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Linear and nonlinear ac response in the superconducting mixed state
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The response of the vortex system in the mixed state of type-II superconductors to ac fields is dis-
cussed from a unique macroscopic point of view. Linear and nonlinear response are derived as two op-
posite limits of the same diffusionlike equation for magnetic Aux. ac susceptibility experiments carried
out in the limit of strong nonlinearity are entirely equivalent to magnetic-relaxation or field-ramp experi-
ments. The magnitude and frequency dependence of the nonlinearity threshold, or amplitude of the ac
field where one crosses from essentially linear to strongly nonlinear response, are found and discussed for
both the vortex-liquid and vortex-glass states.

I. INTRODUCTION

One of the most popular means of investigating vortex
dynamics in the high-temperature superconductors
(HTS's) is the measurement of the response of the vortex
lattice (VL) to ac fields. ' Such measurements have
long been recognized as an important tool in the
verification of models for pinning and motion of vortices
in the mixed state of type-II superconductors. " ac
techniques are generally more sensitive than dc-resistivity
measurements as a result of the application of phase-
sensitive detection and yield extra information since fre-
quency can be varied in addition to temperature, dc field
IIo, and ac-field amplitude.

The application of a time-dependent field H(t)=HO
+h„exp( —i cot ) to the sample surface results in an
electric-field gradient in the sample interior (h„ is the
ac-field amplitude and co the angular frequency). This
gives rise to a shielding current, which in turn exerts a
Lorentz force on the vortices in the sample. The result-
ing vortex-displacement field u(r, t ) modifies the distribu-
tion of magnetic induction B and current density j in the
sample. Changes in the vector potential (5 A) and in the
induction (5B) that are due to vortex motion are connect-
ed to the displacement field by the relation'

6A=uXB,
5B=VX5A,

or

5B= —BV u+(B V)u —(u V)B .

The first two terms in Eq. (3) correspond to vortex-lattice
compression and tilt, respectively. ' The third term is of
order u 5B and may be dropped if we suppose that the
change in field is much smaller than the field itself,

6B + h „((B. The connection between 5B and the
vortex-displacement field means that measurement of the
fiux change 54&(t) near the sample, for instance, with a
pickup coil or Hall probe, ' can provide information on
vortex dynamics.

Usually, the experiment is arranged in such a way that
the induced voltage in the pickup coil or Hall probe is
proportional to the (time-dependent) sample magnetic
moment,

JK(t)= f rXj(r, t)d r .
1

sample 2C
(4)

It is then useful to express the ac response in terms of the
ac susceptibility y, which is defined using the Fourier
transform of Jk(t):

y= gy, +iy,

1 2~
J At(t)exp(incot )dtot

2~Vh„o
(V is the sample volume). The imaginary component y",

of the fundamental susceptibility has a special meaning in
that it is a measure of the dissipation in the sample. Ex-
periments on single-crystalline high-temperature super-
conductors show that upon ramping the temperature or
dc magnetic field, g varies monotonically from —l/4m
to 0, while g", initially rises from zero, goes through a
maximum, and then returns to a small value near T, .
The step in y', is due to the transition from near-perfect
screening to complete penetration of the impinging ac
field into the sample; the peak in y", marks the coin-
cidence of the fiux (current) penetration depth with the
relevant sample dimension times a geometrical fac-
tor. ' ' Also, the susceptibility curve has been found to
depend on the ac-field frequency and in certain cases on
the amplitude h„.
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If the induced current j (r, t ) is proportional to
h „exp( —i mt ), one speaks of linear response: y =y&, and
is independent of h„. Any other dependence of j on h„
leads to an amplitude-dependent susceptibility and neces-
sarily to nonzero higher harmonics y„. In a type-II su-
perconductor, it is the presence of vortex pinning by crys-
ta1 impurities which results in the appearance of a non-
linear ac magnetic response above a certain threshold
driving-field amplitude" (note that the reverse, the ab
sence of an observed driving-field dependence, does not
necessarily imply the absence of significant pinning). The
crossover between linear and nonlinear response has been
observed in thin films and single crystals of YBa2Cu307
(YBCO) (Refs. 5, 18, and 19) and single crystals of
BizSr2CaCu20s (BSCCO). ' The onset of a higher har-
monic response was reported for both YBCO and
BSCCQ crystals in Refs. 14 and 21. Both the linear-
response regime and the regime of high amplitudes are
relatively well understood, the first as arising from either
an Ohmic resistive state in the sample' ' ' or from
London-type electrodynamics, the latter in terms of the
Bean critical-state model. ' ' However, these two lim-
its have often been considered as being based on com-
pletely different and unconnected and sometimes even
convicting approaches. '

The aim of this paper is to give a description of the
linear as well as the nonlinear ac phenomena from a
unique macroscopic point of view. We will see how both
linear and nonlinear ac behavior arises as two different
limiting cases of the same set of equations and find the
position of the crossover between these two regimes.

II. GENERAL DESCRIPTION
OF ac VORTEX RESPONSE

We start with the Maxwell equations

1 BBV'XE= ——
c Bt

TXB= j .
C

In writing Eq. (8), it is supposed that the fields and
current are quasistatic: All effects due to the finite veloci-
ty of propagation of electromagnetic disturbances are
neglected. The Maxwell equations should be combined
with the equation relating the current j to the electric
field E, the latter being determined by the dynamic
behavior of the superconductor. We write this relation in
a form that is analogous to the case where E is simply
linear in j,

H( t ) =Ho+ h„exp( —i cot ) (with h „((IIo) is applied to
the sample surface. The condition h„«Ho means that
the change in p due to the change in 8 is negligible.

