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We study the superconductor-insulator transition of a two-dimensional Bose-Hubbard model, con-
sidering as a specific example, an array of Josephson junctions. Within a coarse-graining approach
we derive an effective free-energy functional from which we determine the phase diagram. At zero
temperature it consists of a superconducting phase and Mott-insulating lobes. The phase boundaries
of some of these lobes display reentrant behavior as a function of temperature. Next, we evaluate
the electromagnetic-response functions of the system. The real part of the longitudinal conductivity
is characterized by an excitation gap, whereas the imaginary part describes a capacitor. In an ideal
system, under certain conditions a universal conductance is found at the transition. If we add low
frequency dissipation to the model a different value of the universal conductance is found, but still
it is independent of the strength of the dissipation. Qualitatively differing results are obtained for
frustrated and unfrustrated systems. We also discuss the Hall conductance of the system.

I. INTRODUCTION

Interacting Bose systems have attracted considerable
interest in the past few years. Several predictions on
the superconductor-insulator (S—I) transition as a func-
tion of the system parameters, disorder, chemical poten-
tial, and magnetic field have been verified in experiments
on granular films of superconducting material. ' More
recently the same transition has been studied in fabri-
cated, regular arrays of Josephson junctions, where
the parameters can be controlled, and disorder is less
important. In high quality junction arrays the charges
on islands change only in discrete quanta due to tunnel-
ing of Cooper pairs. The tunneling of single electrons is
frozen out at low temperatures. This makes junction ar-
rays an ideal experimental system to test the concepts of
the Bose-Hubbard model and of the S-I transition. The
Josephson coupling EJ of the junction array is equiva-
lent to the hopping term t in the Bose-Hubbard. model;
the inverse capacitance matrix defines the charging en-
ergy scale E~ and describes the interaction of particles;
a gate voltage V applied between the ground plane and
the array replaces the chemical potential p.

The S Itransition of a -Josephson-junction array (or
Bose-Hubbard model) can be described by a Ginzburg-
Landau (GL) free-energy functional, derived from the
original Hamiltonian within the so-called coarse-graining
approach. ' The coefficients depend on the ratio of
3osephson coupling EJ and charging energy E~, and
also on the value of a gate voltage V applied be-
tween the ground plane and the array. This GL theory,

in contrast to the standard time-dependent Ginzburg-
Landau description of (bulk) superconductors, does not
describe a relaxation process. Rather the second-order
time derivative is essential, leading to nontrivial response
functions. For instance, a universal conductance may
appear at the transition, instead of the Huctuation con-
ductivity found in the framework of the standard GL
theory of bulk superconductors.

In the present paper we extend our earlier results
(see also Ref. 12) to finite temperatures and consider
the eQ'ect of low-frequency dissipation on the response
functions. At zero temperature the phase diagram as a
function of Eg/Fc and V consists of a superconducting
phase and Mott-insulating lobes. A finite value of V, in
general, breaks particle-hole symmetry. The dependence
of the system properties on V is periodic and in many
respects reminiscent of the dependence of classical arrays
on the magnetic frustration f We, there. fore, denote the
former by "charge frustration. " At finite temperature
the phase boundary of some of the Mott-insulating lobes
is reentrant. At higher temperatures the dependence on
the applied gate voltage is washed out and the phase
boundary approaches the Kosterlitz- Thouless result.

We also present further properties of the response func-
tions as a function of temperature, dissipation, magnetic
frustration, and applied gate voltage (charge frustration).
At zero temperature, in the insulating phase the real part
of the conductivity is governed by a gap in the excita-
tion spectrum, equal to the energy for the creation of
particle-hole pairs. The imaginary part is that of a capac-
itor. In unfrustrated (magnetic and charge) arrays (with
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particle-hole symmetry) the energy gap and the inverse
capacitance vanish continuously at the phase transition,
implying a vanishing Coulomb gap in the I-V curves. At
the transition the conductance takes a universal value.
For general &ustration (magnetic or charge) the excita-
tion energy and Coulomb gap remain finite up to the
transition and jump discontinuously to zero as the su-
perconducting phase is entered. At finite temperature,
free charge carriers (particlelike and holelike) are acti-
vated. Their excitation energies and densities depend on
the applied gate voltage. We find a nonzero Hall conduc-
tance if the densities of particlelike and holelike excita-
tions are different. The lower of their excitation energies
vanishes continuously at the transition. ; characterized by
a dynamic critical exponent z = 1 or z = 2 for unfrus-
trated or frustrated systems, respectively. The presence
of the free carriers turns the system into a perfect con-
ductor, i.e., the conductivity has a Drude form with infi-
nite scattering time. Low-frequency dissipation "regular-
izes" the perfect conductivity at finite temperature and
leads to a superconducting-resistive phase transition. It
also reduces the value of the universal conductance of the
T = 0 transition. Remarkably, this new universal con-
ductance is independent of the strength of dissipation.

