a single
curve are associated with a phase transition but it is not
being suggested that one is necessarily present here. The
existence of scaling has been recently discussed by Ullah
and Dorsey,!* but was noted many years ago by Bray.!

We can now by differentiation of the free energy with
respect to ar obtain the dimensionless entropy, s(ar)
and from there invert the series to obtain a(s). The new
series when resummed by Padé or Padé-Borel approxi-
mants was previously found to have better self-
consistency than the original series, especially in the
low-temperature regime and also compared most favor-
ably with the available Monte Carlo data.! ¢ Moreover, in
the zero-dimensional case which we could analyze exact-
ly, this manipulation of the series after Padé or Padé-
Borel resummation, was found to give the most accurate
results, so we follow this procedure here.

The thermodynamic functions that we actually need
for comparison with experimental data are the magneti-
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zation and specific heat. These are now easily calculable.

The specific heat is just the differential of the entropy
with respect to ar. In n dimensions (where n =2 or 3)
we define the dimensionless entropy by

dg.p(X) dx
= 2.6
SnD dx dar 26
The normalized specific heat is then given by
ds
C nD _dx 2.7)

AC PeTax dar ’

where C is the specific heat, AC is the mean-field discon-
tinuity in the specific heat, and 3, is the Abrikosov fac-
tor. The mean-field theory should be a valid approxima-
tion at low temperatures so the normalized specific heat
should approach one in this limit.

The magnetization within the LLL approximation is
found to be

M=—T (o) 2.8)
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In two dimensions this leads to the equation
M ke 3,u8ﬁ 172
VR 5 5D » (2.10)
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where s, is just the dimensionless entropy. Hence we
can use our method of resumming the perturbation series
for the entropy to calculate the magnetization (within the
LLL approximation). The right-hand side of Eq. (2.10) is
a function of a4 only, enabling all experimental magneti-
zation data in a range of fields and temperatures (taken
within the LLL regime) to be collapsed onto one curve.
In three dimensions the LLL magnetization is
1/3
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where again the right-hand side is a function of a only.

It should be noted that we have calculated all our
quantities with appropriate Systeme International (SI) di-
mensions and converted the experimental data from cgs
to SI.

It has been pointed out by Ikeda and Tsuento,!” that
starting from the Landau-Ginzburg theory of Eq. (2.1)
corrections from higher Landau levels are quite large.
The corrections they calculate are field dependent such
that the right-hand sides of Eqgs. (2.10) and (2.11) are no
longer functions of a, only, and so if large, these terms
should prevent the experimental data from collapsing
onto a single curve. Moreover, there are also corrections
because of the limits of validity of Landau-Ginzburg
theory, see, for example, Refs. 18-20. However, despite
all these possible corrections the experimental data can
be seen to scale in the manner suggested by the LLL
approximation—indicating that the sum of all correc-
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FIG. 1. Specific-heat data for Mo;;Ge,; multilayer system
and two-dimensional [5,4] Padé-Borel Landau-Ginzburg
specific-heat curve, showing that the agreement is very poor.

tions must be small.

An alternative method of scaling the thermodynamic
properties has been used by Salamon et al.?! which uses
XY-like critical scaling to predict the scaling form for the
data. However, in the region that the LLL approxima-
tion is valid our scaling collapses the data better and we
additionally correctly predict the actual functional form.

III. TWO-DIMENSIONAL COMPARISON

We have previously compared the two-dimensional
Landau-Ginzburg theory with the specific-heat data for
the multilayer material of superconducting Mo,,Ge,;
separated by insulating amorphous germanium! (see Fig.
1). This was unsatisfactory, possibly due to the different
superconducting layers having different transition tem-
peratures, or disorder playing a significant role in the ma-
terial, which was not allowed for in the theoretical calcu-
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FIG. 2. Magnetization data for Bi 2:2:2:3 and [5,4] Padé-
Borel Landau-Ginzburg magnetization curve, the integral of the
curve used in the previous figure. The fit leads to a value of
k=~ 140.
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lations. We have now compared the magnetization data
for Bi 2:2:2:3 (Bi,Sr,Ca,Cu;0,,), as measured by Li
et al.,* with the theoretical results. This was much more
successful. In fact we obtain such a good fit that the
theoretical curve is hard to distinguish from the experi-
mental data (see Fig. 2). The scaled experimental data is
plotted as M /(TH)'/? versus t=[T —T,(H)]/(TH)'?,
where ¢ is related to a by

t =[(BkgmZuo) /(e#’wL,)] *ar /B’ .