If p is independent of j, Eq. (10) becomes the usual
diffusion (heat-fiow) equation. ' ' We can then look for
a solution of the type B=HO+58(r, co)exp( ice—t ), where
68 satisfies

68— V 6B.
47Tco

Equation (11)defines the ac-penetration depth

1/2
ic p(co, T)

47Tco
(12)

4m.k„6A= — "j.
C

(13)

Thus A,, is the response function relating the current
density to the vector potential. If A,„is complex, there
will be a phase lag of j with respect to 6A at any point in
the sample. This means that the response is hysteretic,
leading to dissipation. From Eq. (13), one straightfor-
wardly retrieves the electric field E= —c '6 A
= —4~ic cok„j and the frequency-dependent resistivity

p = —47Tlc coA,

If the penetration depth is much smaller than the sam-
ple size, one can obtain the spatial field distribution inside
the sample by approximating the surface as being Aat.
The problem then reduces to finding the field distribution
inside a conducting half space (e.g. , occupying x )0).
The solution is B(x,t)=Ho+5B(x, t), where 5B(x,t)
=h„exp( icot —x/A, „).—The real and imaginary parts
of X„can now be interpreted as describing the envelope
of the penetrating induction and as a position-dependent
phase factor between the external and internal fields, re-
spectively. The current density is linear in the ac-field
amplitude,

This is related to the skin depth 5 by A,„=5Vi. In the
case where p is independent of co, as in a normal metal,
the penetration depth decreases with frequency as
A,„~co ' . As the frequency of the external ripple field
is increased, the ac current and ac fields in the supercon-
ductor are then confined to a more narrow layer at the
surface.

We can obtain Eq. (11) in another form by using Eqs.
(2) and (8):

E=p(j, co, B,T)j . (9)
j (x, t ) = ( ch „/4' A,„)exp( i cot —x /A,„)—

BB c
[Vp(j, co, B,T)V]B .-

Bt 4m
(10)

In order to describe the ac-susceptibility experiment, Eq.
(10) should be solved for the case where the field

The resistivity p can be a complex and possibly nonlinear
function of the current density j. From Eqs. (7)—(9), one
can easily derive the (nonlinear) diffusionlike equation for
Aux motion,

=c5B(x, t ) /4m A,„,
the current density at the surface equals j,= (ch „/
4m A,„)exp( i cot ). —

We now turn to the more general case where p is al-
lowed to depend on j and the response is nonlinear. A
solution of Eq. (10) can now only be found for certain
forms of p(j). We can, however, formally repeat the
linear-response result and write down a general form for
the ac-penetration depth,
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c 5B(x,t) ic p(j, co, B,T)
4' j (x, t) 4rrco

1/2

(14)

This form evidently becomes an exact equation in the
linear limit. We shall argue that in the case of strong
nonlinearity, Eq. (14) also provides a very accurate
description of the current distribution.

Suppose, for instance, that the resistivity can be de-
scribed by the thermally activated form

T

p(to=0, j)=poexp Ug
B

(15)

(16)

The straight-line approximation remains valid even after
Aux has penetrated to the center of the sample: The cen-
tral region where the Aux profile is not linear is exponen-
tially small. The current density is again given by Eq.
(16), but with d instead of x~ under the logarithm. If p( j)
is a weakly varying function of j, the straight-line approx-
imation is not valid: Results are then better approximated
by linear-response theory. The parameter that measures
the degree of nonlinearity is

with U(j) the effective activation energy. The solution of
Eq. (10) using this form of p was previously investigated
analytically ' and numerically ' for an infinite slab
(superconductor bounded by planes ~x

~
=d/2) in a con-

stant field Ho applied parallel to the slab surface. The
solution then corresponds to a shielding current that de-
cays with time. In Ref. 27 the Aux profile at t=0 was
chosen to represent the Bean critical state, in which j
equals the critical-current density j, over a surface shell
of thickness Ho/j„whereas in Ref. 28 the initial flux
profile was established by calculating the sample response
to a field ramp at a constant rate H, until H=Ho was
reached. The changing magnitude of the magnetic field
at the surface results in an electric-field gradient, which
in turn induces a shielding current of magnitude j (j, in
the sample interior. The spatial variation of j is deter-
mined by the actual form of U(j). If U(j) is a strongly
nonlinear function ofj (and does not depend explicitly on
B), the current density remains constant within a shell of
thickness xs =cH(t )/4vrj The flux. profile in the region
of penetration can thus be approximated by a straight
line. The magnitude of j depends on the magnitude of
the local electric field and therefore on the field sweep
rate H. It is given implicitly by the relation

c POJ
U(j (H))=k~ T ln

4~x~H

which just corresponds to periodically ramping the field
up and down between the values Ho+h„at the rate
H =cob„. The current density should therefore behave
in exactly the same way as in the field-ramp experiment.
In the case of strong nonlinearity (r &)1), the current
density at tot =0[mod(m. )] is constant over a surface shell
of thickness xs =ch„/4vrj (co). The thickness x~ is actu-
ally the Bean ac-penetration length, but with j, replaced
by j(to). Substitution of the nonlinear resistivity (15) in
the general formula for the penetration depth (14) yields
the implicit relation, for the magnitude of j(co),

U( j(co ) ) =ks T ln (18)

where the relaxation time r=4vr(5B) /c paI'(co) . Equa-
tion (18) is the same as Eq. (16), with the replacement
H —+co5B.

The response in the case of strong nonlinearity (r )&1)
is thus characterized by an ac-penetration depth A,„=xz
that depends linearly on h„and a spatially constant
current density j(co). This should be contrasted to the
linear limit where A,„is constant and j is proportional to
h „. However, the two situations are linked as two
different limits of the same solution of Eq. (10). The
crossover from linear to nonlinear response will occur
when r=1. Because the ac current is strongest at the
sample surface, nonlinear response will start there. It
therefore suffices to consider the surface current density
j, =ch„/4vrk„when e,valuating r.

