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Spatially resolved study of the dynamics of Josephson tunnel junctions
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By scanning superconducting Nb/Al&03/Nb tunnel junctions of various geometries with an electron
beam at low temperatures we have obtained spatially resolved two-dimensional images related with the
dynamics of the junctions. In a current-biased junction the local thermal perturbation effected by the
beam results in a voltage change hV representing a convenient imaging-response signal. The spatial
resolution is limited by a characteristic thermal healing length with a value of about 2 pm in our experi-
ments. We analyze our results in terms of the sine-Gordon equation. For the interpretation of the spa-
tially resolved voltage signal 5 V we extend the energetic analysis of the perturbed sine-Gordon system of
McLaughlin and Scott by including the beam-induced local thermal perturbation. Our model allows the
quantitative comparison of our experimental two-dimensional images with the local dynamics expected
from the perturbed sine-Gordon equation. Our experiments include the observation of single-mode and
multiple-mode cavity resonances, soliton oscillations, and Aux-How behavior.

I. INTRODUCTION

Following the discovery of the Josephson effects 30
years ago, ' the static and dynamic properties of Joseph-
son junctions have been extensively investigated experi-
mentally and theoretically. ' Experimentally mostly only
global junction properties have been studied such as the
current voltage characteristic (IVC) or specific high-
frequency properties of the junction. In addition to these
global measurements spatially resolved experiments have
been reported for Josephson tunnel junctions using
electron-beam scanning or laser-beam scanning of the
junction area. These spatially resolved measurements
were restricted mostly to the static states of the junction
and two papers dealt specifically with the dynamic
state. "

The dynamics of Josephson tunnel junctions is well de-
scribed by a model based on the perturbed sine-Gordon
equation (PSGE) together with the appropriate boundary
conditions. In this dynamics we can distinguish between
the following two limiting regimes. For large-area junc-
tions, where the boundary conditions only play a minor
role, we encounter solitons moving across the junction.
On the other hand, if the boundary conditions become
more dominant, as, for example, for small junction di-
mensions, the soliton character of the solution of the
PSGE is lost and replaced by electromagnetic resonant
cavity modes. However, in both regimes the various exci-
tations display distinct temporal and spatial structures.

In this paper we report spatially resolved measure-
ments of a large variety of different complex dynamic ex-
citations of Josephson tunnel junctions using low-
temperature scanning electron microscopy (LTSEM) for
two-dimensional imaging. Our experiments include
multiple-mode oscillations, soliton oscillations, and flux-
flow behavior. For the interpretation of the spatially

resolved LTSEM signal we have developed a model based
on the energetic analysis of the perturbed sine-Gordon
system of McLaughlin and Scott. ' This model allows
the quantitative comparison of our experimental two-
dimensional images with calculations based on approxi-
mate solutions of the PSGE. The present paper
represents an important extension of our previous imag-
ing studies of one- and two-dimensional Fiske modes.
Preliminary results have been reported elsewhere. "

II. ELECTRODYNAMICS
OF JOSEPHSON TUNNEL JUNCTIONS

AND LTSEM SIGNAL GENERATION

A. Electrodynamics

The electrodynamics of Josephson tunnel junctions is
governed by the PSGE

@,+ 4& —@„—sinN =a@,—P(@,+4&, )

for the phase difference @ between the superconducting
junction electrodes. ' Here the barrier plane is identical
with the x-y plane. The indices denote the partial deriva-
tives with respect to the indicated variables. The spatial
coordinates x and y and time t are normalized to the
Josephson penetration depth A,z and to the inverse of the
Josephson plasma frequency, 1/co, respectively. The
loss term aN, describes the quasiparticle tunneling losses
and the term P(4„„,+4, ) the surface losses. The
length and width of the junction are denoted by l and w,
respectively. The corresponding normalized distances
are L =I/A, z and 8'=w/A, z. The boundary conditions
at the boundaries x =0,I and y=0, 8' are defined from
the x and y components of the external magnetic field and
from the electric current applied to the junction.

Depending on the junction geometry, Eq. (l) can be
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simplified. Since most of our experiments were restricted
to the in-line geometry, we concentrate on this case. For
this the bias current only Aows near the junction edges
and is treated usually only in terms of the boundary con-
ditions. With the current Aow in the x direction we have

@ „—4&„—sinC&=ad&, —p&b„„

with the boundary conditions

@ (O, t)+P@„,(0, t)= ii+—q,
N, (L, t )+PC, (L, t) =~+ rt .

