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Electron- and hole-hopping amplitudes in a diatomic molecule
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We calculate the hopping amplitudes for an electron and for a hole added to the molecule H2. We
use a linear combination of atomic orbitals approach and the Hartree approximation. The hopping
amplitudes for electrons and holes are found to be different, reQecting the fundamental electron-
hole asymmetry of condensed matter. The physical origin of this result is discussed. We study the
dependence of hopping amplitudes on internuclear distance and on the nuclear charge Z (Z = 1 for
Hz) and discuss the possible implication of our results to the understanding of superconductivity in
solids.

I. INTRODUCTION

The kinetic energy for electrons in a band can be writ-
ten in a Wannier representation as

Hgi~ = —) tq s (c- cs~ + H.c.)

where c,- creates an electron of spin u in Wannier state
i. It is commonly assumed that the hopping amplitude
t;. is a c number. However, it is plausible to postulate
that t,. - may vary with the electronic charge density in
the system. The most important variation of t; is likely

I

to originate in the charge occupation of sites i and j, and
we may write

t,. = tpb„, +„, , + tabb„, +„, , + t2b„,+„,, (1b)

with b a Kronecker b function. tp gives the hopping am-
plitude for an electron when there are no other electrons
in the Wannier states at sites i and j, while t q and t2
give the hopping amplitudes for an electron of spin 0
when there is one and two other electrons of opposite
spin at the two sites involved respectively. In operator
form, the hopping amplitude Eq. (1b) can be written as

t;& = tp(1 —n , )(1 —ns ) +'ti(n, + ns —2n, ns ) + t2n, ns, (1c)

For tp g t2 this hopping amplitude is not electron-hole
symmetric.

The variation of hopping amplitude with local charge
occupation has been proposed as a possible mechanism
for superconductivity. In a dilute system of either elec-
tron or hole carriers, the kinetic energy Eq. (1) will lead
to pairing of carriers if the difFerence (ti —tp) or (ti —t2)
is sufFiciently large (and positive), respectively. The rea-
son is that carriers would be able to lower their kinetic
energy by pairing over and above the cost in Coulomb
energy arising from repulsive interactions between them.

For the particular case of

At = tp —tg (4a)

or by the second form

I

tudes between a single isolated carrier and that of a car-
rier in the presence of another carrier. One may also use
the forms Eqs. (3a) and (3b) to describe a dilute system
of electrons and holes, respectively, even if the condition
Eq. (2) does not hold, since configurations with three
carriers at the two sites involved will be improbable due
to Coulomb repulsion. Then, At would be given by the
erst form

tp —tg ——tg —t2 =—Lt (2) Lt = tg —t2 (4b)

Eq. (1c) reduces to of Eq. (2), respectively. Another definition of At may be

t;, = t, —At(n; .+n, .)
tp

2
(4c)

or in terms of hole operators n," = 1 —n;

t,,'" = t + At(n," +n," ). (3b)

which would be exact for both electrons and holes if Eq.
(2) holds, and approximate otherwise.

It has been proposed that the ordering

The parameter Lt gives the difference in hopping ampli- tp&tx)t

0163-1829/93/48(5)/3327(13)/$06. 00 3327 1993 The American Physical Society



3328 J. E. HIRSCH 48

holds quite generally in real systems. In that case, the
parameter At defined by either form of Eq. (4) would be
positive, implying that holes are heavier than electrons.
The kinetic energy Eq. (1) can then lead to pairing of
holes but not of electrons. Various properties of high-
T oxide superconductors appear to be describable by a
Harniltonian with kinetic energy Eq. (1) with an appre-
ciable Lt.

There is, however, no consensus on either the magni-
tude nor even the sign of the parameter Lt in real sys-
tems. In fact, it has also been proposed that At may be
generally negative5 (implying that holes are lighter than
electrons), as well as that it may be generally of negligi-
ble magnitude. The purpose of this paper is to address
this fundamental question by calculating Lt from first
principles for a simple diatomic molecule.

This paper is organized as follows. Section II defines
the problem to be studied and reviews the calculation of
the hopping amplitude in H2 as well as some simple argu-
ments regarding the expected behavior of the parameter
Lt. In Secs. III and IV, we outline the procedure used
for calculation of the hopping amplitudes in H2 and H2,
respectively. In Sec. V we present results for the hop-
ping amplitudes in the various cases and the parameter
Lt, as function of interatomic distance and efI'ective ionic
charge. Section VI examines the efI'ect of optimizing the
orbital exponents used in the calculations, and compares
our results with results of previous work. In Sec. VII we
discuss the possible implications of our results for super-
conductivity, and. conclude with a summary and discus-
sion in Sec. VIII.

II. HOPPING IN A DIATOMIC MOLECULE

These energies are not known exactly but have been cal-
culated before. ' In Ref. 7 we estimated the parameter
At from Eq. (4c) and the known energy values of these
states.