III. APPLICATION
TO VARIOUS VORTEX STATKS

We now consider the specific features characterizing
the linear and nonlinear ac response in diFerent parts of
the mixed-state phase diagram. In each subsection we
shall first review existing results for the linear response
(small h„) in order to establish the different frequency re-
gimes. In the linear-response regime, A,„is determined
by the behavior of the frequency-dependent resistivity
p(co, j=O). Next, these results will be extended to the
nonlinear response (large h„), where the response is dom-
inated by the dc resistivity p(to=0, j). It will be seen that
the onset of nonlinearity in the ac response can be de-
scribed in a manner completely analogous to the cross-
over between diFerent frequency regimes of linear
response, namely, by the equation of the relevant ac-
penetration depths at the crossover.

aU(J)
Bj

(17) A. Vortex liquid

If the change in p( j) due to a change in j is much greater
than the relative change in j itself, r ))1, and one has
strong nonlinearity. Conversely, r «1 means that p(j)
[or U( j)] can be treated as constant on the experimental
time scale and the problem reduces to that of linear
response.

We now return to the ac-susceptibility experiment,

The vortex-liquid state is characterized by a finite
linear dc resistivity due to vortex motion, p(co =0,
j=0)%0. This implies that for j~0, the effective energy
barriers for thermally activated vortex motion do not de-
pend on the current density. The low-current activation
barriers in the vortex liquid state are those associated
with the plasticity of the vortex system, possibly due to
vortex entanglement: U(j=0)= U &.



3396 van der BEEK, GESHKENBEIN, AND VINOKUR 48

1. Linear response

If one subjects the sample to a low-amplitude ac field of
very high frequency, but smaller than the gap frequency
5/fi, the ac-penetration depth is very small. Because the
shielding current is confined to a thin surface layer, we
can neglect the interaction with the vortices. The ac
response can essentially be found from the London equa-
tion

4mkl
j+uXB

c
(20)

now consists of a part related to the surface-shielding
current and a part due to vortex displacements. The
vortex-displacement field u(r, t ) can in principle be found
from the solution of the appropriate equation of motion,
e.g. ,

gu+F(u,—r)+ —j XB=Fr(t) .1.
(21)

Here q is the vortex-lattice flow viscosity and FT(t) is a
random thermal (Langevin) force. The restoring force
F(u, r) is the sum of the elastic force due to the other vor-
tices and of the elementary forces f exerted by randomly
distributed individual pinning centers. The equilibrium
positions of the vortices correspond to local minima of
potential energy, at which F(u, r)=0. Evidently, these
positions differ from the vortex-lattice sites occupied in
the absence of pinning. The fact that pinning centers are
randomly distributed means that the positions of local
energy-minima are also random. Moreover, because pin-
ning is a collective phenomenon (the restoring force also
depends on vortex elasticity), the heights of the energy
barriers between potential minima are also random. This
means that, in practice, one is dealing with a distribution
of restoring forces.

For small vortex excursions from local minima, the po-
tential is harmonic, so that the restoring force is elastic.
One writes F(u, r) = —at (r)u, where the "spring con-
stant" at (r) has been called the Labusch constant. ' In
this limit, Eq. (21) is linear and can in principle be solved.
Assuming that u(r, t) can be written as u(r)exp( icvt), —
the formal solution neglecting thermal fluctuations is

u( r, t ) = —— exp( i cot ) . —1 j(r) XB
c icog al (r)— (22)

In order to calculate quantities such as the ac-penetration
depth, one should take the average over disorder of u,
i.e., the average over the ensemble of al values. Unfor-
tunately, such a calculation is hindered by the fact that
the distribution function for at (i.e., for the restoring

c A,
4m.k,i

which is just Eq. (13) with A.„equal to the London
penetration depth A,~. Because A,l is real, there is no dis-
sipation and y", =0.

As the frequency is lowered, A,„increases to the point
where the interaction of the surface current with the vor-
tices becomes important. The total vector potential

~ac ~FF

1/2
iB ~co '~ (1+i ) . (23)

A,„ is complex, as in a normal metal with resistivity

pFF —=B /p. Bothy) andp)' are nonzero.
At frequencies below coo, the restoring force —

aalu

dominates over the viscous-drag force, which can then be
neglected. If thermal Quctuations are also not important,
we have at u=j XB/c and the displacernent can be ob-

force) is unknown. We will therefore suppose that the
distribution of pinning potential barriers (between local
minima) is characterized by a single typical energy value
U. By also taking a single typical pinning interaction
range rf, one can estimate u~ = U/Vrf, where V is the
volume of an independently pinned region of the VL.

For example, in the case of weak collective pinning due
to randomly positioned point defects one expects a
reasonably broad barrier distribution, where both the
mean and width have the same energy scale U,
=[ W( 0) V]'~ rf T.he pinning strength W(0)=n (f )
is the product of the point-defect density n and the vari-
ance of the elementary pinning force over a unit cell of
the VL. The correlation volume V, =R,L,, is the size
of the region in which vortex displacements due to pin-
ning are less than rf. The lengths R, and I., are deter-
rnined from the condition that the pinning energy
[W(0)V, ]' rf equals the energy of elastic deformation
over a distance u =rf. The elastic energy equals
c66(rf/R, ) and c44(rf/L, ) for shear and tilt deforma-
tions, respectively, where c66 and c44 are the vortex-
lattice shear and tilt moduli. Because pinning is mainly
due to the interaction of the vortex core with the defects,
the pinning range is of the order of the core size: At
fields B &0.2B,2, rf approximately equals the Ginzburg-
Landau coherence length g, whereas at fields near B,2 it
is given by the vortex spacing ao (Ref. 33) (B,2 is the
upper critical field). The typical value for the Labusch
parameter can now be estimated as ( al )
=U, /V, rf. It is more convenient to express (at ) in
terms of the critical-current density,
j,= [ W(0)/V, ]' /B, which is an experimentally accessi-
ble quantity. We then have ( al ) =j,BIrf.

