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Superconducting states of reduced symmetry: General order parameters and physical implications
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It is shown that the order parameter in reduced-symmetry superconductors can be represented in
terms of a complete set of basis-function multiplets, which is analogous to a complete set of crystal har-
monics. These complete sets are found for several symmetries that are germane to the study of heavy-
fermion superconductors. The implications of a general order parameter are discussed for several physi-
cal properties: line nodes in the energy gap, the Knight shift, surface pair-breaking, and time-reversal
symmetry.

I. INTRGDUCTIGN

The purpose of this paper is to repair a small but im-
portant omission in the discussion to date' of the possi-
ble gap functions for super conductors in which the
point-group symmetry of the normal state is broken in
the superconducting state. We shall show that al-
though the basis functions of the irreducible representa-
tions in terms of which the gap is written are not unique,
a group-theoretic theorem due to Hopfield allows this
nonuniqueness to be parametrized in terms of a certain
finite set of basis-function multiplets, which we shall ta-
bulate. Symmetry arguments alone cannot provide any
information on how to reduce the nonuniqueness, so that
in systems in which the pairing interaction is poorly
known, the use of only some members of the set of basis
functions can lead to special and perhaps unphysical
features in the order parameter. One is guaranteed not to
make such errors if one uses our basis function sets, al-
though it may not be necessary to use all of them for a
particular problem.

We have in mind chieAy the heavy-fermion supercon-
ductors, in which both the crystalline anisotropy and
spin-orbit interactions are important. ' We shall focus in
particular on the point groups D4I„D6&, and OI„which
are relevant to CeCu2Si2 and URu2Si2, UPt3, and UBe&3,
respectively. We discuss the physical implications of our
mathematical results for these systems, and clarify
several points which a casual reading of Refs. 1 —5 might
not reveal, as the tables of basis functions presented
therein often list only one multiplet, which is special in
the sense discussed above. The greatest significance of
our results is for odd-parity (pseudospin triplet) pairing.
It becomes easier to understand Blount's result that the
energy gap (or gaps if the state is nonunitary) in this case
has no line nodes. It also follows that one should not ex-
pect equal spin pairing in general, nor should one expect
unitary pairing if time reversal is broken. " The lack of
equal spin pairing means that one should expect a Pauli
paramagnetic suppression of the upper critical field
H, 2(T) for all orientations of H in general. This last
point is of particular relevance to UPt3. ' '

We suspect that our mathematical results are known to

some readers and the authors of Ref. 1 —5, especially
Blount, as he lists more than one possible order parame-
ter for some of the two-dimensional representations,
separated by commas. It still seems worthwhile to
present this paper as Blount does not explicitly state, and
it may not to be clear to all readers (as it was not to us),
that one is supposed to take linear combinations of these
order parameters, and that when this is done, the special
features of the gap mentioned above disappear. ' We
apologize in advance to those in the know, and hope that
our discussion will clarify these matters for other readers.

Our tables of basis functions may also have practical
use in the future, if knowledge about the normal state
matures. One might attempt microscopic calculations of
the superconducting properties, using our complete basis
set, multiplied only by group-invariant functions [the
FJ"s in Eq. (2) below], which could be treated as varia-
tional Ansatze, for example.

The paper is organized as follows. We state a modest
generalization of Hopfield's theorem in Sec. II, and give
tables of sets of basis functions for D4&, D6&, and 0&.
Tables for even-parity pairing can be found in Lax, but
those for odd parity are new. To provide a compilation
in a uniform notation, we nevertheless give even-parity
tables as well. A generalization of Lax's proof of this
theorem is given in the Appendix. The physical implica-
tions of these results are discussed in Sec. III.

II. INDEPENDENT SETS GF BASIS FUNCTIGNS

Let us denote the point group of the normal state by G,
and assume that this contains the inversion element. The
parity of the gap function is then definite, and it is a pure
pseudospin singlet for even parity, and triplet for odd
parity. If the highest transition temperature is attained
for the irreducible representation I J, then the gap func-
tion is given (in the Balian-Werthamer notation' ) by a
linear combination of the basis functions P of I

I.
J

b.o(k)= g g„g(k), even parity,
@=1

(l)
'J

d„(k)= g g„P(k, n), odd parity,
p=1
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where g are arbitrary complex numbers and l is the
dimensionality of I . Note that in the odd case, the basis
functions must depend on the pseudospin index
n(=1, 2, 3) in addition to k.

The basis functions P are clearly not unique. To write
them in their most general form, we invoke (and slightly
generalize) Hopfield's theorem on the number of indepen-
dent crystal harmonics. This theorem states that the
most general basis-function multiplet can be written
as a linear combination over group-invariant functions of
N independent basis-function multiplets,
a = 1,2, . . . , N, where N =

l~ and N =3lj. for the pseudos-

pin singlet and triplet cases respectively. In other words,
we can write

g (k ) = g FJ'(k )g~'(k ), singlet,
a=1

31.