In the following section we briefly outline the coarse-
graining approach to derive the GL free-energy func-
tional. We present the phase diagram of the Josephson-
junction array with finite range interaction of the charges,
extending our earlier work to finite temperatures. In
Sec. III we study the conductivity for several distinct
cases, including the effect of low-&equency dissipation.
We conclude with a discussion.

II. THE PHASE DIAGRAM

We consider a square array of Josephson junctions. In
terms of the excess Cooper pair charges (2e) on the is-
lands Q; and the phases &p; of the superconducting order
parameters it is described by the Hamiltonian

H = —) (q; —q. )C;, '(q, —q. )

«,j)
The scale for the Josephson coupling is EJ. The Coulomb
interaction of the charges on the islands is described by
an inverse capacitance matrix C,. . . The capacitance ma-

trix contains in the diagonal the self-capacitance of the is-
lands Co and nearest-neighbor terms describing the junc-
tion capacitances Ci. Hence C;, = Co+ 4Ci, C,j = —Ci
for i and j nearest neighbors, and C;j = 0 otherwise. A
characteristic scale for the interaction is set by the charg-
ing ~~~rgy Ec = —,'e'C,

Magnetic frustration f is introduced by a vector po-
tential

We also allow for a homogeneous "charge frustration" or
"external" charges Q, = Q on the islands. Their value
can be controlled by an overall gate voltage V applied
between the array and the substrate. In general this in-
troduces a term V P, Q; into the Hamiltonian, where

g, Q, is the net charge which has traversed the voltage
source. Clearly this corresponds to Q = CoV in Eq.
(1)

The Hamiltonian (1) is equivalent to that of a Bose-
Hubbard model, provided that the mean number of
bosons per site is large and certain amplitude Huctuations
can be neglected. The Josephson coupling term corre-
sponds to the hopping term. The inverse capacitance
matrix C, describes the interaction, which in general
has a finite range. The applied gate voltage V corre-
sponds to the chemical potential for the bosons.

If Co ——0 the charges interact logarithmically, as do
the vortex excitations contained in (1). Then duality ar
guments imply ' that at the superconductor-insulator
transition the resistance of the array is given by the quan-
tum value Ag = hj4e = 6.45kB. If Co g 0, the case we
consider here, the duality is broken and the resistance at
the transition in general will be different.

In order to study the model further we make use of the
so-called "coarse-graining" approximation developed by
Doniach. The essence of this approach is to introduce
a complex order parameter field Q, whose expectation
value is proportional to that of exp(imp). As long as @
is small, i.e., close to the onset of phase coherence, the
Hamiltonian (1) reduces to an efFective Ginzburg-Landau
theory. The derivation has been presented before and
we only state the result. The partition function

DQ17@exp( —E[g, @])

is governed by a GL functional:

(4)

The coefticients depend on the frequency dependent phase-phase correlation function

exp[ —2e PP, (q; —q )C, (q~
—q)].

o [4Ec] —[4e P.C; (q, —q. ) —i~„](~')
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where

~=q '(o q*)/«c = (~+E~/E~)/4
e = g '(0, q )/2Ec —Eg/Ec,

a = icl g '(~„,q.),/2Ec,
C=~' g '(~„,q.),/4Ec

(6)

Zo ——) exp 2e P) (q, —q )C,. (q~
—q ) (5)

)
as follows:

ing phase at larger Eg/Ec. A similar lobe structure had
been predicted before for the Bose-Hubbard model; in
the 3osephson-junction array it is perfectly periodic in q
with period 1.

The Mott-insulating phase inside the lobe is char-
acterized by an excitation gap for adding or remov-
ing bosons (Cooper pairs) . From the GL functional
(4) we find at k = 0 two excitation frequencies w+

(+A + QA2+ 4(e)/2(. In the limit Eg = 0 for on-site
interaction this reduces simply to to+ = 4Ec (1 + 2q ). It
is reassuring to see that in the limit EJ ——0, where the
excitation gap can be determined directly from the elec-

The sums in (5) run over all integer charge configurations
q; = Q, /2e = 0, +1, ... on each site. Since the properties
of the system are periodic in q = Q /2e with period 1
we can restrict in the explicit formulas below q to the
range —1/2 & q & 1/2. Within the coarse-graining ap-
proach the coeKcient of the fourth-order term in the GL
equation turns negative if the interaction is suKciently
long range. This may indicate a tendency of the sys-
tem to show a first-order transition in this limit, or it
refm. ects simply a weakness of the present approach. In
the following we will consider the case where the inter-
action decays suKciently fast to avoid this problem. For
on-site interactions and q = 0 we have r = 7Ej/32Ec.

Notice that the correlation function g(ur„, q ) depends
only on the combination (2eV + ice„) as required by
gauge invariance. The time derivatives in Eq. (4) arise
if we expand in w~. The coefFicient of the first-order time
derivatives A is nonzero only for q g 0. It multiplies
a time derivative with respect to the imaginary time w

and. must not be interpreted as a dissipative term. The
coeKcient A vanishes on the lines in the phase diagram
where the system exhibits particle-hole symmetry. If the
particle-hole symmetry is broken, and A g 0 a nonva-
nishing Magnus force on vortices ' and a finite Hall
conductance may arise.