Whereas the concepts of weak collective pinning are
thought to be applicable in the low-temperature vortex-
glass state, in the vortex-liquid phase the barriers were
conjectured to be those for plastic motion of portions of
the VL. There is a narrow distribution of barrier heights
with a typical value U &. For sufficiently short times, the
concept of a critical-current density still makes sense, so
that we can again write (at ) =j,B Irf.

The solution of Eq. (21) leads to three frequency re-
gimes of vortex-dominated response (see Fig. 1). From
Eq. (22) one sees immediately that for co ))coo =—( at ) lg,
one has cog))a~; i.e., the effect of viscous drag dorn-
inates over the restoring force. The quantity coo is called
the "pinning frequency. " Neglecting the restoring force
altogether, we use Eq. (1) to write the vector potential
5 A= (iB /cries—)j Comparing . this to Eq. (13), we have
the ac-penetration depth
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U„1
p(co }=pTAFF poe"p

kBT
(25}

Re
Flow

which remains finite as co~0, j~0. It is the presence of
this contribution to the linear resistivity that character-
izes the vortex-liquid state. The complex ac-penetration
depth becomes

' 1/2
IC PTAFF

~ac STAFF
47Tco

(26)

Ii I I II%I~ I I IIIIII I IIISI I kl1II 3 I II I I &sam r Ii&ee

p-8 1p-6 10-4 10-2
I

& & &&na s & &mS I I llk I I IXII I I IIII

10 10

Two level

FIG. 1. Real part of the ac-penetration depth, plotted as
function of frequency and temperature, showing the qualitative
behavior in the various vortex states.

9 = j8
C 1 //cÃ )

(27)

the ac response is the same as the skin effect in a normal
metal with resistivity pTA„„. The crossover to Campbell-
type response takes place when A.TAFF

=A, &.
A "general" form for the ac-penetration depth has

been obtained by adding u TA„„ to the velocity containing
fiux-fiow and Campbell contributions only [the time
derivative of Eq. (22)]. One then obtains

tained immediately. In order to obtain the ac-penetration
depth, one must take the average of u over disorder,
(u) =(jXB/c)(aL '). Taking the cross product with B
on either side yields Eq. (13) with A.„equal to the Camp-
bell penetration depth, "

g 2

(a~ ')
4~

1/2

(24)

Because A, c is real and frequency independent, the ac
response is essentially London-like: The sample behaves
as a true superconductor, but with a larger penetration
depth or a "reduced superAuid density. " The ac-field
penetration is carried by reversible vortex oscillations
near their equilibrium positions. The resistivity
p(co) = 4mic coi,c. No—te that, at the frequency coo

where the crossover from flux-fiow (FF) to Campbell
response takes place, k~ =A,FF.

At frequencies below cooexp( —U &/kz 'I}, thermally ac-
tivated vortex jumps between most favorable metastable
states of the vortex lattice come into play. One should
now take both the random thermal force Fz(t) and the
behavior of the restoring force F(u, r) for arbitrary dis-
placement into account in Eq. (21). After solving for
u(r, t ), the result should again be averaged over disorder,
whence one faces the same problem as before. For a
qualitative description of the low-frequency behavior, we
use the assumption that the barrier distribution is narrow
and can be characterized by a single energy scale U».
Thermally activated Aux motion is accounted for by a
linear average vortex velocity

u rA„„=( cpai /B )exp( —
U~& /k~ T ) .

This means that response will be similar to that in the
high-frequency Aux-Aow regime. Because of the activat-
ed nature of Aux motion, one speaks of "thermally assist-
ed flux fiow (TAFF)."' The low-frequency resistivity
can be written as

2. Nonlinear response

We now move to the case where an ac-field amplitude
is applied that is sufficiently high to bring the system into
the regime of strongly nonlinear response. At sufficiently
low frequencies (cur, (1), the dc resistivity is of the form
(15) with a typical barrier height U~&. The resistivity be-
comes strongly nonlinear near the characteristic current
j, . Applying Eq. (17), one has

pl

J. kBT
(28)

Crossover from linear (TAFF) to nonlinear ["flux-creep"
(FC)] response takes place when r = 1. The change in the
vortex free energy due to the induced current then be-
comes of the order of the thermal energy. The surface

The relaxation time r, =B /aI PT&FF is defined by
AT~„„(co=r& ')=Ac. A more thorough approach was
employed by Coffey and Clem. These authors solved
the vortex equation of motion (21} self-consistently,
where they took F(u, r) as the gradient of a periodic po-
tential with fixed barrier height U. Their analysis yields a
very complete description of the linear-vortex response in
the above-mentioned four frequency regimes. Their final
result for the vortex displacement is just Eq. (27), but
with r, =(ri/al )Io( U/2k& T), where Io(x ) is the
modified Bessel function. This closely resembles an ex-
ponential for large argument x.

While the results describe experimental data in the
vortex-liquid regime quite well, it should be noted that by
taking a periodic potential with fixed barrier height the
authors also implicitly depart from the assumption that
the problem may be described using a typical restoring-
force constant rather than a random one. It remains un-
clear whether such a description yields the same results
as the full treatment based on solving Eq. (21) with a ran-
dom restoring force and performing the correct thermal
and disorder averages.
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current density below the onset of nonlinearity is

j, =ch„/4m. A.TAFF, so that the nonlinearity threshold in
terms of the ac-field amplitude becomes

4m. . k~T
ac FC A TAFFc U)

(29)

Inserting values typical for the vortex liquid, j,=1X10"
A cm, U, /k~ T= 10, and po = 1 pQ cm yields a value

h„c—10 (co/[s ']) ' Oe. Note that at the nonlineari-
ty threshold A,TAFF equals the "Bean penetration length"
x~=ch„/4vrjr, with jr=j,(k—~TIU~~) determined by
the temperature. The threshold amplitude h„c decreases
with increasing frequency [see Fig. 2(a)]. This is because
the surface shell (of width A,„) in which the shielding
currents are confined becomes narrower for larger co, so
that the surface current density increases. Furthermore,
the value of hFC increases roughly exponentially with
temperature. At temperatures T ) U

&
Ik~ pinning be-

comes irrelevant and the equality r = 1 cannot be satisfied
at current densities j (j, . One is then always in the
linear-response regime. This is also true for experiments
carried out at frequencies co (c p~~„„/(4' ) [or,

equivalently, co~, ( (A,c /d ) ], where d is a characteristic
sample dimension. ' In fact, at these temperatures and
frequencies, j, does not exist at all.