The constants in the functions for the magnetization and
the temperature are well known apart from the system
parameters « and B’ the slope of the B, line. We there-
fore found the best fit by allowing ourselves freedom of
scaling on the x and y axis and from there estimated «
and B’. The value of k=~ 140 is similar to that of 170, cal-
culated by Li et al. following the variational procedure
of Hao and Clem.’ The value of B'~5 T/K is different
to that used in the scaling plot by Li et al. of 3.44 T/K.
However, they state that the plot obtained is fairly in-
sensitive to a fairly large range of B’ (Clearly it would be
more satisfactory if one could replot the data using
different values of B’ until the value inputted and that
calculated from fitting the theoretical curve are con-
sistent.)

Tesanovi¢ et al.'® have also fitted this Bi 2:2:2:3 data
using their nonperturbative Landau-Ginzburg approach.
They also obtain a good fit but at the expense of an addi-
tional parameter.

IV. THREE-DIMENSIONAL COMPARISON

In the three-dimensional case we compare the
Landau-Ginzburg theory results with two very different
superconductors—the conventional isotropic supercon-
ductor niobium and the high-T, superconductor
YBa,Cu;0,;_5. For niobium we used the specific-heat
data of Farrant and Gough,” and for YBa,Cu;0,_g the
magnetization data of Welp et al.® Niobium provided us
with no problems, the data was already presented in
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FIG. 3. Specific-heat data for niobium and three-dimensional
[5,4] Padé approximant from Landau-Ginzburg theory. Devia-
tions at high temperatures are thought to be due to surface
damage of the sample.
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terms of our temperature variable a; so we could just su-
perpose our theoretical curves (see Fig. 3). We found
that the best fit was produced by the [5,4] Padé approxi-
mant, constrained to meet the mean-field value at low
temperatures. The discrepancy at high temperatures is
thought to be an artifact of the sample. (Farrant and
Gough suggest that surface damage of the crystal causes
the surface to go normal at a higher temperature than the
bulk of the sample.) Overall, we found that the isotropic
Landau-Ginzburg theory provides a reasonable fit to the
specific-heat data for niobium.

We then considered the magnetization data for
YBa,Cu;0,_s as measured by Welp et al.® The theoreti-
cal curve required is just the integral of the curve which
we used successfully to fit the specific heat of niobium. In
the case of niobium, we were left to choose which order
of approximant gave the best fit, but in contrast, with
YBa,Cu;0,_5 we could not obtain a fit over any sizable
temperature range at all. We allowed ourselves a scaling
parameter on both the x and y axis, as we had done with
Bi-2:2:2:3 previously. However, unlike Bi-2:2:2:3 this did
not lead to the determination of the system parameters,
as we were unable to find an adequate fit. Although an-
isotropic Landau-Ginzburg theory seemed a logical ex-
tension, it did not yield any improvements as it just al-
lows for a rescaling of the x axis, which we were already
allowing to vary arbitrarily anyway.

The introduction of Gaussian disorder, using the calcu-
lation of Fujita, Hikami, and Larkin?? did not provide a
suitable correction to the theoretical curve either. We
were left with the possibility that the disorder present
was important but not well approximated by assuming it
to be Gaussian or that the three-dimensional continuum
model was not appropriate.