For on-site interaction only (self-capacitance limit,
Co )) Ci) we find at T = 0

0.5

0
0

0.5

0
0

1

(c}

0.5

0.5

(E,/E, ),„&

(&~/~~)- &

e = 1 —4q —Eg/E~,
& = q. /Ec,
( = 1/16Ec

(7)
0.5—

In this case g (w„, q ) is a second-order polynomial in
w~, and the frequency expansion of the GL functional is
exact.

The mean-field phase boundary is given by the condi-
tion ef = e+p27rf = 0. For on-site interaction it reduces
to

for —1/2 & q & 1/2 and periodic beyond. In Fig. 1(a)
we show for this limit the T = 0 phase boundary be-
tween the insulating and the superconducting phase as
a function of q and Eg/Ec. Mott-insulating lobes for
small E~/Ec are separated by regions of superconduct-

0
0.4 0.6 (Rz/F~)„0.8

FIG. 1. (a) Phase diagram at T/Ec = 0, 0.2, 0.4, 0.6,
0.8, 1.0 for bosons with an on-site interaction (or a junction
array with self-capacitance only) as a function of Ez/Ec and
charge frustration q . (b) Same, now with both on-site and
nearest-neighbor interactions. The relative strength of the
interactions is set by the parameter W—:1 + 4C'oi /Coo
4/3. (c) The phase boundary with both on-site and nearest-
neighbor interactions for W = 4/3 and q = 1/2 clearly
demonstrates reentrance as a function of temperature.
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trostatic part in the Hamiltonian (1), the result obtained
within the coarse-graining approximation coincides with
the exact result. We, furthermore, notice that a hopping
process in the ground state, which creates a pair of ex-
citations, costs the sum of the single-particle excitation
energies Z = ~+ + w . The energy Z is independent
of q . Throughout the lobes in Fig. 1(a) it is given by
Z = SE~/1 —EJ/Eg.

From the excitation spectrum we can obtain the dy-
namic critical exponent z. On the particle-hole symme-
try lines, A = 0, the excitation energies vanish propor-
tional to +e. Hence the product of critical exponents
is equal to zv = 1/2. Within the mean-field approxi-
mation used here v = 1/2, which implies z = 1. The
transition is known to be in the universality class of the
three-dimensional (3D) AY model and better estimates
for the critical exponents exist. It turns out that z = 1
and v 0.67. In the general case (where A g 0) the
lowest excitation energy vanishes linearly in e. Hence, in
the mean-Beld approximation we have z = 2. In Ref. 2
it was argued that this is the exact result, since in frus-
trated systems the transition is described by mean-Geld
exponents.

The nature of the phase transition in the symmetry
points between the lobes difFers from the rest. At q
and EJ ——0 the phase transition is first order, and the
free-energy functional (4) ceases to be a proper descrip-
tion. At these points a mapping onto a spin model pro-
vides more insight.

For a general interaction, i.e. , a general capacitance
matrix, the phase diagram acquires more structure. For
definiteness let us consider on-site and a weaker nearest-
neighbor (NN) interaction, i.e., the inverse capacitance
matrix is restricted to diagonal and NN terms. We, fur-
thermore, restrict C, . C;,. /4, thus avoiding unphys-
ical instabilities. In this case the relevant ground-state
charge configurations are (i) the state in which each is-
land has an equal number of bosons and (ii) the two de-
generate "checkerboard" configurations where neighbor-
ing sites are occupied with n or n+1 bosons, respectively.
Accordingly the phase diagram consists of two types of
insulating lobes, those with homogeneous charge distri-
butions centered around integer values of q, and checker-
board configurations centered around half-integer values
of q . If we define W = 1 + 4Coi /Coo the coeKcients
that describe an "integer lobe" are

e=l —4W q —Eg/E~,
A=Wq /Ec,
/= 1/16Ec

where b+ ——[1 —4h, +], b = [1 —4h2 ], h+ ——[1 —Wq ],
and h = [W(1 —q ) —1]. The half-integer jobe extends
at q =

2 to Eg = Ec [1 —4(1 —W/2) ]. An example
for the phase diagram with on-site and nearest-neighbor
interactions is shown in Fig. 1(b). For a more general
capacitance matrix (and hence longer-range interaction)
the lobe structure is more complicated. If we include
next-nearest-neighbor interactions the possibility for a
supersolid arises.

At finite but low temperatures charge fluctuations are
suppressed exponentially. As a result the critical value of
(Eg/Ec)„at q = 0 depends only weakly on T. For an
on-site interaction the leading temperature dependence
of the phase boundary follows from

(10)

For a complete picture we evaluated the correlation func-
tion Eq. (5) numerically, and for a finite range interac-
tion employing Monte Carlo techniques. For short-range
interactions between the charges it is sufFicient to study
small system sizes. Numerical problems arise due to the
nonanalytical behavior of the correlation function at cer-
tain values of q . The phase boundary for different tem-
peratures is shown in Fig. 1(a) for on-site interactions
and in Fig. 1(b) for on-site and nearest-neighbor in-
teractions. As is clear from Figs. 1(b) and 1(c) the
phase boundary near q = 2, i.e., near the tips of the
half-integer lobes, is reentrant. In contrast the phase
boundary of the lobes at integer q is not reentrant. This
di6'erence may be due to domain walls between the two
equivalent checkerboard charge configurations of the half-
integer lobes, which may influence the transition.