At frequencies co~& ) 1, the probability of thermally ac-
tivated jumps at low ac amplitudes (in the linear regime)
is negligible, the ac response is determined by vortex os-
cillations near equilibrium (Campbell regime), and

The ac resistivity is linear and purely imagi-
nary; the dc resistivity is zero. At high amplitudes, the
vortex lattice is depinned. The resistivity is strongly non-
linear and real. We therefore cannot use an activated
form of the resistivity [such as Eq. (15)] to describe the
response for arbitrary h„. By consequence, the ampli-
tude at which the crossover from linear to strongly non-
linear response takes place should be estimated in a
slightly different way.

Let us briefly consider the nonlinearity threshold in the
"vortex solid" at T=O, where a similar situation arises.
Below the critical-current density j„one has Campbell-
type response, while above j, the resistivity is Ohmic.
Rather than using Eq. (15) (which has no meaning at
T=O), we model the dc resistivity by using the form
p(~=0, j)=p06(j —j, ), where B(x) is the Heaviside step
function. The general ac-penetration depth is written

10

10

10

a)
ex

' 1/2
csB c'po«i j,)—
4~j 4~co

the equivalent of Eq. (18) is

e(j—j, )= 4m.co(5B )

C Poj

(30)

(31)

I I I I I I0 1
~ L.

10 10 10
CO/CO

0

0.01

As in Eq. (18), nonlinear response arises when the relative
change in p(co=0,j) due to a change in j is greater than
the relative change in j itself. Clearly, this can only be so
when j=j,. Because below crossover the surface current
density j, =ch„/4m. k,c, nonlinearity is observed when"

1 I I I I

Illa'
f I I I I I II(

h
FF

2
v

(
Vort ex

h„~ j,kc=(4rjr, Brf)' '
c :—h (32)

0.01
10 10 10

CO/ CO
0

0.01

FIG. 2. Regimes of linear and nonlinear vortex ac response
in (a) the vortex liquid ( U»/kz T=10) and (b) the vortex glass
(U, /k&T=10). The solid lines correspond to different cross-
over criteria mentioned in the text. In (a) the labels 1, 2, and 3
refer to the conditions co~, l (intervalley jumps at high ampli-
tudes only), co~» ~ 1 (no activated jumps, but j, suppressed by
thermal Auctuations), and cow.„h=1, respectively. In (b) these la-
bels refer to the corresponding conditions with 7l replaced by
coo 'exp( U, /k& T).

Here jo=@0/2&3vri, g' is the depairing current, H„ is
the lower critical field, rf was taken to equal g, and we
have used the relation A,c=B rf/4~j, . The parameter
values j,=1X10 Acm, j0=10 Acm, and
H„=1500e yield h~ =10 (B/[T])' Oe.

At h„=h, the Campbell length A, c equals the Bean
length xz =ch„/4~j, . The ac-field amplitude at which
crossover from a Campbell-type response to the Bean
critical state takes place can thus be estimated by com-
paring the penetration lengths in each regime. Also, one
can see from Eq. (3) that at h the amplitude of vortex os-
cillations at the sample surface is roughly equal to the
characteristic length scale of the pinning potential,
u, =rf. This is the length at which the anharmonicity of
the pinning potential becomes important.

Returning to the vortex liquid and nonzero tempera-
tures, one can distinguish two situations. Namely, for in-
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termediate frequencies co~, 1 [region 1 in Fig. 2(a)],
there is an appreciable probability for thermally activated
jumps, but only for high ac amplitudes. The result for
the vortex solid can now immediately be generalized. At
current densities j j„the activation barrier can be ex-
panded in j: U( j)= Up, (1—j/j, ). The current in the lim-
it of strong nonlinearity can be derived using Eq. (18),

k, T
j(co)=j, 1 — ln

Upl
(33)

Equating j,=j(co ) =h „/kc yields the nonlinearity
threshold

h„- j(co)Ac =h 1 — ln
4m . Upl 1

c kg T co&

(cor, ) 1) . (34)

XL X/

c„(0) (35)+ hP ~FF

the relaxation time for compressional waves (a typical
vortex-lattice phonon frequency). ' In HTS's,
7ph 10 s

The implications for the nonlinearity threshold are
that it should start to deviate downward from the form
(34) when co increases above ~ „'exp( —U &/k~T). Its
frequency dependence becomes less as frequency in-
creases, until it reaches the value h when cov h-1 [re-
gion 3 in Fig. 2(a)].

It is interesting to consider the effect of increasing h„
ever further once one is in the nonlinear limit. At
current densities j)j„pinning is irrelevant, U(j)=0,
and the condition r (1 is also satisfied. The resistivity

This criterion corresPonds to Ac=x~(co)=ch„/4~j (~)
or, alternatively, to ~p(co, j=0)~=p(co=0,j). The vor-
tices become depinned at a smaller value of the displace-
ment, u, =rf [1—(kz T/Up&)ln(1/coT)] .