Here we use a linear combination of atomic orbitals
(LCAO) approach to calculate these hopping amplitudes
approximately. For H2 the procedure is straightforward.
We define atomic orbitals a(r) and b(r) centered around
the two atoms and construct the even and odd linear
combinations for the bonding and antibonding states:

(1Oa)

(10b)

with S b the overlap of the wave functions at the two
centers:

S b = (a, b).

The bonding- and antibonding-state energies are given
by

(a, h, a) + (a, h, b)

1+S b
(12a)

(a, h, a) —(a, h, b)
&a =

1 —S b
(12b)

with h, the single-electron Hamiltonian. We associate the
bonding and antibonding states with the states 2 g+ and

g„+ mentioned and obtain the hopping amplitude

We follow the reasoning of Ref. 7 and consider a di-
atomic molecule of hydrogenlike atoms. For a single elec-
tron resonating between two protons

H+ —Hm H —H+

as
—(a, h, b) + S g(a, h, a)

1 —S b

(13a)

(13b)

the hopping amplitude can be obtained from the difFer-
ence between its lowest energy states of even and odd
symmetry, P+ and P„+ in spectroscopic notation:

We will follow closely the notation and conventions
in Slater. The single-particle Hamiltonian is, in atomic
units (with energy measured in Rydbergs)

tp = &('E.+) —E('E,+)
2 2Z 2Z

h, = —~
~a ~b

(14)

H —HmH —H

and obtain the hopping amplitude for the hole from the
difI'erence between the two lowest energy states of H2,'E.+ (H. ) 'E,+ (H. ):

t2—EI'E,+(H )) —&l'E.+(H. ))

These energies are known exactly from the solution of
the hydrogen molecular ion problem. Similarly, we may
think of the hydrogen negative molecular ion, H2, as a
single hole resonating between two H ions:

(the nuclear charge Z = 1 for hydrogen, but we will allow
for a more general case). The atomic wave functions are
given by Slater orbitals

3/2
a(r) =, e

with r the coordinate relative to atom a, and o. the or-
bital exponent. For a single electron in the atom o. = Z
is appropriate as it yields the exact atomic eigenstate.
For the molecular ion, lower energies can be obtained by
adjusting the value of the orbital exponent at each in-
ternuclear separation to minimize the energies. Figure 1
shows the hopping amplitude to obtained from Eq. (13)
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arguments that have been given in the past regarding the
relative size of the various hopping amplitudes.

A. Orbital expansion

It has been argued that the orbital expansion as more
electrons are added to an atom [Eq. (19)) should give rise
to an increasing hopping amplitude, i.e. , t2 ) t1 ) tp.
Indeed, the overlap of two Slater orbitals centered at the
two atoms

0 I I

0
I I I I I I I I I I I I I I I I I I I I I I I I I I I

j. 2 3 4 5
R (a.u. ) Sab = nB ')

dva(r) b(r) = e
I

1 + o.& +
I

(2o)3

FIG. 1. Hopping amplitude in H2 vs interatomic distances.
Solid line: exact results; dashed line: LCAO results with

Z; dash-dotted line: LCAO results with o. optimized
in bonding and antibonding states.

and from the exact eigenenergies. It can be seen that
the LCAO results slightly underestimate tp, although the
error becomes smaller when using optimized exponents.
The disagreement is presumably due to the fact that the
LCAO bonding wave function underestimates the true
bond charge density, and could be remedied by using non-
spherical atomic orbitals that "lean" towards the other
atom. Nevertheless, the agreement found in Fig. 1 is
reasonable and suKcient for our purposes.

The calculation of the hopping amplitudes in H2 and
H2 will be discussed in the next sections. First we need
to consider the wave function for the hydrogen negative
ion, H . We use a simple Hartree wave function for the
two electrons

B. Reduction in effective atomic charge

If we neglect the wave-function overlap in Eq. (13) and
furthermore assume that the atomic orbitals are eigen-
states of the atomic Hamiltonian the hopping tp can be
written as

t() ———(a, u, 6) (21)

with

(22)

(R = interatomic distance) will increase as n decreases.
However, the situation is less clear for the hopping am-
plitudes. For example, from Eq. (13) one finds that
decreasing o. in the exponent of the wave function in-
creases tp at large B but decreases it at smaller R, due
to a cancellation that occurs between the two terms in
the numerator.

e(r], r2) = a(r))a(r2) (16)

with

-3/2
Q7 a

~1/2

a Slater orbital, and determine its exponent 6 by mini-
mization of the expectation value of the atomic Hamilto-
nian with the electron-electron interaction

the atomic potential at site a. The form Eq. (21) sug-
gests that when electrons are added to the molecule the
"efFective" ionic charge Z decreases leading to a decrease
of the atomic potential u and hence the hopping ampli-
tude Eq. (21), hence t2 & ty ( tp.