P(k, n)= g FJ'(k)P'(k, n), triplet,
a =1

(2)

where the functions F~'(k) are arbitrary but invariant un-
der all operations R in G.

We shall refer to the functions within one multiplet as
partners, to p as the partner index, and to the collection
P', with a =1,2, . . . , N as a set of multiplets. ' Since
bo(k) and d(k) entail double expansions in the indices p
and a, it is important to distinguish between the roles of
the FJ' and g to avoid confusion. It is perhaps best to
think of the F~"s as determined by interactions at energy
scales large compared to T„so that in a weakly inhomo-
geneous situation such as the Abrikosov vortex state, the
q„'s will vary with position, but the F~"s will not.

We present a proof of the theorem in the Appendix,
and complete sets of even- and odd-parity basis-function
multiplets in Tables I—VI. The linear independence of
the multiplets for the representations of the cubic group
has been checked using MATHEMATICA. These functions

A 1„
A2„
Bl„
B2„
E„

TABLE II. Odd-parity basis functions for D4&.

Basis functions

k, z; k x+ ky y, n = 1;3.
kxy kyXj kx ky ( k~X kyy)j k/ ky kz( k~ ky )Z

( k~ ky )kzzp kx™x ky y& n 1 y 3
k„y+kyx; k„k (k„x+k y); k kyk, z
(k'+",k'+")z; k, (k x, k "y); k kyk, (k y, k x), n =0;2.

TABLE I. Even-parity basis functions for D4&. Linearly in-

dependent basis-function multiplets are separated by sem-
icolons. Note that more than one basis function is given for the
identity representation.

Basis functions

Alg

A2g

B2g

(k2+k2)

Imk+

k, Imk+

k, Rek+

Re
: k, k+., k, k'

Re
:k+,' k

were obtained by noting that in each representation, one
of the partners can be chosen to have a definite sign un-
der the smallest rotation about the z axis, which allows it
to be written as a linear combination of k+ (for even par-
ity) or of k+z, k 'r+, k+ —'r+ (for odd parity) with
certain definite values of m. Here, k+ =(k, +ik ), and
r+ =x+iy.

III. PHYSICAL IMPLICATIONS FOR PAIRING

In this section, we discuss the physical implications of
the results of the last section. We focus on odd-parity
pairing, except for Sec. D below, which applies to even
parity also.

A. Line nodes of the gap

Blount's theorem that line nodes do not in general ex-
ist is apparently contradicted if we do not allow for more
than one multiplet of basis functions. Consider the E,„
representation of D6h, for example. Volovik and Gor-
kov choose only the first multiplet listed in Table IV,
and write

d-(g k +rI k )z . (3)

The fourth-order Ginzburg-Landau free energy has mini-
ma at (rI, rI ) equal to (1,0) and (l,i ). For the first
choice, the gap vanishes on the k =0 line on the Fermi
surface. If we add in the next multiplet from Table IV,
however, the gap function becomes

d-(rt k +rt k )z+u(k)k, (r)„x+g~y), (4)

where u(k) is any invariant function of k. Now the gap
does not vanish for k„=0.

Note, however, that point nodes, when required by
symmetry, are robust. For example, the A2„order pa-
rameter for D4& must be even under reAection in both the

TABLE III. Even-parity basis functions for D6h. We have
defined k+ =k +ik . It is easier to write the basis functions as
the real or imaginary parts of complex functions than giving
real functions. For the two-dimensional representations, E&g
and E2~, the partners in any multiplet (i.e., functions corre-
sponding to dN'erent values of the index p with the same index
a) are given by the real and imaginary parts of the complex
valued functions listed. Note that more than one basis function
is given for the identity representation.

Basis functions
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TABLE IV. Odd-parity basis functions for D6q.
r+=x+iy.

The notation is as in Table III. In addition,

Basis functions

kzz) k&x+ kyy; Rek + r+
Im: k r+', k+r+; k+k, z

Im: k+z; k+k, r+, k+k, r

E,„

Re: k+ z; k+k, r+;
Re

: k+z; k, r+,.Im

k+k, r

k+k, r; k' z; k k,r; k k, r+

E2u
Re

:k+r+, k+kz; k+r; k r; k r+,' k kz

x-z and y-z planes. This requires the coefficient of x to be
odd in k„, that of y to be odd in k, and that of z to be
odd in both k and k . These properties are obeyed by
all three basis functions listed in Table II, and any linear
combination vanishes at the north and south poles as re-
qu11 ed.

