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Spin tunneling, Berry phases, and doped antiferromagnets
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Interference effects between Berry-phase factors in spin-tunneling systems have been discussed

by several groups in the context of quantum magnets. I point out that similar effects appear in the
semiclassical analysis of the two-dimensional doped antiferromagnet. As a consequence, the sign of
the dispersion of a spin polaron in the t-J model depends on the spin size 8 through a phase factor
e' '. Thus we arrive at a semiclassical interpretation of the ground-state momentum for the single
hole. It agrees with numerical diagonalizations of the t-J model for s = ~, and predicts a difference
between integer- and half-odd-integer-spin cases.

Interference eÃects between Berry-phase factors in
spin-tunneling systems have been discussed in recent pa-
pers by Loss, DiVincenzo, and Grinstein (LDG) and von
Delft and Henley (vDH). As physical realizations, LDG
proposed tunneling of magnetic clusters, and vDH pro-
posed an anisotropic spin Hamiltonian and the Heisen-
berg antiferromagnet on the kagome lattice. In these ex-
amples, for certain spin sizes s, the classical ground-state
degeneracies are not lifted by tunneling processes.

This paper points out that Berry phases in spin tun-
neling are important in another interesting system: the

I

two-dimensional doped antiferromagnet, as described by
the t-J model. This model is often used for the cuprate
superconductors near the antiferromagnetic phase. We
shall see that the Berry phases of Refs. 1 and 2 eÃect the
possible ground-state momenta of the single hole. This
helps to explain the results of exact diagonalizations of
the t-JHamiltonian on finite clusters.

In Ref. 4, the hole in the antiferromagnet has been
cast as a spin-tunneling problem. First the t-J model
was extended to s ) 2. Its energy Green function is
given by a spin coherent states path integral

t
o(s) = jdt j'DBexp i dt' ) (s ——') (1 —cosg;)ji, —e)B]+E

0

where 0, is a unit vector at site i, which is parametrized
by [cos I)), (t'), P;(t')]. The classical Hamiltonian is

tion O~. Neglecting H one obtains, by diagonalizing

J
H = —) 0;Os(1 —p, )(1 —ps) —E" '[0; t],

(i,i)
(2) E" ' = t 2(1+0—0),

1/2, i =a,
p; = 1/8, (i, a),

0, elsewhere,

where (i, j) denotes nearest neighbors on the square lat-
tice, and t is the hole hopping parameter. In the large
s limit, the path integral (1) can be expanded about
the classical paths between the end-point configurations.
Also in that limit, E" i'[0] and p[O] are simply the
ground-state energy and density of the adiabatic single-
particle Hamiltonian:

~hole t + & g g ~ ~NNN
)

where b~, ~~ is unity for nearest neighbors i, j and zero
elsewhere. H is the next-nearest-neighbor hopping,
which is less important in the parameter regime of inter-
est.

To gain more intuition as to the properties of E" '[0],
let us consider a five-site polaron in a Neel state, where
the spins are ordered in the +0 directions. The central
spin of the polaron at site a points in the arbitrary direc-

which shows that E" ' is ferromagnetic, and is mini-
mized by a Hipped spin at site a: 0 = O.

The semiclassical expansion of (1) has been carried out
in Ref. 4. Here we quote the results relevant to tunneling
effects: For 1 ( t/J ( 4.1, the classical ground state
of (2) is the five-site polaron (one Hipped spin at site
a). Translational invariance is restored by spin-tunneling
paths, and the polaron acquires a disperion relation

= ) e'"sI';s,

where the tunneling rates I';~ describe the motion of the
polaron's center from site i to j under the classical en-
ergy barrier. It was also shown that conservation of to-
tal magnetization requires 1";~ to vanish for i, j on dif-
ferent sublattices. The dominant hopping processes are
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the second- and third-nearest neighbors (I' b and I' „re-
spectively). Hoppings to larger distances are supressed
exponentially at large 8. Thus the semiclassical band
structure of the polaron is given by