C. Coulomb matrix element

h12 —— (18) The term At appears in the Hamiltonian as a "hopping
interaction":

using the wave function Eq. (16). The result is well
known: the atomic energy as function of o. is given by Vj, ——) At(n, + n, )(c,+. c,. + H.c..) (23)

5
E(o() = 2n —4Zn+ —n

4

and is minimized by

n = Z —5/16

(19a)

(19b)

and as such may be associated with a matrix element of
the Coulomb interaction between electrons:

EI = ( I; ba) a= vfrr4avrdvva (rr)a(rr)4(ra) (24)
r12

expressing the physical fact that the wave function "ex-
pands" due to the electron-electron interaction. This
physical eKect will be crucial in what follows.

Before going on to the calculation of the hopping am-
plitude in H2, we believe it is useful to review the various

[we use the superscript zero to distinguish this matrix
element Rom the definition Eq. (4)]. It is clear that this
"hybrid" matrix element is positive if the orbitals have
8 symmetry. More generally it can be argued that the
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S b

2
(25a)

sign of At as given by Eq. (24) is always opposite to
the sign of the single electron hopping tp, independent
of the symmetry of the orbital, leading thus always to
the same physics, holes being heavier than electrons, i.e. ,( tp.

However, it has been pointed out that the expres-
sion Eq. (24) should be used with orthogonal (Wannier)
orbitals rather than with atomic orbitals. This is a non-
negligible correction and it is found that Lt from Eq.
(24) becomes then vanishingly small. The reason is as
follows: the form Eq. (24) is closely related to the degree
of overlap of the site wave functions. To lowest order, we
can orthogonalize the atomic orbitals as

the hopping process, one is in the antiadiabatic regime
and may expect the hoppings in H2 and H2 to be

t1 ——S -tP, (29a)

t2 ——S -tP, (29b)

III. HOPPINC AMPLITUDE IN H2

i.e., smaller than tp, leading to a positive At. For Z = 1,
Eq. (29) yields tz ——0.90to.

It can be seen that these simple arguments lead to
contradictory expectations: Secs. IIB and IID suggest
Lt ) 0, Sec. IIA suggests At ( 0, and IIC suggests

0. Thus, it is necessary to do a more detailed
calculation to settle this question even qualitatively.

b~=b—
2

Equation (24) then yields to lowest order in S b

(25b) The Hamiltonian for three electrons moving between
two charge centers is

~3 —h1 + h2 + ~3 + ~12 + h23 + h31 (30)

with

U = (aa, hg2, aa), (27a)

= (a a, h», a b ) = at' — (U+ V) (26)
2

with the single- and two-particle terms given by Eqs. (14)
(18), respectively. We construct the bonding and

antibonding states simply from linear combinations of
the two resonating states in Eq. (8). Schematically

V = (ab, hq2, ab), (27b)
4' = [(H —H) + (H —H )] x normalization. (31a)

the on-site and nearest-neighbor Coulomb repulsions.
Within the Mulliken approximation for the overlap
charge distribution the form Eq. (26) exactly vanishes;
in reality small deviations Rom the Mulliken approxima-
tion do occur but direct calculation~s shows Eq. (26) to
be negligibly small at all internuclear distances.

For each configuration we use a simple product of the H
wave function Eq. (16) and the single-electron atomic
wave function for H. We have then explicitly

a(rz)a(r2)b(rs) + a(rz)b(r2)b(rs)
[2(l + S )]'~'

D. Orbital relaxation S~ = (a, )a( ,a)b( bb) (32)

When an electron is removed from the ion H the
second electron reverts &om an orbital exponent o;

(Z —5/16) to n = Z. The overlap between the electronic
wave functions with orbital exponents o. and o. is

The energies of bonding and antibonding states are ob-
tained by taking the expectation value of the Hamilto-
nian Eq. (30), and the hopping amplitude results as in
Eq. (13):

8(nn)s~2
S — = (a, a) =

(n+ n)s (28)

—(aab, Hs, abb) + S&- (aab, Hs, aab)

1 —S2
2

(33)

Since the orbital relaxation process is much faster than
I

The required matrix elements are then

(aab, Hs, abb) = 2(a, b, , a) S -Ssz + (a, h, b) S —+ 2(aa, hq2, ab) S +(ab, hq2, ab) S z—,

(aab, Hs, aab) = 2(a, h, a) + (a, b, , a) + (aa, hq2a, a) + 2(ab, hqz, ab) (34b)

with the overlap matrix elements defined analogously to
Eq. (28).

Evaluation of these matrix elements is discussed in the
Appendix. Before giving numerical results it is interest-

ing to consider the hopping Eq. (33) for the case n = n.
We have then S — = 1, and Eq. (34) reduces to

(aab, Hs, aab) = 3(a, b, , a) + U + 2V,
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(aab, Hs, abb) = 2(a, h, a) S g + (a, h, b) S gV + 24t

(35b)

(aa, H, aa)+(ab, H, ab)

1 —SH2
(44)

and Eq. (33) yields

—(a, h, b) + S g(a, h, a) + S g(U+ V) —2At

ab

Thus to the extent that the Mulliken approximation

For the case n = o. Eq. (44) reduces to

—(a, h, b) + S g(a, h, a) + 2' (U+ V) —Ato
t =

1 —S2b
45

so that we obtain t1 ——tp ——t2 if the Mulliken approxi-
mation holds. More generally, Eqs. (13b), (36), and (45)
satisfy Eq. (2):

At' - (U+ V)
S b

2

is valid, Eq. (36) reduces to the hopping to in H2, Eq.
(13b). From the Appendix, we find for small w = nR

At — '(U+ V)
tP —t1 = t1 —t2 =

1 —S2b

if there is no change in the orbital exponent.