When the frequency is increased to values co(coo [re-
gion 2 in Fig. 2(b)], activated jumps between minima of
the random potential can be neglected for all values of
h„and in the strongly nonlinear limit j simply equals j, .
However, j, can be considerably suppressed with respect
to its "zero-temperature" value because of phononlike
thermal Auctuations in the vortex positions. Thermal
Auctuations smear out the pinning potential, rendering it
less effective. In Ref. 37 it was shown that the effect of
thermal fluctuations can be taken into account by replac-
ing the pinning range rf ——g by an effective range
gz. =(g +(u )T)' in the expression for j,(B,T). Here
(u ) T is the mean-square thermal vortex displacement in
the absence of pinning. The resulting strongly-
temperature-dependent form ofj,(B,T) should be substi-
tuted in Eq. (32). Further estimates should include the
frequency spectrum of thermal fluctuations: At higher
experimental frequencies, the mean thermal vortex dis-
placement per ac-field cycle is smaller, smearing of the
random potential is less, and the measured j, is larger.
The frequency spectrum in the absence of pinning follows
a Lorentzian (u (co))z. ~(1+cow h) ', with

2

p(co, j j,i=pFF, so that the ac response is the same as in
the high-frequency Aux-flow regime. At crossover, j,
=ch„/4mAFF= j, or

4~ .h„= jc kppc

=h

1 /2
4~j,8

'/CO

1/2

App s (36)

The above parameter values, together with g = 1

X 10 /(B/[T]) P/cm, yield h„„=10(Bc@ '/[Ts])'i
T, meaning that the sketched situation may be relevant in
a pulsed high-field experiment. Note that when ad=coo,
hFF=h, and the nonlinear regime collapses. Thus (as
long as j (jo) the response is always linear in both the
flux-How and London-response frequency regimes, which
is a direct consequence of the irrelevance of vortex pin-
ning at these frequencies

B. ac response near the vortex-glass transition

It has been suggested ' that [in three-dimensional
(3D) systems] there exists a finite-temperature phase tran-
sition (at temperature TG) separating the vortex liquid
from a vortex-glass (VG) state. We briefiy review the ac
response near this phase-transition line, before describing
the behavior in the vortex-glass phase in detail.

From the critical scaling hypothesis, it was found that
near the VG phase transition, the nonlinear resistivity
should scale as P(co=0,j)~j' 'i ', where z is the
dynamic critical exponent and D is spatial dimensionali-
ty. Experiments ' have shown that z =5. The non-
linear resistivity can be written as

p(co=0, j)=poexp
z D+21 (.)—

D —1

pl~ G jpl~G TAFF
C

This criterion, much similar to Eq. (29), again yields a
nonlinearity threshold that decreases with increasing fre-
quency and increases with temperature.

At higher frequencies the linear ac resistivity near the
transition was argued to scale as

P (~ J 0 ) f ~ ( z —D + 2 ) Iz (38)

and hence the parameter r =(z D+2)/(D ——1)=2.
If one is near to, but above TG, the low-frequency

linear resistivity is still determined by the plastic
behavior of the vortex liquid (TAFF): p(co,j=0) is com-
plex and frequency independent. Above a certain current
density

Jpl~ G (PTAFF/Po)

however, PTAFF )p(co=0, j) and one crosses over to glassy
response. The "effective activation barrier" is thus con-
stant below j &

G(U=U &, r=O) and drops as ln(1/j)
above it (r =2). Hence the response becomes nonlinear
near j l G or when



3400 van der BEEK, GESHKENBEIN, AND VINOKUR

The corresponding penetration depth
1/2

ic p(co,j =0)
4&co

(2—D)/2z
7 (39)

is real, and the ac response is London like. The behavior
of A, G =A,„(T=TG) is illustrated in Fig. 1. The crossover
to nonlinear response can be determined from
~p(co, j=O)~=p(co=0, j). The crossover current density
follows j—=jG-co' " '. The ac susceptibility becomes
amplitude dependent when

h )h — j A ~D/2z4~ .
ac G G G

C
(40)

Assuming that z =5 for D =3, kG -~ ', jG -co .
,

and hG-co . This behavior is much siInilar to that in
the Campbell regime in the vortex liquid.

C. Vortex glass

In contrast to the vortex liquid, the vortex-glass state is
characterized by a vanishing dc linear resistivity at zero
current density, p(co=0, j=0)=0. This means that the
Aux-creep activation barriers diverge for j—+0. We will
take the vortex glass to be weakly pinned by the collec-
tive interaction with randomly distributed point defects.
The distribution of barrier heights between metastable
states is broad. It is centered around the typical energy
U, and the width is also of order U, . In Ref. 43 it was
shown that for such a system the relevant activation bar-
riers at current density j are given by U(j)= U, (j,/j) .
In an ac experiment, the relevant barriers are those that
can be overcome in a time t =co ', i.e., those that satisfy
Eq. (18). Thus the relevant energy barriers become arbi-
trarily large as frequency decreases. The form of the dis-
tribution function means, however, that their density
simultaneously decreases.

1. Linear response

L, =R, c«(0) 4mc«(0)c«rf
1/2 2

c«W(0) (41)

Here c«(0)=BR/4vr=B /4m. is the vortex-lattice tilt
modulus in the local limit. Writing ( el )
=I W(0)/V, ]' /rf in Eq. (24) and eliminating R„we
find

The linear ac response at frequency co) coo is necessari-
ly similar to that in the vortex liquid because pinning is
irrelevant in either case. The Campbell regime will also
be similar provided that the pinning potential is harmon-
ic for small vortex displacements. We can, however,
make use of the results of collective-pinning theory to re-
late the Campbell penetration depth to the dimensions of
the correlation volume V, transverse and parallel to B,
R„and L, . If pinning is sufticiently weak, R, )A,L and
we can neglect the dispersion of the elastic constants (lo-
cal limit). In the case of a sample of infinite thickness
(3D collective pinning), the correlation lengths are relat-
ed through

~c loc Lc (42)

When the condition R, ) A, L does not hold, the nonlo-
cal expressions for the elastic moduli and correlation
lengths should be used. In this case, L, and R, grow ex-
ponentially with B. Experiments on o.-Mo Si and
a-Nb„Ge films " have shown, however, that a 3D vortex
lattice in the presence of disorder is unstable to the nu-
cleation of screw dislocations. A better description is the
"amorphous limit" in which Aux lines are pinned in-
dependently and R, equals the vortex-lattice parameter
ao=(4&o/B )'~ (C&o is the fiux quantum). Using the esti-
mates for the (nonlocal) tilt modulus in the amorphous
limit, c44„=I 'c«(0)ao/Al (I—:m, /m is the material
anisotropy parameter), we find

L

ao
(43)

where c» (0)=B /4' is the local VI. compression
modulus.