Finally, we note that for nonunitary order parameters,
a restricted set of basis functions can lead to line nodes in
the energy gap for one branch. For example, for the E2„
representation of D&l„with (i)„r)~)=(l,i ), Blount lists
the order parameter as k+r+, which resembles that of
the 3, phase for He. The gap is nonvanishing only for
the S,= 1 pseudospin state, in violation of the theorem.
Even if the second basis function contribution k+k, z is
added, the 5, = —1 gap vanishes everywhere on the
k, =0 line, on the Fermi surface, in continued violation
of the theorem. In fact, this nodal line persists for all
combinations of only r+ and z basis functions. One
needs to add the r components in order to remove it.

B. Equal spin pairing and Knight shift

The pseudospin structure of the order parameter for
the odd-parity states is very different from that of
superAuid He. As is obvious from the tables, in general
an odd-parity state consists of pairs in all three
(S,= —1,0, 1) pseudospin states. It is thus not an equal
spin pairing state for any direction in spin space, and the
Knight shift (effectively the magnetic susceptibility) can
be expected to decrease for aII orientations of the mag-
netic field. ' Thus, the observation of either a decreasing
Knight shift below T„or of Pauli suppression in the
upper critical field (even for all field directions), is not an

Aqg

Eg
Tlg

1,k +k +k„.. .
(k~ —k~)k, +c.p.
[v'3(k„"—k"),2k," (k„"+ky") ), n =2;4. —
[k„k (k„"—k"),c.p. 's], n =2;4;6.
[k„k,k,",c.p's], n =&;2;4.

TABLE V. Even-parity basis functions for Oz. c.p. stands
for "cyclic permutations" of the indices x,y, z.

Basis functions

indication of pseudospin singlet pairing.
However, the absence of a change in the Knight shift

below T„or of Pauli suppression of H, 2, is then a very
special case and thus can have strong implications. (We
assume that the obvious possibilities like a small and
unobservable contribution to the Pauli paramagnetism,
small effective moments, or the presence of large numbers
of spin-orbit scattering impurities, can be ruled out. ) The
M, 2 data for UPt3 (Ref. 12) have been interpreted as
showing a Pauh suppression for fields along the c axis,
but not for basal plane fields. ' Such an interpretation
implies (i) that the superconducting state involves almost
entirely components with d~~c,

' and (ii) that the pseudos-
pin coupling to the magnetic field involves predominantly
p'i It)ITiIfi and i'll ~)o II~II terms [but not terms involving
the direction of the momentum k (Ref. 17)].

C. Surface pair-breaking

It is known that a rough surface is detrimental to re-
duced symmetry superconductivity in general. This need
not be so, however, for a smooth surface for certain order
parameters under some special circumstances. For exam-
pie, the 3 phase of He is not affected when the l vector
is normal to the surface, ' because (i) all spin components
of the order parameter are then even in k n, where n is
the surface normal, and (ii) the amplitude for spin-fiip
scattering is negligible as spin-orbit coupling is very weak
for He.

For reduced symmetry super conductors, neither of
these two conditions holds in the general case. For exam-
ple, the first basis functions listed for the E„and E,„rep-
resentations of D4& and D6&, respectively, yield order pa-
rameters similar to that of He-A. (The first listed B,„
and Bz„basis functions for D6& are also similar. ) Howev-
er, when the other basis functions are added in, the order
parameter is seen to always involve odd powers of all
three components of k. (Compare this with the discus-
sion of the Knight shift, above. ) Thus, for any surface
orientation, n, there is a part of d which is odd in k-n.
Second, one must now parametrize the surface scattering
by both pseudospin-flip and non-pseudospin-Aip scatter-
ing amplitudes, which will in general be completely in-
dependent except for the unitarity constraint. Let us first
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TABLE VI. Odd-parity basis functions for Oh. The notation is as in Table V. In addition,

do = (k x+ k„y+ k, z).

Basis functions

k~x+k~™y+k,z, n =1;3;5.
k "(k —k )x+c p n =1 3'5

E„
[&3(k,x —k»y), 2k' —(k™x+k»™y)],n =1;3;5.
[&3(k —k ),2k, —(k„+k» )]d~, m =2;4.
[&3[(k,'k, x+k„k, z) (x+—+y)I, [(k'(k, —2k»)x+k„k, z)+(x~y)]]

Tlu [k, (k»™x—k™y),c.p. 's]; m =0,2; n =1;3;5
[k„k» ( k„—k )k,™z,c.p. 's ]; n = 1;3;5

2u [k, (k»x+k„™y),c.p. 's]; m =0;2; n =1;3;5
[k„k»k,™z,c.p. 's]; n =1;3;5

imagine that pseudospin is conserved. In that case, the
argument of Ref. 19 applies, and since d is not even in
k.n, the surface will break pairs. Even if pseudospin-fIip
scattering is included, the arbitrariness in its relation to
non-pseudospin-Aip scattering implies that the ampli-
tudes and jor phases for the pseudospin pairs
(S,= —1,0, 1) near the surface will differ from those in
the bulk. Thus pseudospin-fiip scattering (which is a
necessary consequence of spin-orbit coupling) can be
another pair-breaking mechanism in addition to pure
momentum scattering.