The latter seemed a plausible explanation:
YBa,Cu;0,_; is a layered structure and we had been as-
suming that the correlation length would be sufficiently
large that the system could be treated as three dimension-
al. The Lawrence-Doniach model is appropriate for such
a layered structure: It is a Landau-Ginzburg-type model
in which the (infinitely thin) layers perpendicular to the c¢
axis interact via Josephson coupling. The free energy for
this model has been calculated to leading order by Ullah
and Dorsey.!* The resulting equation for the magnetiza-
tion is

kpTe*ulHV 2m,
2mab7Tﬁ

1
a'’[1+(m, L2 /2]

4.1)

At high temperatures this reduces to the ordinary
two-dimensional Landau-Ginzburg theory, with the form
M «<1/a. (Compare this with the three-dimensional
form M «<1/a'/?.) We found that by using this two-
dimensional expression we could fit the experimental data
for a; far better than we could with the three-
dimensional one. This can be seen clearly in Fig. 4 where
we have superposed on the experimental data the best
three-dimensional fit using the series expansion and also
the leading-order two-dimensional expression. The impli-
cation is that a high temperature YBa,Cu;0,_s behaves
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FIG. 4. Magnetization data for YBa,Cu;0;_5. At high tem-
peratures we demonstrate that the Lawrence-Doniach model
provides the best fit to the data, that is M < 1/@, cf. the three-
dimensional form M «1/a . At low temperatures we show
that it is possible to obtain a fit over a small range of tempera-
tures using the three-dimensional [5,4] Padé approximant.

two dimensionally, in that the layers are isolated with the
correlation length less than the interlayer spacing. As we
are considering the three-dimensional scaling plot there
should be some residual field dependence at high temper-
atures, of the form (HT) ™ !/%. However, at high tempera-
tures it is not possible to see any field dependence in the
available data. This is not surprising as the magnitude of
the discrepancy would be less than that of the symbols
used.

Physically, the two-dimensional behavior of
YBa,Cu;0,_; at high temperatures means that the corre-
lation length in the ¢ direction must be less than the spac-
ing between the superconducting copper-oxide planes, so
that the layers are acting independently. At high temper-
atures an estimate of the correlation length can be found
using &,#%/1/ 2m_a, which gives £, of the order of a few
Angstrom. This is less than the interlayer spacing of
~10 A.

We were then left with the problem of understanding
what happens as the temperature is reduced. In the vi-
cinity of the H, line, (i.e., a7 =~0), neither the first-order
Lawrence-Doniach approximation nor the three-
dimensional Landau-Ginzburg theory can be made to fit.
However, it is possible that a higher-order Lawrence-
Doniach approximation would yield a fit. At low temper-
atures we can obtain a poor fit to the data using the
three-dimensional series. It should be stressed that we
are not saying that this convincingly shows that the sys-
tem is three dimensional at low temperatures. However,
we thought it amusing to calculate the system parame-
ters, k,, and the mass anisotropy ratio, m_/m,, associat-
ed with this fit. This is in the light of the broad range of
values encountered when trying to establish where the
melting curve lay on the magnetization plots (see below).
The values obtained using the [5,4] Padé approximant
curve were of the order of k=~65 and m_, /m,,~1. The
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value of « is well within the range quoted,?* 2 although
the value of m_./m,, is low, but is very sensitive to the fit
chosen. The method used previously for estimating the
correlation length predicts £~40 A, that is 3-4 layer
spacings, at ar~ —10, but the formula will only be a
very poor approximation at these temperatures.

It is clear from just looking at the experimental data
that we cannot obtain a good fit using the three-
dimensional curve because the gradient of the experimen-
tal magnetization data is constant over a large tempera-
ture range, at low temperatures, whereas the gradient
changes in the theoretical curve, as consistent with the
specific-heat curve, (simple differential) which has a peak.
This appears to be at odds with recent experimental data
of Inderhees et al.'> They have measured the specific
heat of YBa,Cu;0,_; in an applied magnetic field, and it
has a distinctive peak as the temperature is varied. They
find that the simplest form of the three-dimensional scal-
ing result does not fit the data. This is in agreement with
our results which indicate that at high temperatures the
two-dimensional form should be used and that near H,,
the layered structure must be considered. However, since
the scaling result works well in niobium, we believe that
the failure to scale in YBa,Cu;0;_; is much more likely
to be due to the layered structure than a need to use the
crossover form postulated in Refs. 12 and 21.