2I' g[cos(k + k„) + cos(k —k„)]
+2I', [cos(2k ) + cos(2k„)] . (6)

In Ref. 6 a general expression for the tunneling matrix
element in multidimensions was derived:

I'» = (@ill~i]G(Eo)[&2]i@2)

where Eo is the classical ground-state energy and [Z,]
are current operators, which are defined with respect to
appropriately chosen surfaces in configuration space Z, ,
which enclose the minima of H. 4; is a restricted har-
monic oscillator wave function, for the spin waves about
a polaron at site i. For the purpose of evaluating the
leading order term, and the associated Berry phases, suf-
fices it to note that in Eq. (1) the Green function is an
oK-diagonal matrix element of the propagator between
two difI'erent classical ground states. Thus, the tunneling
necessarily involves paths which connect between trans-
lated polaron configurations. The leading order exp( —se)
of I i2 is determined by "instantons" (classical paths in
imaginary time). The Gaussian fluctuations about the
instantons, the surface integrations of [E], and the nor-
malization of 4, are higher order in 1/s and contribute
to the magnitude of the preexponential (see Ref. 6).

In analogy to normal tunneling of a particle in a double
well, in the absence of Berry phases the signs of I';~ are
negative. In the following we shall find that the tunnel-
ing matrix elements are multiplied by overall Berry-phase
factors which yield

FIG. 1. Tunneling path (instanton) describing the trans-
lation of a polaron from site a to c. The background spins
are ordered in the +2 directions. The path is parametrized
by the azimuthal angle y of the rotating spins. This rotation
gives rise to a nontrivial Berry phase. Thick arrows represent
large hole densities at the sites. Dashed lines highlight the
bonds for which the hole t hopping term is nonzero.

ticlockwise rotations of Ip in the xy plane. Using Eq. (1)
and summing over both rotations we obtain

A is the positive fluctuation prefactor, 2 and the Berry
phases are

(8)

Proving Eq. (8) requires only general knowledge of the
tunneling path. In order to fix our notations we shall dis-
cuss the particular hopping process from site a to t". The
result however can easily be seen to hold for any other
hopping (provided, as we have mentioned, that it is be-
tween sites on the same sublattice). Consider a local Neel
order which points in the x direction. The bonds which
share the hole density are marked by dashed lines. These
bonds experience the competition between the ferromag-
netic interaction due to E" ', and the antiferromagnetic
coupling of the Heisenberg term. Since the action must
be minimized, the tunneling path does not involve appre-
ciable motion of the background spins, i.e., those which
do not need to rotate between the initial and final config-
urations. The dominant contribution to I is given by
the simultaneous rotation of spins a and c, as depicted
in Fig. 1. We parametrize the instanton by the angle p.
To satisfy classical energy conservation (III'] —E = 0),
we complexify the z components of the spins,

cos 0, —+ —zp, ,

pi dpi

—) e' = —2e' ' cos )
2

p, dP;d(p— (12)

which yields Eq. (8). Q.E.D.
Thus for half-odd-integer spins, the ground-state mo-

menta k, as given by the minima of Eq. (6), depends on
the ratio I' g/(21', ). For I' i, ) 2I ) 0 one obtains

k = (+sr, 0), (0, +sr)

The factor of 2a in the first term describes the total ro-
tation of P and P, . Other spins retrace their paths, and
their contribution to that term vanishes. The sum over
two orientations yields

where jc; are real. Following Ref. 2 (see also Refs. 5 and
6), we note that two instanton paths contribute equal
magnitudes to I', and are described by clockwise and an-

and for 2I' ) I'
b ) 0,
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This is a semiclassical interpretation of the numerical re-
sults of Ref. 3, which found that cases (13) and (14) are
realized for s =

2 in different regimes of t/ J F.or integer
s, however, Eqs. (6) and (8) predict the ground state to
be at k = (0, 0) or k = (m, vr). The latter prediction, to
my knowledge, has not yet been checked numerically.
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