Several papers have dealt with the question whether
the phase boundary is reentrant or not. In some cases
reentrance appeared to be related to approximations used
in the calculation, in others it appeared to depend on
the range of the interaction. However, the dependence
on q and related, the difFerence between integer and non-
integer lobes had not been realized before.

Similarly as the phase boundary the coefFicients in the
GL functional (4) depend on the temperature on a scale
set by E~ (except in the regime of q where the T = 0
phase boundary extends to E~ = 0). Below we will find
that the reponse functions are temperature dependent
on smaller energy scales. Restricting our attention to
low enough temperatures we, therefore, can take the co-
efFicients of the GL equation to be constants.

III. CONDUCTIVITY NEAR THE TRANSITION

The phase boundary of the integer lobe is limited by
Eg = Ec(1 —4W q )(1 + 2 f). The analogue for the
"half-integer lobe" is

e=2b+b /(b+ + b ) —Eg/E~,
h+62 + h b~~

A=
Ec (b++b )2

1 2b+b (h+b —b, b+)2
2+8E~ (6++ b )2 (b++b )s

From the GL model (4) we can evaluate explicitly the
frequency dependent response to an electromagnetic Beld
in the diferent phases. This sheds light on the origin of
the universal conductance predicted at the transition,
and we obtain further qualitative and quantitative re-
sults. In order to do so we study the imaginary time
correlation function

b2lnZ„2 „bjnZ, +, ,
( )bA„(7, r)SA„(0)
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where Z is the partition function (3). The variational derivative yields

(7~~ (ted~, q) dr(J„(r, r)J (0))e* " +'~' (12)

where the current is

We consider first the insulating phase (e ) 0) in zero magnetic field. In this case the transverse component
0 „(iw„,q = 0) = rrH(ice„) (the Hall conductivity) vanishes by symmetry. The longitudinal component o (ia, q =
0) = a (iu„) becomes, in Gaussian approximation, after a partial integration of the diamagnetic part

0(i(u„) = dkk —) G „g[G „A,. —G „+ „y], (14)

where

1 = 2rk =e+k /4.
rg + tA(d& + ((d

The sum over Matsubara frequencies in (14) is readily performed by contour integration, with the result

10.(iId ) =
8Rg 2

Pv(P, ~+, ~ ) 1 u(P, sr+, cu ) ( 1

Ei M~ Zg i M~+ZEk
(16)

Here the k-dependent excitation energies are su+ = (kA+
QA2 + 4(ri, )/2(, Zg = tv+ + tu . The functions u and
v are defined in terms of the Bose distribution function
N(~) = [exp(Per) —1] ' as

vr fRe cr(u)) =
~

1 —
~

0(~ —~ ),8Rg ( (d )
(19)

u=N(~+) + N((u ) + 1,

v=[N((u ) + 1]N(cd ) + [N(~+) + 1]N(su+) .

In order to extract the conductivity as a function of
real frequencies we perform the analytic continuation to
real frequencies. This amounts to setting iu ~ u + ib.
The identity limg~o +.&

——P ~in8(a) finally yields the
real and imaginary parts of the conductivity.

There is some discussion on this point, related to the
order of analytic continuation and summation over Mat-
subara frequencies. In Ref. 12 the analytical continuation
is performed before the summation over Matsubara fre-
quencies. In this case the first term of Eq. (16) is absent.
However, as we will show below, this term has a physical
interpretation.

The real and imaginary part of the response function are
shown in Fig. 2. The real part vanishes below a threshold
frequency ~ ( w, as we expect for the Mott-insulating
phase. The threshold frequency coincides with the sum
of the excitation gaps for a particlelike and holelike exci-
tation w, = Z(k = 0) = QA2 + 4(e/(. Above the thresh-
old frequency w particle-hole excitations can be created,
and the real part of the conductivity is finite. In the
language of the GL functional it means that propagating
Josephson plasmon modes can be excited. Notice that
the conductivity at zero temperature depends on cu/w
and a universal constant only.

A. Zero temperature

At zero temperature the function v vanishes and u = 1.
Hence we are left with

1

8R,(

which reduces to

+vr6(~ + Kr, l ),
FIG. 2. The real and imaginary parts of the frequency

dependent conductivity at the symmetry point, A = f = 0.
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The threshold frequency is shown for diferent param-
eters in Fig. 3. For the case of on-site interaction it is
given throughout the lobe by a = 8E&gl —Ez/E~ in-
dependent of q . In general the sum of the excitation en-
ergies remains finite up to the transition at e = 0, where
it reaches the value w, = A/(. Only on the particle-hole
symmetry lines A = 0, i.e., at the tips of the integer
lobes, as well as, for finite range interactions, the tip of
the half-integer lobes the gap vanishes as +e when the
superconducting phase boundary is approached.