To summarize, our analysis shows that at high temper-
atures YBa,Cu;0,_; is best fitted by the two-dimensional
Landau-Ginzburg theory. As the temperature is reduced
the correlation length grows and it is necessary to consid-
er the interaction between layers. At low temperatures
the system can be considered a continuum, but it is not
certain yet whether this temperature is above or below
the melting temperature.

V. MELTING TEMPERATURE

It is widely believed that in the high-7T, superconduc-
tors the flux lattice will melt at a temperature T, below
the mean-field transition temperature T,,. The resulting
phase above T, would be a vortex liquid dominated by
thermal fluctuation. Experimental investigations of
YBa,Cu;0,_5 have included many studies of the resis-
tivity versus current in different applied magnetic fields.
It is thought that one of the kinks in the data is associat-
ed with the melting temperature, see Worthington
et al.'° for details. From this data a melting curve of
field versus reduced temperature can be plotted. We
thought it would be interesting to get an estimate of
where the melting temperature fitted on the scaling plots
for the specific heat and magnetization. As the tempera-
ture ar is universal this would also suggest where a melt-
ing transition in niobium might occur. Moreover, it
might reveal whether the transition occurred in the re-
gion well approximated by the LLL.

We started with the resistivity data of Worthington
et al.,'° which suggests the relation H < (7T, —T)%? for
the melting curve. We have estimated the constant of
proportionality by fitting to their data and obtain the re-
lation poH=0.155(T,—T)*/%, with T,~93.5 K and H
measured in A/m. This is similar to the relation derived
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by Kwok et al.?® They have T,.~93.5 K and
uoH=103(1—T/T,)"*!, which can also be written as
UoH =0.174(T, — T)*1. We are interested in an esti-
mate and so have only used the data of Worthington
et al. to give us a value of T,,. The corresponding values
of ar, were evaluated by combining the relation for a;

in terms of a, with the linear approximation for the
upper critical field line T ,(H)=T,+H /H'.

The accuracy of the approximation now relies on the
value of k., and the ratio of the effective masses m,/m,
(a measure of the anisotropy of the system). These are
quantities that are deduced from experiments, and are
not universally agreed upon. We have considered the
value m,/m,, =59 of Farrell et al.?® and «,, =55 and
also those of Welp et al.?* and Krusin-Elbaum et al.,?
Kq =85 and m,/mg, =29. These produce melting tem-
peratures of the order of a;=~—8.5 and a;~—6, re-
spectively, although the actual values are slightly field
dependent.

VI. DISCUSSION

This paper has considered specific examples of the ap-
plication of Landau-Ginzburg theory to superconductors
which are either quasi-two or three dimensional. From
these studies we are led to some interesting assertions for
high-temperature superconductors in general.

We consider first the quasi-two-dimensional case,
where the theoretical Landau-Ginzburg magnetization is
found to fit the experimental data well. This could be
used in future to calculate the system parameter k. The
method would be to scale the data with a value of B, the
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slope of the H,, line, consistent with that produced by
the best fit of the theoretical data to the experimental re-
sults. This would completely determine the value of «.
The advantage of this procedure is that « would be de-
rived from a theory which is known to be valid in the re-
gion in which it is applied. This should be an improve-
ment on calculating « using mean-field theory expres-
sions. However, as mean-field theory is no longer valid,
the k we calculate will be a system parameter but not
necessarily the ratio A /€.

In three dimensions for high-temperature supercon-
ductors near the H,, line, the layered structure cannot be
accurately treated as a continuum. Calculation of the
Lawrence-Doniach model to beyond leading order is the
obvious next step, although this will not necessarily be
successful as it is still a fairly crude approximation to the
actual structure of the high-temperature superconduc-
tors.

Finally, the scaling of recent experimental data of
Welp?’ appears to work down to the temperatures at
which it has been suggested that the vortex lattice melts.
This is important because the data scaling indicates that
the lowest-Landau-level approximation is still valid in
fields above 5 T at these temperatures. However, many
theories, for instance Nelson and Seung,28 have started
with the assumption that it is reasonable to treat melting
as happening within the London regime.
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