Since in the vortex-glass phase the TAFF regime is ab-
sent, the main qualitative difference between the vortex
glass and the vortex liquid manifests itself at low frequen-
cies, ~(cooexp( —U, /kii'I). Because we now have a
broad distribution of barriers, the relevant ones jto be
denoted by U(co)] are given by Eq. (18). In the low-
current (linear) limit, activation barriers are large. Vor-
tices can perform one jump per ac cycle only, so that the
main contribution to the ac response comes from pairs of
metastable states. This means that the vortex
configuration in the random field can be viewed as a set
of two-level systems.

The two-level (TL) response of the vortex system was
recently described by Koshelev and Vinokur" (see also
Refs. 40 and 47). The ith pair of metastable states can be
characterized by the volume V, -L;" of the VL involved
in the jump ("fiuxon bundle" ), the displacement
u, -rf (L; /L, ), the energy barrier U; separating the two
states, and the energy difference 6; between states. d is
the dimensionality of the activated VL volume, and
g is the wandering exponent. The bundle volume and
the energy barrier are determined from the condition
that U; be of the order of the energy of elastic
deformation, C( u; /L; ) L;". One then finds that
U;=U, (L;/L, )

+ ~. For a single-vortex line (d=1),
/=0. 6, C=c«„, and L; is the length of the displaced
vortex-line segment, for a 2D bundle, /=0. 4, C=c66,
and L; is the transverse dimension of the vortex bundle,
while for a 3D bundle g is estimated at 0.2, and C =c« if
we take L; as the longitudinal size of the bundle.

The barners that contnbute most to Aux motion are
those for which U, = U(co). The ac-penetration depth
can now straightforwardly be estimated by equating the
magnitude of the relevant activation barrier to the energy

Finally, in the case of a thin film of thickness d (L„we
have 2D collective pinning, and

c„(0)
(44)C2D c
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gain due to the driving force, U(co)=jBL(co)"u(co)/c.
From Eqs. (1) and (13), we have j=(c/4vr)uB/A, „and
hence

h„)hcc =—4~ k~ T 1j (~)~TL=hp
C U, cow

—1/a —1/lt

(50)
g2 2Ld

A.
2

4' U(co)
(45)

In the case of local elasticity, we can substitute the above
relations between u, L, and U. Making use of the fact
that U, =c44(0)(rf/L, ) L, the penetration depth be-
comes

U(co )
~TL 1oc L —Lc

U,
(46)

k~T
c ln

U, cur
(47)

where —g=d —2+2/ and r is the same as in Eq. (18).
In the amorphous limit (single-vortex pinning), the sit-

uation is somewhat different. An expression for A,„in
this limit was derived in Ref. 46. It is the same as Eq.
(47), but with g=(2$ —I )/(2g —3).

The ac-penetration depth depends weakly on frequency
(see Fig. 1). Because the real part of A, TL is much larger
than the imaginary part, the response is similar to that in
the Campbell regime. When A,TL

=A, &, or
=exp( —U, /kz T), one expects a crossover to a oscillato-
ry vortex response.

2. Nonlinear response

In the vortex-glass state, the resistivity in the strong
nonlinear limit can be written in the form (15), where the
effective activation barrier for Ilux creep U( j)= U, (j, /j) . The exponent a=(d+2g —2)/(2 —g). If
we apply the crossover criterion (17), we find that
response is linear for a U(j) & k~ T orj)j,(aU, /k~T)'~ . Since in the vortex glass U, ))k~T,
Eq. (17) yields the more or less trivial result of the linear
response at current densities j ))j, . The current density
above crossover is ch„/4+A, „„;hence, in the vortex glass,

T 1/a

hFF
4~.

jc FF k T (48)

j(~)=j,
U,

1
ln

1/a

(49)

Using the above result for A,TL, we find that the crossover
from two-level response to collective creep (CC) occurs
when

In the limit of small current densities, the application
of Eq. (17) yields a nonlinear dc response down to arbi-
trarily low j. In an ac experiment, however, one has the
linear two-level response, so that the onset of nonlinearity
is again qualitatively similar to that in the Campbell re-
gime in the vortex liquid: One is in the nonlinear limit
when j, =j(co)=ch„/4vrkTL The current de.nsity j(co)
in the strongly nonlinear limit is obtained from Eq. (18):

The behavior of hcc as function of frequency and tem-
perature depends on the value of d and g. Using the ap-
propriate combinations for 2D (d=2, /=0. 4) or 3D
( d =3, g =0.2) bundles and the single-vortex line
(d= 1,/=0. 6), it is seen that the sum a '+g ' is always
positive, and hence hcc increases with increasing fre-
quency [see Fig. 2(b)]. Furthermore, h CC should decrease
with increasing T. This behavior is qualitatively opposite
to that found in the vortex-liquid state. Because of the
large value of U, /k~ T in the vortex-glass state, the mag-
nitude of hcc can be much smaller than that of h . For
example, in the single-vortex regime, a '+g '=2. A
typical value for HTS's, U, /kz T= 10, then yields
hcc=0. 01h [see Fig. 2(b)].

Finally, one can consider the crossover to nonlinearity
from the Campbell regime. As in the vortex-liquid state,
one has an intermediate-frequency regime co~)exp( —U, /kz TJ and a high-frequency regime co & coo.