We thus conclude that for odd-parity pairing, surface
scattering generally breaks pairs. The degree of depair-
ing by a smooth surface depends not only on the repre-
sentation but also on the actual linear combination of the
difI'erent multiplets involved.

D. Ginzburg-Landau theory and time reversal

A question naturally arises about the form of the
Ginzburg-Landau theory when we have more than one
basis-function multiplet. From a microscopic viewpoint
we expect that the highest T, will be obtained for one
particular linear combination, i.e., one particular choice
of the functions F, (k) in Eq. (2). (We suppress the repre-
sentation index j, and lower the index a to a subscript. )

One may now wonder if these functions can be relatively
complex. If so, that would imply that one needed an or-
der parameter of twice the dimension of the representa-
tion, since the choice F,*(k) would lead to the same free
energy by time-reversal symmetry. This would contra-
dict our earlier group theoretic argument that time re-
versal causes no additional degeneracies.

One may convince oneself that this is not possible by
examining a simplified Ginzburg-Landau theory in which
the invariant functions are written as h, F, (k), with the k
dependent part F, (k) taken to be real and fixed, and the
scale factor h, allowed to vary and be complex. ' The or-
der parameter [see Eq. (1)] is then written as

d= g g„h,F, (k)g„'(k), (5)
p, a

foL(h, g)= g C,b(T)ha"hb g g„rj„.
a, b

The temperature dependent matrix C,b ( T ) can clearly be
taken to be Hermitian. Because all our basis functions
are real, the requirement of time-reversal in variance
reduces to foL(h, g)=foL(h*, g" ). This leads to the
condition C,b =Cb„which combined with Hermiticity,
means that C,b is a real symmetric matrix. All the eigen-
vectors of such a matrix, and in particular the one that
corresponds to the highest T„can always be taken to be
real ~ This completes the argument.

It follows that the functions 1f»„' in Eq. (1) can always be
chosen to be real. Therefore, time-reversal symmetry can
be broken only when the state is a linear combination in-
volving relatively complex coefficients g„, which is possi-
ble only when the representation is multidimensional.
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APPENDIX: PROOF OF THE GENERALIZED
HOPFIELD THEOREM

We present a proof for the odd-parity case only, as that
for even parity can be easily constructed from it.

Our proof follows Lax quite closely in its basic idea.
We deviate, however, by first constructing 3l multiplets
P'(k, n) Let us. take three arbitrary functions of k,
which we write as y(k, n ), n = 1,2, 3. These functions
should be thought of as the components of a vector in
pseudospin space. Writing the elements in G as
R

&
R 2 ~ ~ ~ Rg where g is the order of G, we construct

3g new "rotated" functions

%, (k, n ) R;y=(kn) . , (A 1)

The "rotations" are defined by

and the quadratic part of the Ginzburg-Landau free ener-

gy is
R;y(k, n ) = g g(kR;, m )D"„'(R,),

m =1
(A2)
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where kR, is the transformed direction, and D"' is the
three-dimensional representation of O(3).

The definition (A2) is designed to ensure that for each
n, the g functions 4';(k, n ) form a basis for a regular rep-
resentation of 6, in which I ~ appears l times. By
choosing sufficiently arbitrary y(k, n) (strongly peaked
functions in three nonspecial symmetry-unrelated direc-
tions, e.g.), we can ensure that the 4;(kn, ) are linearly
independent. The desired P'(k, n) are now obtained by
decomposing the regular representations into their irre-
ducible parts. Since these P'(k&n ) are obtained by a uni-

tary transformation on the 4;(k, n ), they are linearly in-

dependent also.

P~(k, n)= g F~'(k)P'(k, n) . (A3)

The coefficients F"(k) are now k dependent, but if P'„ is
to be a basis for I J, then F~' must be invariant under all

group operations.

The rest of the proof is as in I.ax. For almost all k, and
fixed k,j,and a, we can regard 1tj„'(k,n ) as a vector of
length 3l on the indices p and n. The 3l vectors with
a =1,2, . . . , 3l are complete, and any other multiplet
PJ„(k,n ) can be expanded for this fixed value of k in terms
of P'(k, n ) as follows:
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