V. NUMERICAL RESULTS

(46)

and

p 5 7 2 3 4At =~ ———~+ —~+.. .
4 24 32 (38)

Sb 5 7 2 119 4

2
(U+V) =o. —— cu + ~ + . (39)4 24 720

so that the relation Eq. (37) holds through order ur

This implies that for small interatomic distances any dif-
ference found between the hoppings tp and t2 should be
ascribed to the change in orbital exponent from o, to o, .

IV. HOPPING AMPLITUDE IN H2

The Hamiltonian for two electrons is given by

~2 —~1 + ~2 + ~12 ~ (4O)

(41)
and construct the even and odd linear combinations as
in Eq. (31):

It is of interest to obtain the hopping in this case, t1, to
be able to evaluate the various forms of At in Eq. (4).
Unfortunately this is conceptually not as straightforward
as the cases of H2 and H2 . In those cases the splitting of
the lowest energy eigenstates of even and odd symmetry
directly yielded the hopping amplitudes. Here, instead
(as discussed, e.g. , in Ref. 7), the lowest energy states in
the various sectors also involve other interaction param-
eters such as U and V.

Rather than dealing with the lowest energy states, we
adopt the following simplified procedure: we consider the
resonance process analogous to Eqs. (6) and (8):

H —H+++ H —H

Figure 2 shows results for the three hopping ampli-
tudes assuming no change in the orbital exponents. In
agreement with the foregoing discussions, tp, t1, and t2
become equal for small interatomic spacing. For larger
distances deviations from the Mulliken approximation do
occur, and as Fig. 2 shows

tP (t1 (47)

6

so that the parameter At is negative (in fact for small B,
Lt is small and positive but this is not visible with the
resolution of Fig. 2).

The situation changes drastically, however, when we
allow for orbital relaxation, as shown in Fig. 3: the hole
hopping amplitude t2 is now substantially reduced with
respect to both t1 and tp at small and intermediate sep-
arations. In fact the relation tp ) t1 ) t2 holds at small
distances while tp ( t1 & t2 holds at suKciently large dis-
tances and various other combinations in between. This
suggests that the eKect of increased hopping amplitude
due to expanded orbital does indeed exist at sufBciently
large separation, but that at smaller separations, the ef-
fects discussed in Sec. II related to orbital relaxation

a(r, )a(r2) + a(r, )b(r2)
[2(1+SH )]'~'

SH, = (a, a)(a, b)

(42)

0
0

I i i & i I i i i i I i i i i I & &» I

1 2 3 4 5
R (a.u. )

We do not expect the states Eq. (42) to be close to any
of the eigenstates of H2. Nevertheless the difference in
the expectation value of the Hamiltonian between those
two states should approximate the desired hopping am-
plitude. We obtain

FIG. 2. Hopping amplitudes for Z = 1, assuming orbital
exponents n = o. = Z. The full, dash-dotted and dashed
lines correspond to the hopping amplitudes in H~, Hq, and
H2, respectively, to, t&, and t2.
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I I f

I

I I I I tained using certain assumptions which were to some ex-
tent unjustified. The qualitative behavior obtained here
and in Ref. 7 is the same. Figure 6 also shows the val-
ues of the bare hybrid integral Eq. (24) (At ) as well
as the value of At that is obtained in the absence of or-
bital relaxation, termed b, t [as seen from Eq. (46) this
is the same for all forms of Eq. (4)]. This quantity is
related and closely similar in size to the value of Lt that
would be obtained &om the hybrid integral Eq. (24) by
using orthogonalized single-particle orbitals (they are the

0
0

I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5 6
R (a.u. )

FIG. 3. Hopping amplitudes for Z = 1, using orbital expo-
nents appropriate to the isolated atom: a = Z, a. = Z —5j16.
The line convention is the same as in Fig. 2.

6 I I g
I

I I

and reduction in effective atomic charge take over. Us-
ing orbital exponents to minimize the energies for each
molecular ion separately yields very similar results, as
shown in Fig. 4. This is further discussed in Sec. VI.

It is interesting to examine how these results are mod-
i6ed in the presence of different effective ionic charge Z.
One would expect the importance of orbital relaxation
to increase as the effective ionic charge decreases and the
Slater exponents decrease. Indeed, as Fig. 5(a) shows,
the difference in hopping amplitudes becomes more pro-
nounced for Z = 0.75, and the ordering Eq. (47) that oc-
curs in the absence of orbital relaxation is only achieved
at even larger interatomic separation. As Z increases to
1.25 the difference in hopping amplitudes decreases, and
for Z = 2, where the electrons are very tightly bound, the
ordering Eq. (47) holds over a large range of interatomic
distances as the effect of orbital relaxation has become
negligible.