We want to stress this result: At zero temperature the
applied electromagnetic field only produces excitations
in pairs (particle and hole). The sum of the excitation
energies enters into the conductivity, whereas the lower of
the single-particle excitation energies shows the critical
behavior characterized by the dynamic critical exponent
z.

At the transition, on the particle-hole symmetry lines,
where the gap in the response function vanishes, a finite
dc conductance equal to

(20)

emerges. This response is the universal conductivity
found by Cha et al. In the general case the gap remains
finite at the transition and Reer(w = 0) = 0.

The imaginary part of the conductivity can be ex-
panded at low frequencies w (( u, with the result
Imcr(w) = wC, g. This implies that the system behaves
as a capacitor with effective capacitance

1

6~c+g
(21)

At low temperatures T « min(w+, cu ) the conduc-
tivity is

7l 8((d —M~ )
Reer ((u) = n piib(~) +

8Rg

x 1+2cosh
/ /

e(ping

Thus we expect on the insulating side of the transition
in the I-V curves of junction arrays the phenomenon of
"Coulomb blockade" up to a voltage scale given by the
"Coulomb gap" (2e) /2C, ~. This means no current is
Howing for voltage smaller than a threshold voltage which
scales with e/C, ~. If A = 0 the efFective capacitance di-
verges near the transition as e /, and the transition
to the superconducting state is marked by a vanishing
Coulomb gap. If A g 0 the particle-hole symmetry is
broken and the capacitance remains finite up to the tran-
sition. This means the Coulomb gap vanishes discontinu-
ously as we enter the superconducting phase [Fig. 3(a)].

B. Finite temperature

Imo(~) = pD/(u+ ~C,s,
where

(22)

&.e = [1+12—,(e P +e P )]
c+ (23)

0
0

0
0 le-l, ~ fl

FIG. 3. (a) Excitation gap (or inverse capacitance) vs e
for both the nonfrustrated and the frustrated case at T =
0. I:A= f =0 II A=O vrf =-, III:A=-, f =0.
(b) Excitation gap on the phase boundary where e = 0 as
a function of charge frustration (on-site interaction: curve I,
also NN interaction; W = 1 + 4C~~ /Coo = 4/3: curve II)
and magnetic frustration (curve III).

where the Drude weight pa = T(e + e )/&g
was introduced. In the real part two contributions can
be distinguished. The second term in Eq. (22) general-
izes (19). It still describes the simultaneous excitation
of a particle and a hole. However, at finite temperature
the absorption and emission processes are characterized
by Bose functions. Indeed the temperature-dependent
coefficient can be written as ([I + N(ca+)][I+ N(w )]-
N(~+)N((u ))h ++

The first term in Eq. (22) describes the coupling of
the external field to thermally excited particles or holes.
It is proportional to their total density exp( —pm+) +
exp( —Pw ). The frequency dependence of this term
arises from I/(w + ib) with vanishing b, i.e. , it is an or-
dinary Drude conductivity in the limit where the scat-
tering time is infinite. It may appear peculiar that the
phase which is insulating at T = 0 turns into a perfect
conductor at finite temperature. It arises due to the ab-
sence of a low-frequency dissipation or disorder in our
model. Hence the thermal charge excitations are freely
accelerated. Below we will show that the inclusion of
dissipation regularizes this zero-frequency contribution.
Although the system is a perfect conductor it is not a su-
perconductor, since it shows no Meissner e8'ect. In order
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to check this we write Eq. (12) for small but finite q in
the zero-frequency limit as

(~~(q)) = &~-(q) &-(q) . (24)

After expansion in q the diamagnetic and paramagnetic
parts in K~ cancel to leading order, i.e. , K = O(q2),
which implies a vanishing superQuid density and, there-
fore the absence of a Meissner effect.

The scale of the crossover temperature to classical be-
havior is set by T —mrn(w+, w ). Note that at the
transition min(w+, cu ) = 0. This means that at any
finite temperature the transition is in a sense classical.
For T » ~ we find

7l T (d —rd2 2

( )=" '( )+,R, l-l(- -A/ )'( ".)
{25)

T(d
Iril Cr(&) = pri/M + 2, rd (( ~~ .

4Bg (d

The excitation gap persists. However, the frequency
dependence is changed. On the particle-hole symme-

try lines A = 0 the low-frequency conductivity at the
transition diverges rather than being universal. At
high temperatures T )) min(id+, rd ) the Drude weight,
i.e. , the prefactor of 1/(w + i8), in the absence of dis-

sipation and disorder diverges near the transition as
T in—[min(tv+, rd )/T]/Rg.