Here g=Hy/Jotted is the external magnetic field, and
K=I~ /2Jomi, z takes into account the bias current. Jo is
the critical Josephson current density.

For describing the dynamic dissipative states of the
tunnel junction two theoretical approaches have been
developed in the past. The perturbation theory by
McLaughlin and Scott' starts with the analytic soliton
solutions of the unperturbed sine-Gordon equation
(a=p=0) and treats the damping coefficients a and p as
small perturbations. They restricted their treatment to
the one-dimensional case. This approach can be used for
either L or 8')&1, weak boundary conditions, and small
perturbations. However, for increasing perturbation
and/or influence of the boundary conditions the solutions
of the PSGE are expected to deviate more and more from
the pure soliton solutions. If the junction dimensions be-
come suKciently small or the magnetic field suKciently
large, the localized soliton solutions change into elec-
tromagnetic waves in the form of cavity resonance
modes. In the limit of small junction dimensions and/or
high magnetic fields the dynamics can be described by a
single mode. This single-mode approach has been
developed by Takanaka for zero-field steps' and by Ku-
lik for Fiske steps. ' A natural extension of this ap-
proach is the multiple-mode theory proposed by Enpuku,
Yoshida, and Irie' in which the solutions of the PSGE
are approximated by a spatial Fourier expansion.

Of course, between the two limiting regimes discussed
above, namely, the solitonlike treatment and the
multiple-mode expansion, solutions of the PSGE can be
obtained by standard numerical techniques.

B. Electron beam scanning and response signal

A spatially resolved study of the dynamics in Joseph-
son tunnel junctions is possible in a straightforward way
by scanning the junction area with an electron beam and
by recording a suitable response signal while the junction
is operated in the particular dynamic state to be investi-
gated. This technique of LTSEM is described in detail
elsewhere. ' ' Here we only emphasize the following
essential points. The junction is scanned with the elec-
tron beam of a scanning electron microscope, while the
bottom of the substrate carrying the junction is in inti-
mate thermal contact with liquid He. The electron beam
acts as a local heat source, causing a thermal perturba-
tion of the sample near the coordinate point (xo,yo) of
the beam focus. The lateral dimension of this thermal
perturbation limits the spatial resolution of the LTSEM

imaging technique. As an example for junction elec-
trodes from Nb with a total thickness of 0.5 —1 pm this
limit is typically 1 —3 pm. Typical values for the voltage
and current of the beam are 25 —35 kV and 10—100 pA,
respectively, yielding a total local temperature increment
of 0.1 —1 K. For a current-biased junction operation the
beam-induced voltage change AV(xo, yo) represents a
convenient response signal for two-dimensional imaging.
[Of course, the beam-induced current change bI(xo, yo)
would be another suitable response signal if the junction
is operated under voltage bias. ]

In the following we construct a model for relating the
voltage signal b, V(xo,yo) to the local dynamics of the
junction at the coordinate point (xo,yo) of the electron-
beam focus. For this purpose the energetic analysis of
the perturbed sine-Gordon system performed by
McLaughlin and Scott' provides a highly promising
path to follow.

For simplicity we consider an infinitely 1ong one-
dimensional junction extending along the x coordinate.
The unperturbed sine-Gordon equation

—N„—sinN =0

describes a Hamiltonian system. ' On the other hand,
for a real in-line junction of finite length L the energy in-
put is affected by the boundary conditions expressed in
(3). The temporal change of the total energy can be cal-
culated according to'

= J ( —aC&, —P@„,)dx+r/&b, (L )
—i)C&, (0)

+a@,(L)+~+,(0) .

The dissipative a and P terms extract energy from the
sine-Gordon system, whereas the external magnetic field
(described by i)) reduces the energy at the junction edge
x =0 and increases the energy at the edge y =L. The bias
current provides energy input at both junction edges.

The local thermal perturbation of the tunnel junction
by the electron-beam irradiation results in a change of
the energy balance discussed above. The primary effect
of the local heating due to the electron beam is expected
to be a local increment b,a(xo) and b,P(xo) of the damp-
ing coefficients a and P, respectively, which is assumed to
be independent of xo for homogeneous junctions. For
simplicity, we neglect the spatial extension of the per-
turbed area for our calculations. Operating the junctions
at low temperature (T=4 K) and considering a small
temperature increment of less than 1 K, we may neglect
the inAuence of the e-beam irradiation on the critical-
current density and on the London penetration depths of
the junction electrodes in a first approximation. If the
bias-current Iz is kept constant during the scanning ex-
periments, in the case of moving solitons it is immediate-
ly obvious that they will be slowed down, resulting in a
reduction of the junction voltage by b, V(xo). Note, if the
local reduction of the critical-current density would dom-
inate the junction response signal, we expect an increase
of the junction voltage in contradiction to our experi-
mental observations.