Figure 6 compares various estimates of the hopping
interaction At for the case Z = l. A similar graph was
presented in Ref. 7, Fig. 2. There, the estimates were
obtained from earlier quantum-chemical calculations for
H2, H2, and H2' , however, the values of tq for H2 were ob-

0
0

6 I I I
I

I I I I

5—

0
0

1 I I I I I I I

2 3
R (a.u. )

I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5
R (a.u. )

6 10 I

I

I I I I

0
0 1 2 3 4 5 6

R (a.u. )

0
0 2 3

R (a.u. )

FIG. 4. Hopping amplitudes for Z = 1, using optimized
orbital exponents for each molecular ion. Line convention is
the same as in Fig. 2.

FIG. 5. Hopping amplitudes for (a) Z = 0.75, (b) Z = 1.25,
and (c) Z = 2 (with optimized exponents). Line convention
is the same as in Fig. 2.
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I I I 1

I

I I I I

(
I I I I

I

I I I I

I

I I I I5 VI. EFFECT OF OPTIMIZING cx AND
COMPARISON WITH PREVIOUS WORK

)
CD

2

As discussed earlier the appropriate values for the or-
bital exponents in the limit of large internuclear separa-
tion are n = Z, 6 = Z —5/16. As the distance between
nuclei decreases, lower energy values can be obtained by
adjusting the orbital exponents at each internuclear sep-
aration. For example, for H2 the optimal value of the
exponent o; for the bonding state goes smoothly from
n = 1 to n = 2 (appropriate to He+) as R decreases
from infinity to zero.

I I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5
R (a.u. )

~ 0 i &

I

i i I i

I

i i & i
I

i i & r

I

& & a i

I

& & s2

FIG. 6. DifFerent estimates of the hopping interaction At,
Eq. (4), for Z = 1. Full, dash-dotted, and dotted lines
correspond, respectively, to results from our calculation for
(ti —tz), (to —t2)/2, and (tp —ti), using optimized exponents.
Upper dashed line is the bare hybrid matrix element Eq. (24)
calculated using atomic orbitals; lower dashed line is the value
of At obtained using orbital exponents n = n = Z, which is
closely related to the hybrid integral Eq. (24) using orthogo-
nalized orbitals.

1 ~ 5
CD

O
CLx ] 0

0.5—

0 0 I I I I I I I I

1 2
I I I I I I I I I I I I I I I I I I I

3 4
R (a.u. )

same to lowest order in S i, ); that procedure was used in
evaluating At plotted in Fig. 2 of Ref. 7.

Having found that in the range of B where the diH'er-

ences in hopping amplitudes are appreciable the ordering
Eq. (5) holds we conclude that this effect may lead to
pairing of holes but not of electrons. Hence the form of
At given by Eq. (4b) is the relevant one on which to fo-
cus. In Fig. 7 we plot this Lt versus B for various values
of the effective nuclear charge Z, showing clearly how a
reduced value of Z gives rise to larger values of Lt in a
large range of internuclear separation.

~ 0 I I

I

I I I

1.5

D

1.0

/

0.5—
(3

0 0 I I I I I I

1

I

I

I I I I

I I I I I I

2 3
R (a.u. )

I I I

I

I I I I

(b) H2

I s

4 5

I I I I3 2.0 I I I

I

I I I I

I

I I I I

I

I I I I

(f) ] 5
CD

D
CL.

1 ~ 0

(c) Hz

0 0.5—

-1
0

I I I I I 5 I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5
R (a.u. )

00 ''I'
1 3 4

R (a.u. )

I I I I I I I I

FIG. 7. Results for At = ti —tz (the form relevant to hole
pairing) vs interatomic distance for various values of the effec-
tive ionic charge Z. Z = 0.75, 1, 1.25& 1.5, and 2 (increasing
At values correspond to decreasing Z). Optimized orbital
exponents were used.

FIG. 8. Optimized values for orbital exponents, obtained
from minimizing energies of bonding (full lines) and antibond-
ing (dashed lines) states, for (a) Hz+, (b) Hz, and (c) Hz . For
(b) and (c) the curves for n and n approach the limits Z and
Z —5/16, respectively.
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3 ' I I I
I I I I

I

I I I

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I-1
0 1 2 3 4 5

R (a.u. )

I I I I I I I I I I I I I I I I I [ I I I

0 1 2 3 4 5 6
R (a.u. )

FIG. 9. Comparison of results for At = t~ —t~ using opti-
mized (full lines) and atomic (dashed lines) orbital exponents
for various values of Z. Z = 0.75, 1, 1.25, 1.5, and 2. For
large A the results of both procedures coincide.