C. Magnetic field e6'ects

The effect of a magnetic field, if we ignore commensu-
rability effects, is also described by the GL functional (4).
(In Refs. 23 and 24 commensurability efFects have been
included in the coarse-graining approach. ) In this case
we can take the magnetic field into account by expanding
the order parameter in Hermite polynomials that diago-
nalize the free energy. Thus the momentum integrals in

(14) are replaced by a sum over "Landau levels" n and
Eq. (14) is replaced by

(4p7r f)~
rr(z(ll~): ) ) (n + 1) [2G~, entry~, +ni G(d~ (s+p, GnGJ~, n1+G4p~)n 4Igg+~a )n+i] 'I

where

G
1 r„= 4p7r fn + ay .

rd + XACd~ + rn
(27)

For finite magnetic fields the mean-field phase transition is determined by ef:e + +27I f = 0 ~ We expect
conductance to be nonzero. 2 Hence we also consid. er rr „(iid )—:oIr(ird„):

i(4q~ f)' . 1
rrH(ird ) = ) (n+ 1)—) [Gncg +,n+lw+w, Gn, w +tat Gn+l, w ]

p

(28)

Proceeding along the same lines as in the zero-field case we find the real and imaginary parts of the conductivity

~4 vr
Rerr(~) =, ) (

" "+
jj)~ ~

~

—r. )+ " "+'b(~ ~
~

—E„jj
n

(4'Y&f) - n + 1 &n + &n+r rd un &n+r
Imo cu +

Rg ( (d CaI +ni n(8 —Z Z n Cd

Hei e we introduced M = & + (d ) L~ = (d +I —(d

= ~+ i+~d„, and ~+ = (~A+ QA2 + 4gr )/2r", . The

temperature enters through the function u = N(id+) +
N(rd ) + l. As is clear from (29), the excitation gap
frequency ~, is now given by M = Z —p. Even on the
particle-hole symmetry line A = 0, the gap remains finite

ger f/r,
'

up to the transition [see Fig. 3(a)]. This implies
that magnetic &ustration, similarly as charge &ustration,
prevents the appearance of the universal (zero-frequency)
conductance at the transition. On the other hand, the ef-

fective capacitance may still diverge. For strong magnetic
fields f (close to the t;ransition) we can replace the sum
over Landau levels by the first (divergent) term. Hence
at zero temperature and A = 0 the effective capacitance

I

reduces to

vC
4Rg ~ay

For temperatures T » cu the effective capacitance de-

pends on the critical field f„For a large . range of pa-
rameters it is inversely proportional to the field, i.e. ,

&a-f '
For a small field or far from the transition, f

ey, A2/4g, the sum over Landau levels can be substituted

by an integral. In this way we find corrections to the

f = 0 results. For instance (19) and (21) are replaced at
zero temperature by
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Rea(~) = O(~ —ur, ) ~

1 ——+.f ceo (4pvr f)21
8Bg ~2 (2~4 )

D. The Hall conductance

The real and imaginary parts of the transverse conduc-
tivity are

Imo(~) =
6Bg

chic

(u'i 3 (4pvr f)'611——'
I

+-
cd ) 10 g Ld

(4pvr f)2 . (n+ 1)(m„+g —u)„) 1
ReoH (u 2 2 2+gC

(32)

The function zv = N(w ) —X(co+) governs the temperature dependence. At zero temperature the Hall conductance
vanishes. This follows from the fact that at T = 0 no excitations are present. As expected, it is also zero at the
particle-hole symmetry points where (tu —m +y) ~g —o= 0. A nonvanishing Hall conductance o.T arises in a magnetic
field at finite temperature if the density of holelike and particlelike excitations differ, i.e. , if the particle-hole symmetry
is broken.

In comparison to the longitudinal conductivity (29) the behavior of the real and imaginary parts has been inter-
changed: The imaginary part of the Hall conductance exhibits an excitation gap and the real part is finite at zero
frequency

+2 )
= R~') (n+ 1)(u)„—m„+g) .

(4p~f)'). (n+1)(~„+,—~„) r1'
Reo.II (u = 0

~n~~+i qE„

Close to the transition where ef « min(AT, A /2() the Hall conductivity diverges as ReoH(w = 0) = R& TAef In.
the opposite limit, i.e. , T « min(uo, wo ), we can approximate (33) for small fields by an integral, with the result

QJoReo.II(u) = 0) =
4p~ Rg

exp( —P(so+) —exp( —P(uo ), ~o ——( A2 + 4gef,

which is odd in A as well as in f Thus we .see that
far from the transition the Hall conductance is inversely
proportional to the magnetic field and proportional to the
difference in density of activated particlelike and holelike
carriers.

we can account for damping in an imaginary time for-
malism by an extra term q I w„ I

in the free energy. The
inclusion of this term changes the analytic properties of
the Matsubara sums and some care is needed when eval-
uating them. The analytic continuation now yields

E. The influence of dissipation
O 4

So far in our model no low-frequency dissipation was
included. The only source of dissipation is the creation
of particlelike and holelike excitations, related to the ex-
citation gap in the nonsuperconducting phase. We found
a perfect dc conductivity at finite temperatures [propor-
tional to —'+m 6(u) J. Now we will show that the inclusion
of a phenomenological low-frequency dissipation regular-
izes the divergent Drude conductivity.