For any further discussion it is important to 1ook at the
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different time scales involved in the electron-beam scan-
ning process. The beam irradiation time for an individu-
al image point on the sample surface is typically 10 s.
On the other hand, the typical thermal relaxation time of
the local region perturbed by the beam is about 10
s. ' ' However, the dynamics in the tunnel junction is
much faster. The imaging experiments are usually per-
formed with an operating voltage on the IVC of a sample
of 10 pV or larger, yielding a time scale of the junction
dynamics of 10 ' s or smaller. Hence, the response sig-
nal EV(xo) must be obtained from the time-averaged
equations.

The typical relative magnitude of the response signal is

~
6 V / V

~

= 10 —10 . Therefore, the signal can be
found in good approximation from a linearized treat-
ment. We can see from (5) that if we would express the
beam-induced additional damping described by the incre-
ments b,a(xo) and bf3(xo) in terms of an effective reduc-
tion bI,&(xo) of the driving current, we can write the
voltage signal as

(6)

nal b, V(xo) for comparison with experiments. In the fol-
lowing sections we perform such a comparison for a
variety of dissipative dynamic states, concentrating on
the two limiting regimes of one- and two-dimensional
multiple-mode and soliton behavior.

III. CAVITY MODES DESCRIBED
BY MULTIMODK EXPANSION

A. Multimode expansion

For solving the PSGE (2) in the one-dimensional case
with the boundary conditions (3) Enpuku, Yoshida, and
Irie' expanded N in terms of a sum of spatial Fourier
modes with time-dependent amplitudes. This formalism
can be extended to two dimensions in a straightforward
way. So far in the literature it appears that only single-
mode excitations have been discussed for two dimensions.
A tunnel junction of width 8' and length L is described
by the two-dimensional PSGE (1) under the boundary
conditions which represent an extension of those given in
Ref. 20:

In the limit where linearization is appropriate, BV/BI in
(6) is the differential resistance of the unirradiated junc-
tion. From (6) we note the expected result that the
response signal b, V(xo)~ increases proportional to the
derivative d V/dI(Iti ) of the IVC of the junction.

The time-averaged electron-beam-induced power losses
are, according to Eq. (5),

(7)

where ( ) denotes the time average. For small changes
b,a/a and bP/P we expect a linear relation between the
response signal b, V(xo) and the power loss of Eq. (7) and,
hence, the proportionality:

b, v(, )- —b, ([C,(,)]'& —bg([e.,(,)]'& . (8)

In Eqs. (7) and (8) we have neglected the first-order con-
tribution arising from the beam-induced change 6@ of
the phase difference function 4(x, t ). As we can see from
the close correspondence of our experimental res@its
shown in the following with our calculations neglecting
an e-beam-induced change of N, this approximation
seems to be appropriate. However, an accurate
mathematical evaluation of this approximation still needs
to be done.

From Eq. (8) we see that the contributions of b,a and
AP to the voltage signal are modulated by the time aver-
age of the square of the local electric field ([P,(xo)] )
and of the square of the local time derivative of the mag-
netic field ( [P„,(xo ) ] ) in the junction, respectively.
Equation (8) represents the main result of our energetic
analysis of the perturbed sine-Gordon system for obtain-
ing a theoretical expression for the LTSEM response sig-

@ (O,y, t)+13[4,(O,y, t)+C&, (O,y, t)]=rj +K,

(L,y, t )+p[@,(L,y, t )+4&,(L,y, t)]=il

C, (x,O, t)+P[C, (x,O, t)+4&„( xO, t)]= —i)„+rc,

N (x, W, t ) +13[4&„,(x, W, t ) + 4&~, ( xW, t ) ]= —r)„.