FIG. 11. Comparison of results for (to —t2)/2 for Z = 1
with results from Eliezer, Taylor, and Williams (Ref. 9)
(crosses) and Chen and Peacher (Ref. 10) (squares). The full
and dashed lines give our results with optimized and atomic
exponents, respectively.

1.00 I I I

I

I I I I

I

I I I I

I

I I

0.75—

0.50— He2

0.25—

0.00

-0.50
0

I l I I I I I I

2 3
R (a.u. )

I I I I I I I I I I

4 5

FIG. 10. Comparison of results for (tp —tq)/2 for Z = 2
with results from Gupta and Matsen (Ref. 14) (crosses).
The full and dashed lines give our results with optimized and
atomic exponents, respectively.

The values of o. and 6 for bonding and antibonding
states for each molecular ion obtained &om minimiza-
tion of the energies are shown in Fig. 8 for Z = 1. The
variation found is rather large, but although it translates
into an appreciable lowering of the energies of bonding
and antibonding states separately it has remarkably a
small effect on the hopping amplitudes. As already seen
in Fig. 1, for H2 optimization of o. only slightly improves
the agreement of to with the exact results. Figure 9 shows
comparison of At = tq —t2 obtained with optimized ex-
ponents and with atomic exponents for various values of
Z. The qualitative behavior is the same and it is only for
small Z and small internuclear distance that quantitative
differences become appreciable. We conclude that evalu-
ation of Lt using the orbital exponents appropriate to the
isolated atom in the various charge states does capture
the essential physics of the problem. That physics is lost,
however, as seen earlier, if the atomic orbital exponent
is not allowed to change with atomic charge occupation.
We note also that evaluation of At using the atomic or-
bital exponents underestimates its magnitude compared
to the presumably more accurate calculation using opti-

mized orbital exponents.
It is also of interest to compare the results obtained

here with results of other calculations. For Z = 2, the
energies of the ion Hez++ are known exactly [the val-
ues of E(R) for energy versus distance in Hz+ correspond
to Z E(R/Z) in Hez++], and for Hez+ have been calcu-
lated by several workers using rather more complicated
wave functions than the ones used here. We use the nu-
merical results given by Gupta and Matsen (GM) for
comparison. Our calculated energies are found to differ
from those of GM by a few percent (typically 2%%up or less).
Remarkably, our hopping amplitude t2 is also found to
differ by only a few percent from the GM values, despite
the fact that it is smaller than the energies by about two
orders of magnitude (meaning that the errors in bonding
and antibonding energies are highly correlated). Com-
parison of At = (tp —tz)/2 obtained from our wave func-
tions and from the GM wave function for He2 together
with the exact results for He2++, is shown in Fig. 10.
It can be seen that the behavior obtained is very similar
and that our calculation of Lt somewhat underestimates
the results of the presumably more accurate calculations.

Similarly, Fig. 11 shows comparison of our results for
(tp —tz)/2 for the case Z = 1 with results from the calcu-
lations of Eliezer, Taylor, and Williams and of Chen and
Peacher for H2 and the exact results for H2 . Here the
discrepancy is somewhat larger, but it should be noted
that there are also some differences between the results
of Refs. 9 and 10. The qualitative behavior obtained,
however, is the same in the three cases, and it should be
noted that again our results for Lt are smaller than those
obtained by other methods. We conclude from these com-
parisons that our finding that At is positive and of ap-
preciable magnitude for small B and Z is on firm ground.
We are not aware of existing results for other Z values
with which to compare our results.

VII. CONSEQUENCES FOR
SUPERCONDUCTIVITY

The results of the previous sections indicate that in a
lattice of H ions with a few holes the kinetic energy of
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FIG. 15. Critical temperature (obtained from solution of
the BCS equation) vs number of holes per site n for parame-
ters obtained from the present calculation for Z = 0.6, A = 1.
Full line: R = 5.25 a.u. ; dashed line: B = 5.24 a.u.

repulsion have consistently yielded values under 1 eV.
Finally we show in Fig. 15 as an example the critical

temperature obtained from solution of the BCS equation
for A = 1, Z = 0.6, coordination number z = 4, and in-
teratomic distance as found for the planar oxygen-oxygen
distance in high-T, oxides (2.75 A.). As discussed earlier
the behavior resembles experimental observations. By
slightly changing the interatomic distance we can exam-
ine the eKect of pressure in the planes. The dominant
e8'ect of reducing the interatomic distance is to increase
the magnitude of Lt,. The changes in T seen in Fig. 15
are of similar magnitude as seen experimentally in some
high-T oxides.

VIII. SUMMARY AND DISCUSSION

We have computed hopping amplitudes for electrons in
the molecular ions H2 and H2, and in the molecule H2.
The cases of H2 and H2 may be thought of as obtained
&om the "half-filled band" H2 case by adding an elec-
tron and a hole, respectively. Alternatively, they may be
thought of as a single hole in a full band and a single elec-
tron in an empty band, respectively. Within the models
commonly used for condensed matter systems, such as
the Hubbard model, a single electron and a single hole
added to a half-filled band or to empty and full bands,
would have the same effective mass. Thus one may have
expected the hopping amplitudes in H2 and H2 to be
similar. We have found by direct calculation that this is
not the case.