Generalizing the approach of Caldeira and Leggett

-4 —M -2 0 w+ 2 ~/E, 4

FIG. 4. The density of states N as a function of frequency.
In this example we choose e = —,AE~ ———0.1, and gE~ = 0,
0.2, 0.8 for curves I, II, and III, respectively.
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OO

0 ((u) = dz G (z) —G (z) x [G (z) + G (z) —G (z + (u) —G (z —ur)I,
16m&Qu o 1 —e

o((u = 0) = exp( —2P~, ) .
vrRg rIP

(36)

This demonstrates that the inclusion of dissipation reg-
ularizes the singular behavior in Eq. (22). Note, the
surprising result that at zero temperature, although dis-

(a)

where the advanced and retarded Green's functions
G / (z) = (rl, + Az —(z + iilz) were introduced.
Prom these real time Green's functions we immediately
obtain the "density of states" as shown in Fig. 4. For
weak dissipation, i.e., gE~ && 4, it is peaked around the
two excitation frequencies w+, whereas for gE~ &) 4 the
largest contribution appears at zero frequency.

The k integration in Eq. (35) can be performed ana-
lytically. The Bose distribution function, and therefore
the conductivity, is seperated conveniently in a T = 0
part and a finite temperature part. The z integration
was done numerically, the results for different cases are
shown in Fig. 5. Note that, although smeared, the gap
structure is still visible. At finite temperatures a contri-
bution to the real part centered around zero frequency
appears. This is reminiscent of the perfect conductivity
b(tu) peak in Eq. (22) for the case without dissipation.

For finite temperatures, but lower than the gap fre-
quency, the height of the zero-&equency peak in the real
part of the conductivity shows activated behavior. In the
limit T « u on the symmetry line A = 0 and for weak
damping rj « s, ( the result is

I

sipation is present, the dc conductivity vanishes cr(w =
T =O, rl $0) =0.

At the zero-temperature transition the dc conductivity
o. may be evaluated directly from Eq. (35). Again a
universal value emerges, but with a different value,

o. =
~

———
~

= 0.117 = 0.3cr*, (37)
1 /'ir 2 l 1

8Rg (2 vr) Rg
independent of the strength of the dissipation g. This
important and perhaps surprising result can be under-
stood as a consequence of hyperuniversality: ' At a
continuous phase transition certain amplitudes, as the
conductivity at a T = 0 transition in two dimensions,
are universal constants. The inclusion of dissipation in
the Caldeira-Legett sense changes the universality class.
Again a universal conductivity is found, independent of
the strength of the dissipation, but with a different value.
Figure 6 demonstrates how this new universal conduc-
tance arises as we approach the transition. Shown is a
one-parameter family of curves that depends on the value
of riz/e(. At zero temperature the conductivity is a func-
tion of w/w, and rjz/e( only. The horizontal curve (V)
corresponds to either infinite damping or the response at
the transition. All curves cross at the value o = 0.

It is interesting to compare o. with the results of
Monte Carlo simulations on disordered Bosons, where
a very similar value of the universal conductance equal
to OMC = (0.14 6 0.03)/Rg was reported. It is not
clear at this stage whether the agreement is a coincidence
or whether it indicates a link between disorder and the
model for low-&equency dissipation used by us.

At finite temperature the dc conductance at the transi-
tion is infinite, similar as in the absence of dissipation. In
the high-temperature limit we can study directly the real
time dependent Ginzburg-Landau equation correspond-
ing to the free energy (4) (Ref. 15)

2~i
~ —~ ~+ A(r, t) + (q —tA)O, +(a,'

0

(38)
Here we wrote both the time derivative arising due
to gauge invariance with coeKcient A and the dissipa-

(b)

FIG. 5. (a) The real (even) and imaginary (odd) parts
of the conductivity at zero temperature in the presence of
dissipation. I: rI /e( = 0.01, II: rI /et = l. (b) The real
and imaginary part of the conductivity at finite temperature
T = 0.2cu, and finite dissipation g /s( = 0.1.

FIG. 6. The real part of the conductivity for rj /et
0, 0.1, 10, 1000, and oo, denoted by I, II, II, IV, and V,
respectivly. Note that all the curves cross each other at a. = o.
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tive term proportional to g. On the right appears a
Langevin force ( with power spectrum ( (( ) = 2gT.
The fluctuation conductivity can be derived using the
ordinary Kubo formula. In this way we can derive
the high-temperature results quoted above. They dif-
fer &om the standard fluctuation conductivity results for
superconductors due to the second-order time deriva-
tive.