4 (x,y, t) =coot —i)„y+g x — (x L) — (y —W—)

+ g e„(t)cos(nk„'„x )cos(mk„'~y ) (10)
n, m =0

with k,' =~/I. , k,' =~/8' and cop=cop/co satisfies the
boundary conditions. In the resonance case the Joseph-
son frequency cop corresponds to a cavity mode '

2
n m

CO
—C& — +n, m

1 w

2 1/2

where c is the Swihart velocity. Analogous to the one-
dimensional case' we use the approximation

e"„=W„cos(~'„ t+y„) (12)

with co'„=co„ /co . Here A„and P„denote the
amplitude and phase, respectively, of the particular
mode. Similar to the one-dimensional case' we expect
that the amplitudes A„decrease with increasing n and
m. For the resonance case (11) we then obtain for the
LTSEM voltage signal

k =Ig /2 Jp wl denotes the bias current, g =H /A, JJp the
x component, and g =H /A, JJ0 the y component of the
external magnetic field. The expansion
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—b, V(xo,yo) —b,a coo + —,
' g co'„A„cos (nk„' x)cos (mk„' y)

n, m

+bP —,
' g co„' n k„' A„sin (nk„' x)cos (mk„'~y)

n, m

+b./3 —,
' g co„' m k,' A„cos (nk,' x)sin (mk„' y)

n, m

(13)

y F1$ke
n, m 4

2
n m

I w

2 1/2

(14)

where rn and n are integers. If the magnetic field is
oriented parallel to one junction edge, we expect one-
dimensional Fiske modes, otherwise two-dimensional
Fiske modes. For zero magnetic field, zero-field steps are
generated. Extending the one-dimensional excitations
discussed in the literature' ' ' to two dimensions, we
expect for the voltage levels at the zero-field steps

2 2 1/2
n + fPl

I m
(15)

The range of validity of the multiple-mode expansion is
determined by the following parameters: the geometrical
size of the tunneling window (in units of A,J), the barrier-
parallel applied magnetic field, the number of the studied
resonance step. In a barrier-parallel magnetic-field Fiske
steps appear in the IVC. For a rectangular junction of
length I and width w the steps are observed at the volt-
ages '

I

Fiske modes up to the (12,12) mode with a square junc-
tion of cross-type geometry. As an example we show in
Fig. 1 the (10,0) Fiske mode for a Nb/A1203/Nb tunnel
junction with 140X140 pm area (AJ=40 pm). The re-
sult in Fig. 1 illustrates that for the nth Fiske mode only
the nth Fourier mode is significantly excited. These
states can be well described by the single-mode theory of
Kulik. ' Taking only the nth term of the sum in Eq. (13)
and setting m =0, one obtains a homogeneous and a
modulated part, in agreement with Fig. 1. Whether the
modulated part represents the time average of the square
of the magnetic component (with zero amplitude at the
junction edges) or of the electric component (with max-
imum amplitude at the junction edges) of the Fiske mode
depends upon b.a, hP, the step number, and the length of
the junction. However, in our experiments we have al-
ways observed a dominating magnetic component.

Figure 2 shows the first and second one-dimensional
zero geld step f-or a cross-type Nb/A1203/Nb junction

i.e., twice the value of the corresponding Fiske step.
Whether one- or two-dimensional modes are excited de-
pends upon the geometric configuration of the current
leads and upon preferential directions given by the junc-
tion geometry.

B. LTSEM imaging: Regime of cavity modes

Following our earlier imaging studies of one- and two-
dimensional Fiske modes, in the present investigation
we have imaged nearly all one- and two-dimensional

FIG. 1. Voltage image —6V(xo,yo) of the (10,0) Fiske mode.
Junction dimension 140X 140 pm (A J =40 pm). The junction
edges are indicated by the arrows. The magnetic field (0.4 mT)
is oriented parallel to the junction edge along the y direction.
T=4 K.

FIG. 2. Voltage image —EV(xo) of the first (a) and second
(b) one-dimensional zero-field step. The geometry of the current
How is shown. Junction dimension 50 X 50 pm (XJ=25 pm).
The junction edges are indicated by the arrows. T=4 K.
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locity u(t) of Eq. (17) until it reaches the region around
xo. In this perturbed region the velocity is reduced to

(t ) (c e2bt+z+d )
—1/2 (18)

Here z=26b At indicates the damping increment hb
multiplied with the time interval At in which the beam-
induced perturbation is felt by the moving soliton. After
passing the perturbation, the soliton moves on with un-
changed damping. Since both the a and P terms show a
similar effect, namely, decelerating the soliton, for simpli-
city in the following calculation we only consider the
effective change of the n term.