Our findings are summarized in the following:
(1) Quite generally the single hole (case of H2 ) has a

smaller hopping amplitude (t2) than the single-electron
hopping amplitude (to, case of H2 ) for small and inter-
mediate nuclear separation, and the opposite is true for
large internuclear separation.

(2) The hopping amplitude for an electron in H2 (tq) is
intermediate between the two other cases both at small
and large internuclear distances. For small distances, the

difference between the hopping amplitudes in H2 and H2
(which is the relevant one for possible pairing of holes) is
larger than that between H2 and H2

(3) As the effective ionic charge Z is reduced the dif-
ference in hopping amplitudes increases and the range in
internuclear separation where the ordering to ) tq ) t2
holds grows. For large Z (e.g. , the case of He+, Z = 2)
the hopping amplitudes become very similar and the or-
dering to & t~ & t2 holds except at very small internu-
clear distances.

(4) The orbital relaxation process that occurs when
an electron is removed from a doubly occupied orbital is
central to give rise to the ordering to ) tq ) t2 and large
difFerences in hopping amplitudes at small distances. If
no orbital relaxation is allowed, the hopping amplitudes
are found to be very similar and the ordering So & t]
holds over all relevant internuclear distances.

(5) Optimization of the orbital exponents for each
molecular ion separately does not change qualitatively
the results obtained by using the orbital exponents ap-
propriate for the isolated atoms. It does, however, further
increase the difference between the hopping amplitude in
H2 and the other cases.

(6) Calculation of the difference in hopping amplitudes
by computing the parameter At from the hybrid ma-
trix element of the Coulomb interaction with orthogonal
orbitals yields qualitatively incorrect results, which are
close to the results obtained for the difference in hopping
amplitudes without allowing for orbital relaxation. Esti-
mation of the difference in hopping amplitudes from the
hybrid matrix element calculated with atomic orbitals
yields the correct sign and qualitative interatomic dis-
tance dependence but overestimates the magnitude.

Many important questions have been left open in this
study. We have used the self-consistent field approxima-
tion and ignored possible correlation eKects; these could
be taken into account within a configurational interaction
approach. We do not expect these eKects to qualitatively
change the results found here, but this is clearly a topic
for further study. Another direction for future study is
to investigate these efFects for orbitals with higher an-
gular momentum, e.g. , the p orbitals in 0 ions. We
see no reason to expect the behavior in that case not to
be qualitatively similar to the one found here. Also, the
efFect of screening in a solid-state environment is an im-
portant open question. While for the case of ordinary
density-density Coulomb repulsion the effect of metallic
screening is well understood, it is not clear how screen-
ing would afFect the parameter At, which arises from a
combination of kinematic and interaction eKects.

Furthermore, we have not addressed here the question
of the stability of the ionic species involved. For exam-
ple, our calculation yields that for Z = 0.9 the ground
state of the molecular ion with three electrons has higher
energy than the one with two electrons for B & 3 a.u. ,
which implies that the ion with three electrons would be
unstable in vacuum. For smaller Z the instability occurs
for larger B. Similar results were found in Refs. 9 and 10.
However, in a solid-state environment the unstable nega-
tive ions could be stabilized by the electrostatic potential
of neighboring ions (e.g. , like 0 in high-T, oxides), so
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that the results obtained here would still be applicable.
Despite the many open questions, we believe that the

results found here are a manifestation of a general prop-
erty of condensed matter, the absence of electron-hole
symmetry. We have found it to be quantitatively impor-
tant in what is perhaps the simplest condensed matter
system, and there is no argument known to us that would
suggest that it is less important in more complicated sys-
tems. Thus in studies of condensed matter systems us-
ing Hubbard-like models we believe it is important to
allow for the fact that the electron hopping amplitude is
likely to decrease as the local electronic charge density
increases, as modeled by the hopping interaction At.

Concerning superconductivity, the results found here
together with our earlier studies of pairing in Hamiltoni-
ans mith the hopping interaction At (Refs. 2—4) suggest
that superconductivity will be favored, everything else
being equal, by having hole rather than electron states
at the Fermi energy. Interestingly, as already pointed
out by Chapnik many years ago, superconductivity in
solids appears to be correlated with a positive value of
the Hall coeKcient, indicating hole conduction.

If one assumes that superconductivity may occur in
nature solely due to the difference in hopping amplitudes
discussed here, the phase diagrams shown in Sec. VII are
of interest. They show that as the effective nuclear charge
decreases the range of internuclear separation where su-
perconductivity may occur increases. Thus a solid of
inert gas atoms with a few holes would not superconduct
unless it is compressed to extremely small internuclear
separation. The convicting requirements of negatively
charged ions (small Z) in as densely packed a structure
as possible (small R) are found to be conducive to super-
conductivity, as well as of course the ability to introduce
a small number of holes into the system. Such dense
packing of negatively charged anions could be achieved
in certain ionic structures, where the positive ions would
only play the role of holding the negative ions close to-
gether. As seen from Fig. 13, two dimensionality would
be favored over three dimensionality only insofar as it
might allow for a more densely packed negative ion ar-
ray.