F. Response in the SC phase

In the superconducting phase the conductivity can
be evaluated along the same lines as in the insulating
phase. Now e is negative and the order parameter is 6-
nite (~g~ ) = (p, ) =~ e

~
/2~. Writing @ = ~p, e'4' and

taking into account phase fluctuations only we find the
free energy

1(
&[a, dj = «d'r p. —

I
'7~&+

o
' 4(" @o ")

+((8 p)'+ ~AD p)
The term iAB P is a total derivative and does not influ-
ence the response functions. Using (11) we find

~~-(q'~-) =
&

' .
I

—4-+ ", ",
I

. (4o)Rg~„( 4 ~2+ q2)

The analytic continuation to real &equencies yields, for
q~0,

0-„„(q= 0) ur) = — '
b„~

~

—+ vrh(~) ~,
harp, (i
Rg ((d

which implies perfect conductivity, and for ~ m 0,

)
which demonstrates the presence of a Meissner effect.

(41)

(42)

IV. DISCUSSION

We analyzed the Bose-Hubbard model describing the
S-I transition of Josephson-junction arrays. It reduces
to a GL free-energy functional (4), difFering from the
standard one for bulk superconductors by the absence
of low-&equency dissipation and relaxation. Rather than
the first-order time derivative, characteristic for the or-
dinary GL equation, the second-order time derivative is
crucial.

First we investigated the phase diagram for finite tem-
peratures and finite range of the interaction. Reentrant
behavior is found for the "half-integer" lobes, whereas
no reentrant behavior arises for the integer lobes. This is
presumably related to the presence or absence of domain-
wall in the two cases.

Second we derived the &equency dependent conductiv-
ity of the system using the GL &ee energy. The real and
imaginary parts are governed by a threshold frequency
u), and an effective capacitance C,g, respectively. The
threshold &equency is the sum of the excitation energies
of a particlelike and a holelike excitation, which is inde-
pendent of q in the integer lobes. The effective cspac-

itance is related to the Coulomb gap (2e) /2C, ~, which
has been found in many small capacitance junction sys-
tems and is responsible for the insulating behavior at
voltages below 2e/t, ir. If particle-hole symmetry exists,
A = 0, and if f = 0 the threshold frequency and the
Coulomb gap vanish at the transition. In general (A g 0
or f g 0) both remain finite up to the transition. (This
in contrast to the disordered case where the particle-hole
asymmetry scales to zero at the transition. is) On the
other hand, the excitation gap for a single excitation
(particlelike or holelike, whichever lies lower depending
on the chemical potential) vanishes at the transition and
is governed by the dynamic critical exponent z. At finite
temperatures this gap energy determines the density of
the majority-type excitations. However, this critical en-
ergy scale does not influence the T = 0 conductivity.

We analyzed the problem in a mean-field approxima-
tion. In this way we can obtain explicit results, for in-
stance the complete frequency dependence of the conduc-
tivity. Moreover we reproduce the correct value of the
dynamic critical exponent z. This is not so surprising,
since it follows essentially from symmetry arguments. It
is z = 1 for a system with particle-hole symmetry A = 0
(which follows from the equivalence of space and time
derivatives in this limit) and z = 2 in the general case
A g 0. Both agree with the analysis of Ref. 2. On the
other hand, the exponent v is v = 1/2 in the mean-field
approximation, which is correct only for A g 0. In general
non-Gaussian corrections can also modify the universal
conductance. Right at the transition the fourth-order
term in the Ginzburg-Landau free energy should have
the most pronounced effect. But even there Monte Carlo
simulations of Ref. 1 yield results which differ &om the
mean-field value by only 30%%uo. This gives us confidence
into the quality of our results.

The two kinds of &ustration, external charge q and
the magnetic frustration f, turned out to have a very
similar effect on the response functions, although the
&ee energy &om which they were derived is not self-dual
for finite-range interactions between charges. The na-
ture of the phase transition and the response function
differ in the presence or absence of charge or magnetic
frustration. Only for integer or half-integer values of q
(i.e. , at the tips of the lobes) and for integer f, i.e. , at
the point of maximal symmetry, does the threshold &e-
quency for the real part of the conductivity vanish at the
transition, leading to a universal value. The Coulomb
gap vanishes at the transition, either continuously in the
un&ustrated or with a jump in the charge &ustrated case.

The Hall conductivity also reflects the different na-
ture of the phase transition in the presence or absence
of particle-hole symmetry. A nonzero value is obtained
only at finite temperatures when the particle-hole sym-
metry is broken.

Without low-&equency dissipation thermally activated
carriers can be freely accelerated by an electric field,
resulting in perfect conductivity without Meissner ef-
fect. The inclusion of low-&equency dissipation regular-
izes this singular behavior and yields a Drude-like con-
tribution. The dc conductivity at the transition cr is
smaller than in the case without dissipation but still uni-
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versal and independent of the amount of dissipation. It
is o 0.12/Rg, which is very close to the Monte Carlo
result (0.14 + 0.03)/Rg).

The calculated response should be visible in experi-
ments on junction arrays where the effect of disorder and
dissipation is negligible at low temperatures. The mea-
sured Coulomb gap as a function of magnetic frustration
shows qualitative agreement with the results presented
here. The threshold frequency in the excitation spectrum

has not yet been verified. It would require high-frequency
measurements.
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