Applying the same consideration as in the vortex liquid,
the nonlinear threshold at intermediate frequencies is

1/a

h„) j(co)Ac =h4~ .
C

ln
c

(51)

IV. DISCUSSIGN

Upon comparing the ac response of the vortex liquid to
that of the vortex glass, it is seen that a qualitative
difFerence only exists in the low-frequency regime where
thermally activated intervalley jumps are important.
Since the linear response of both the vortex liquid and
the vortex glass have been extensively discussed in the
past, we will focus on the limit of strongly nonlinear
response. The threshold ac field where one enters the
nonlinear limit was derived above. Note that while in the
vortex liquid the nonlinearity threshold decreases with
frequency and increases with temperature, in the vortex
glass the behavior is opposite. Provided that the mea-
surement frequency d'or & exp( —U/k~ T), a measurement
of the onset of nonlinearity at different frequencies can
thus immediately distinguish between a vortex glass and a
vortex liquid. In the vortex-glass phase, the condition
r )) 1 can be easily satisfied at any temperature: The non-
linearity threshold is typically of the order of 1 —10 Oe.

As pointed out in Sec. II, an ac experiment in the limit
of strong nonlinearity (r ))1) is equivalent to a magneti-
zation hysteresis [M(H, H)] measurement. The current
density in the sample is almost constant over the region
of penetration, a surface shell of thickness x~
=ch„/4m j(co). The magnitude of the shielding current

At high frequencies one can use the collective pinning re-
sults for the temperature dependence of j, and A, c(T)
to estimate h„=(4'/c )j,A, c.

The behavior of the nonlinearity threshold in the
vortex-glass state is shown in Fig. 2(b).
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can be obtained from Eq. (18). In an infinitely long sam-
ple with the field applied along the surface or for small
faux penetration, this means that the Aux profile is linear.
Hence one can use the Bean model to describe the experi-
ment, but with j, replaced by j(co). For example, the ac
susceptibility in the case of an incompletely penetrating
ac field parallel to the surface of an infinite slab of thick-
ness d can be straightforwardly derived from the formu-
las given in Refs. 9 and 22. Taking the example of the
vortex glass, one has

ch„ch„
X]

4rrj (co)d 4', d

k, T
ln

C

1/a

(52)

ch„ch„kz T

3' j (co)d 3m.j d U,

1/a

(53)

Now the relaxation time ~=4~h „/c p~Fj,which corre-
sponds to the sample L /R time. Expressions for
h„) (4~/c)j(co)d and for higher harmonics can be de-
rived similarly using Refs. 9 and 22.

As long as the inequality r »1 holds, we can use
modified versions of the Bean model to describe the sus-
ceptibility for an arbitrary sample geometry. The suscep-
tibility will be some function of the parameter
xi'/d=ch„/4~j (co)d, where d is the sample dimension
in the direction along which Aux penetration takes place.
This means that in experiment, h„and co are inter-
changeable variables. For example, in the case where
j(co) is described by Eq. (49), one can retrieve the original
susceptibility result after a frequency change co~co' by
changing the amplitude by a factor [1n(cow)/1n(co'r)]'~ .
The interchangeability of co and h„ is true in particular
for the position of the peak in g". The peak occurs just
when the ac current has penetrated the sample to a dis-
tance d/2. The condition xz/d =

—,
' permits the current

density to be estimated accurately. If one finds the com-
binations of h„(co) that preserve the position of the y"
peak, one obtains a curve j(co)=ch„(co)/2nd that is
equivalent to the magnetization relaxation curve j(t)

The prime advantage of using this ac method to mea-
sure the time dependence j(t) [or current dependence
U(j (t))] is the greatly enhanced dynamic time range.
The possibility of varying the frequency from 1 to 10 Hz
in principle yields a range of six decades in time, more
than can be achieved in dc-relaxation experiments, which
can be carried out over a time window of usually three
decades in the range 1 —10 s. The combination of ac and
dc techniques yields a vast range of times over which the
behavior of j (t) can be checked. Finally, because
h„&(B, the ac experiment is carried out with an almost
constant induction in the sample. Only for this situation

do analytic expressions for the current density in the
sample exist. A disadvantage of the technique is that
the process of finding matching h„(co) values is rather
tedious.

In contrast to measurements ofj ( t ) [or U (j)], finding
the critical-current density j,(B,T) requires that thermal-
ly activated jumps be unimportant. ac experiments pro-
vide a way to "freeze out" Aux creep by increasing fre-
quency until one is well in the (linear) Campbell regime
(coScoo). The true temperature dependence of j, may
then be determined from kc(T). This means that, in
principle, ac-response measurements can separate the
behavior of U(B, T) from that ofj,(B,T), which is in-
herently impossible in dc magnetization experiments.

V. SUMMARY

We have outlined the unique macroscopic approach to
vortex ac response in type-II superconductors, which
comprises both linear and strongly nonlinear limits. In
the linear regime, the response is similar to the skin
effect, whereas in the nonlinear limit, the current density
is spatially almost constant over the region of penetra-
tion. In a sample with a small demagnetizing factor, this
means that the Aux profile can be approximated by a
straight line. There exists a smooth crossover between
the two limits. The ac-field amplitude h„at which cross-
over takes place can be found by comparing the expres-
sions for the ac-penetration depth in either limit. The
crossover exists only at frequencies below the pinning fre-
quency ~o, that is, at those frequencies where pinning is
relevant. Measurements of the onset of the nonlinear ac
response provides a means of distinguishing between
vortex-liquid and vortex-glass behavior. Furthermore,
low-frequency ac experiments in the limit of strong non-
linearity are equivalent to magnetic-relaxation measure-
ments, but can be used to find the behavior ofj (t) and
U(j) over a wider parameter range. At high frequencies
one should in principle be able to determine j,(B,T) from
the Campbell penetration depth.
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