In conclusion, we note that if the results found in
this paper had been opposite, that is, if the ordering
to & tq ( t2 would have been found to hold with large
differences in the hopping amplitudes, it would not have
been very good news for superconductivity. Although
one may write down a model with to ( tz that will predict
superconductivity for low electron concentration, such a
model would not be physical. The reason is that it can
be shown by general arguments that two electrons in
an empty band, in the absence of other degrees of free-
dom (such as phonons or electrons in other bands), can-
not possibly pair, simply due to the inherently repulsive
nature of the Coulomb interaction. In other words, the
magnitude of the parameters could never be such as to
satisfy Eq. (48) [vrith At = ti —to, g = 1/(2zto)]. This
argument, however, does not hold for two holes in a full
band, as the dynamics of all the electrons in the band
now play a role. Pairing of two holes in a full band is
in principle possible in the presence of only Coulomb in-
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APPENDIX

We list here the matrix elements needed for the calcu-
lation of the hopping amplitudes, so that the interested
reader can easily reproduce and extend the results given
in the text. We deGne

M+(d
2

(Ala)

(Alb)

(Alc)

2
(Ald)

(Ale)

ng ——(nn)'~ (Alf)
Some expressions are rather lengthy and rather than
writing them out we leave them expressed in terms of
the following functions:

did" e (A2a)

dye e (A2b)

given by

Lo(~) = e "/(u, (A3a)
L (~) = e (l+ ~)/~' (A3b)
L2(~) = e (2+ 2(u+ (u )/(u, (A3c)

Mo(~) = (e —e )/~, (A3d)
Mi(cu) = [e —e + cu(e + e )]/u, (A3e)
M2(cu) = [(2+ ur )(e —e ) —2'(e + e )]/w

(A3f)

1. Q ver laps

a a = og o,

(a, b) = e (1 + (u + u) /3),

(A4a)

(A4b)

(a, b) = [Lq(w)Mo(w) —Io(u)M2(cu)]. (A4c)
((d(G)

teraction between electrons and ions and no motion of
the ionic degrees of freedom. The results of this paper
suggest that it may also be possible in practice.
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2. Single-particle matrix elements

a. Kinetic energy

(a, -~, a) = n,
(a, —~, b) = n e (1+(d —(d /3),
(a, —~', a) = n'/n,

1
(a, —Z, b) = n ((d(d) —[Lz((d)Mp((d) + Lp((d)M&((d)] + —

[
—L2((d)Mp((d) + Lp((d)M2((d)]

4

(A5a)
(A5b)

(A5c)

(A5(I)

b. Potential energy

a, ——,a
( 2
a ——a

ra )
( 2
a ——a

r(2 )
( 2
a, ——,a

r
2la ——bl

(
l

a, ——,b
l)

2
la, ——,bl

r~ )

—20!)

2, ( 2ln- —+e' I2+ —I,
4J ~)

2o.' 2 f 2+ '+ 'I1+
(d + (d "+~)

—ne (2+ 2(d),

(Cd(d)
[L~((d)Mo((d) —Lp((d) M~((d)]

—n [Lg((d)Mp((d) + Lp((d) 'VIg((d)].
((d(d )

(A6a)

(A6b)

(A6c)

(A6d)

(A6e)

(A6f)

3. Two-particle matrix elements

5
(aa, hg2, aa) = —n,)

2 f'2 11 3 1
(ab h» ab) = n ——e

l

—+ —+ -~+ -~
(d ((d 4 2 3 )

(aa, h]2, ab) = n e
l

2(d+ —+
l
+e

4 8(d) ( 4 8(d )

(A7a)

(A7b)

(A7c)

(ab, hq2, ab) = ((d —(d ) +(d e [(d (1+(d) —(d (3+(d)]
(d((d —(d) ((d + (d)

—tooe * too(2+to) —to*(2+to) ), (A7(i)

n 2 - /2 11 3 1
(ab, hq2, ab) = ———e

l

—+ —+ —(d + —(d
n (d ((d 4 2 3

(A7e)

3
(aa, Aeo, ab) = (

— ato 2Lo(to) —Mo( t2)Lo(oo + t2) + M ( t2)L—oo(to +w)—
——[Mp( (d)L2((d + (—d) —M2( —(d)Lp((d + (d)]

2
(A7f)

O.4

(aa, hq2, ab) = —(d(d Lq( )(dM ( p)(d—Lp((d)Mq((d) —Lq(2(d)Mp( —(d)

+Lp (2(d) My (—(d) ——[L2 (2(d)Mp ( (d) —
L p (2(d)M—2 (—(d)]

2
(A7g)

Other matrix elements needed are obtained &om the ones given here by replacing ~ by ~, o. by o, , or interchanging
a's and b's.
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