The first zero-field step is due to the periodic motion of
a single soliton. The spatial dependence of the unper-
turbed soliton velocity is found from Eq. (17) yielding

e (uo+1)+(uo —1)
u(x)=

e '(u&&+ 1)—(uo —1)
(19)
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FIG. 6. (a) Typical soliton velocity profile for an in-line junc-
tion of length 11XJ. u is normalized to the Swihart velocity c
and is measured in normalized units. The solid curve shows the
velocity for beam irradiation at the coordinate xo =3k,J. The
dashed curve refers to zero beam irradiation. (b) Voltage signal—6V(xo) expected from the beam-induced change of the aver-
age soliton velocity (u ) calculated analytically with the same
parameters as in Fig. 6.

with u(0)=uo. A typical velocity profile for an in-line
junction of length 11K.J is shown in Fig. 6(a). The dashed
curve represents the soliton velocity without electron-
beam irradiation obtained from Eq. (19), whereas the
solid curve indicates the velocity for beam irradiation at
the coordinate xo =3. Note that both curves only differ
from each other in the region where the soliton moves
away from the irradiation point xo. For calculating the
curves in Fig. 6(a) realistic parameter values have been
used: a=0.027 (obtained from the IVC with the help of
Ref. 25), u~=0. 95 [found from the time-averaged veloci-
ty (u ) and the velocity profile of Eq. (19); (u ) was ob-
tained from the measured voltage at the bias current],

and z=0.03 (estimated from the magnitude of the ob-
served voltage signal b, V).

Since the soliton velocity is not constant, the beam-
induced change of ( u ) and thereby the voltage signal b, V
depends upon the coordinate xo of the irradiation point.
By integration over the perturbed velocity profile the
voltage signal b, V can be calculated analytically and is
plotted in Fig. 6(b). In conjunction with this signal AV
we note the following. If the starting velocity uo is the
same at both ends of the junction, 6 V displays a max-
imum in the middle. If the starting velocity is different at
both ends, the maximum shifts to the side with the higher
starting velocity. With increasing damping coefficient a
the maximum in the middle becomes more pronounced.

So far we have neglected the effects arising when the
solitons collide with the edges of the junction. This col-
lision process is discussed in detail in Refs. 25 and 27.
From these results the beam perturbation is expected to
cause the additional energy loss in the collision zone

bH„()= 2' oaf(u—
) . (20)

B. LTSEM imaging: Regime of soliton modes

In the following we present a few selected typical re-
sults illustrating both the soliton dynamics in large
Josephson junctions and confirming the LTSEM signal

Extending the argument of Ref. 25, this energy loss can
be expressed in terms of a reduction of the bias current
by the amount (~/2)oaf(u). Using the analytic func-
tion between the bias current and the time-averaged junc-
tion voltage given in Ref. 25, again we obtain an expres-
sion for the voltage signal proportional to Aa. This
represents an additional contribution to the voltage signal
for all locations where soliton collisions take place.

Whereas for zero applied magnetic field the voltage sig-
nal is generally expected to display the same symmetry as
the sample configuration, in the presence of a barrier-
parallel external magnetic field this symmetry of the volt-
age signal is broken, of course. For the beam-induced
voltage signal we now expect qualitatively the following
nonsymmetric behavior. We restrict our discussion to
Aux How steps, i.e., to sufficiently high magnetic fields,
where the flux quanta always move through the junction
in a single direction. In the limit of weak coupling be-
tween the Auxons in the junction the beam irradiation
only decelerates the individual Auxons after they have
passed the location of the beam focus. The resulting
reduction of the time-averaged Auxon velocity will be
larger the closer to the nucleation site of the soliton the
beam focus is located. Hence, we expect a voltage signal
ib, Vi decreasing monotonically from the soliton point of
entry to the point of exit. However, in addition to this
effect the e-beam irradiation will specifically influence the
nucleation process of the Auxons. From this, we also ex-
pect a reduction of the voltage signal as the coordinate
point of the beam focus moves away from the nucleation
site. On the other hand, in the limit of rigid coupling be-
tween the Auxons the effect of the beam irradiation and
the signal i 5 Vi will be constant along the direction of the
soliton motion.
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FIG. 7. Voltage image —b V(xo) of the first zero-field step of
a one-dimensional in-line junction of 494 pm length and 30 pm
width (A,J=45 pm; line scan along the long dimension). T=4
K. The junction edges are indicated by the arrows.

generating mechanism discussed in the last section for
spatially resolved investigation of this dynamics.

Figure 7 shows the voltage image of the first zero-field
step of a long one-dimensional in-line Nb/A120~/Nb
junction of 494 pm length (Ill,z) and 30 pm width (line
scan along the long junction dimension). The junction
configuration had a ground plane. The nonsymmetry of
the bias current Aow due to the ground plane was com-
pensated by means of a small barrier-parallel magnetic
field of 0.036 mT. The results of Fig. 7 confirm the
behavior expected from our discussion in Sec. IV A. The
maximum in the middle of the junction and the two max-
ima in the collision zones near both edges can clearly be
seen. The following additional observations also agree
with the theoretical expectations. Increasing the
electron-beam power results in a larger signal ~hV~ and
the maxima become more pronounced as expected from

the larger increment Aa. If the sample temperature is re-
duced, the damping coefficient o. and its beam-induced in-
crement Aa become smaller, yielding a reduced magni-
tude of the voltage signal, as observed experimentally.
Finally, shifting the bias point upward on the IVC, the
signals become smaller as expected [see Eq. (6)].

Two voltage images of the second zero-field step
recorded for the same junction as in Fig. 7 are shown in
Fig. 8. The second zero-field step is associated with two
solitons moving simultaneously through the junction.
The line scan in Fig. 8(a) was obtained at low bias
current. Its main features consist of three maxima which
are indicated by arrows. These maxima can be qualita-
tively explained in terms of soliton-antisoliton collision
peaks associated with a symmetric soliton mode,
where in each half of the junction a single soliton is mov-
ing. In addition to the collision peaks near the junction
edges we then expect one more collision peak in the mid-
dle of the junction.

Figure 8(b) shows the signal for the same junction ob-
tained at high-bias current. Now all maxima except for
the two near the junction edges have disappeared. We
observed a change of the voltage image from the behavior
of Fig. 8(a) to that of Fig. 8(b) by increasing the bias
current and vice versa. This result can be explained in
terms of the bunching effect expected for high-bias
currents and, hence, high soliton velocities where the two
solitons move closely together through the junction, and
where collision peaks can be generated only near both
junction edges. So far, such bunching effects have been
discussed only in overlap ' and in annular junctions.

Two images of Aux-Aow steps can be seen in Fig. 9 for
the same junction as in Fig. 7. In Fig. 9(a), the barrier-
parallel magnetic field was 0.61 mT, corresponding to

f

-300 -150 0

xo(Ijm)

150 300 -300 -150

o(pm)

150 300

C)
X

C)
X

-300 -150 0

xo(jjm)

150 300
-300 -150 0

xo(pm)

150 300

FIG. 8. Voltage image —b V(xo) of the second zero-field step
of the same in-line junction as in Fig. 7 (line scan along the long
dimension) at low-bias current, ~=0.28 (a) and high-bias
current, a =0.44 (b). T=4 K. The junction edges are indicated
by the arrows.

FIG. 9. Voltage image
—EV(xo) for the same in-line junc-

tion as in Fig. 7 for a barrier-parallel magnetic field of 0.61 mT
(a) and 0.29 mT (b). The small signal peaks marked (1) and (2)
in (a) are due to a local microshort and a small overlap region of
the junction counter electrode with the wiring layer, respective-
ly. T=4 K. The junction edges are indicated by the arrows.
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25.4 Aux quanta in the junction, and the Auxons move
from left to right. In Fig. 9(b) the magnetic field was 0.29
mT, corresponding to 12 fIux quanta in the junction, and
the Auxons move from right to left. The result of Fig.
9(a) confirms our expectation discussed above for weak
coupling between the fiuxons that the signal ~b, V de-
creases monotonically from the entry to the exit point of
the fiuxons. Compared to Fig. 9(a), in Fig. 9(b) the mag-
netic field and the voltage was about half in magnitude.
The voltage in Fig. 9(b) corresponds to the 24th Fiske
step, as expected from 12 Aux quanta in the junction. In
the sample shown in Figs. 7—9 we have observed Fiske
behavior only in the form of an additional structure su-
perimposed on the voltage signal 6 V(xo) associated with
flux-flow behavior. In Fig. 9(b) we note 24 superimposed
small oscillations. Apparently, in this case the dynamics

of the junction is characterized by the superposition of
the resonance motion of the fiuxons (Fiske behavior due
to refiection at the junction edges) and the flux-fiow
behavior. '
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