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Dynamical properties of antiferromagnetic Heisenberg spin chains
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The dynamical properties of spin-1 and spin-1/2 antiferromagnetic Heisenberg chains (AHC s)
are studied by diagonalizing exactly clusters of up to 18 and 26 sites, respectively. It is shown that
the spin-1 AHC has a quasi-single-mode spectrum for momentum k ) 0.3m, while the low-energy
edge of the spin-1/2 AHC is dominated by a spin-wave continuum. The dispersion curve obtained
for the spin-1 chain is in excellent agreement with recent experiments on Ni(C2HsN2)2NOqC104.
The size dependence of the low-energy spectral weights is also analyzed.

I. INTRODUCTION

The quantum Heisenberg antiferromagnet is one of the
simplest nontrivial models of strongly correlated elec-
trons. However, its ground state properties are not en-
tirely understood. In particular, the one-dimensional
antiferromagnetic Heisenberg chain (AHC) has recently
been given much attention both theoretically and
experimentally. This interest is mainly due to
Haldane's prediction of a Gnite gap in the excitation
spectrum of integer-spin AHC's leading to finite magnetic
correlations, to be compared with the spectrum of half-
odd-integer spin chains which is presumed to be gapless.
Previous numerical studies for the isotropic spin-1 AHC
have indeed confirmed the presence of a spin gap L
0.41J at k = 7r and Lo 2A at k = 0, where J is the
Heisenberg exchange integral. However, not much theo-
retical information on the dynamical properties of spin-1
chains is available. Carrying out such a calculation be-
came particularly important after the recent experiments
by Ma et al. on the spin-1 AHC Ni(C2HsN2)2NO2C104
(NENP) which have provided strong evidence of a long-
lived single-mode picture in the interval 0.3' ( k ( vr

(the region k ( 0.3vr is experimentally diilicult to ac-
cess due to the small magnetic scattering cross section
in. this regime). In contrast to the half-odd-integer spin
chains, the dispersion curve was found to be asymmet-
rically displaced about k = m/2 and presents gaps for
all momentum transfers. The integrated energy inten-
sity drastically decreases for momentum k ( vr/2. Can
these results be reproduced by a simple spin-1 Heisenberg
model on a chain?

In this paper, the dynamical behavior of AHC's with
and without spin gaps is analyzed and compared with
experiments. We will study the excitation spectrum
contained in the zero-temperature dynamical structure
factor S(k, io) which is proportional to the scattering
cross section measured in inelastic neutron-scattering
experimentsio i2 at low temperatures (k~T (( hcuk). In
excellent agreement with experiments, we observed that
interactions between the dominant excitations are negli-

gible in this regime, leading to a single-mode spectrum
in the integer-spin case above a certain threshold mo-
mentum transfer. For a quantitative comparison of the
present numerical results with the data of Ma et al. it is
necessary to take into account the single-ion anisotropy
of NENP which is about D =0.18J 0.8 meV.

While relatively little is known about the dynamical
properties of spin-1 chains, a vast literature on the spin-
1/2 AHC is available. Static ground-state properties have
been calculated using the Bethe ansatz. ' However, an
exact evaluation of S(k, io) in Bethe's framework has not
been accomplished. Muller et a/. proposed an approxi-
mate expression for the dynamical structure factor which
agrees well with inelastic neutron-scattering studies on
KCuFs and CuC12 2N(CsDs). ' Recent experimental
work by Nagler et a/. has nicely confirmed the exis-
tence of a spin-wave continuum with a gapless onset at
the antiferromagnetic zone center (k = vr) and at k = 0.

The Hamiltonian of the one-dimensional quantum
Heisenberg antiferromagnet in the presence of single-ion
anisotropy is defined by

H = J) S, . S,+i+D) (S,'),
where the sum is taken over all cluster sites, and the
rest of the notation is standard. The in-plane anisotropy
E P, [(S, ) —(S,".

) j has been neglected here. In the
case of NENP it has been experimentally observed that
J -3.8—4.1 meV and D 0.18J, while for KCuF3 the
parameters are J 17.5 meV and D 0. D is produced
by the coupling of a spin to the anisotropic orbital mo-
tion. It destroys the spin rotational symmetry of the pure

~ ~

Heisenberg antiferromagnet and pulls the spins into the
xy plane.

We diagonalize Eq. (1) on finite clusters with periodic
boundary conditions using the Lanczos algorithm. At
T=O the dynamical structure factor is given by

where n = 2:, y, z, Sg = ~ P& e'"'Si, & is the num-
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ber of sites, ln) denotes an eigenstate of H with energy
E (Eo being the ground-state energy), and the rest of
the notation is standard. S (k, w) is extracted from its
corresponding Green's function

In Fig. 1, we show the position of the lowest excitation
energy observed in S"(k, u) as a function of k, and com-
pare it with the experimental results of Ma et al. The
solid line is a fit of their data to the dispersion relation

S (k, (u) = ——ImG (k, ~),
1

which can be written in the form of a continued
fraction

G (k, (u) =
Q2

b22
47 —CX1—

The coeFicients a and b„are obtained from the recursive
relation

(5)

where Eq. (5) defines a set of orthogonal states. The
coeKcients are thus given by

As a check for our calculations we used the real-
space correlation functions to verify that the sum rule

J dwS (k, w) = S (k) is satisfied. Here S (k)g. exp( —ikj)(OIS. S.+il0) is the corresponding static
structure factor.

The convergence of lattice diagonalizations with the
number of sites for the gapless excitation spectrum of the
spin-1/2 AHC is slower than for the spin-1 case. Thus,
finite-size effects have to be taken into account whee. in-
formation is extracted for the N ~ oo limit. In order to
reduce the size of our Hamiltonian matrix we use spin in-
version, spin reflection, and the translational symmetry
of Eq. (1). In spite of these simplifications the character-
istic Hilbert space of the 18-site spin-1 AHC has 1227112
basis elements. The construction and diagonalization of
the Hamiltonian for the N = 18 sites spin-1 chain de-
mands less than an hour of CPU time on a CRAY-2 su-
percomputer.
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~ll = +II + v sin k+ All cos 2'
where All

——2.40 + 0.05 meV, v = 9.7 + 0.1 meV, and
All ——34+ 2 meV. Our results were obtained from the
exact diagonalization of N = 16 and N = 18 chains. An
excellent agreement is obtained in the region A: & 0.3',
while there is no data available below A: = 0.3'. The gap
at k = 0 is about twice the gap at k = m, which has led
to the assumption that at small k we are dealing with
a continuum of excitation pairs with momentum vr and—vr. io In the slightly anisotropic case (D = 0.18J) the
k = vr singlet gap is given by 0.66J in agreement with the
results of Golinelli, Jolicoeur, and I acaze. To show the
influence of the single-ion anisotropy D in the dispersion,
we have also plotted our results for the D = 0 case which
may correspond to A~VP&S6 where experimentally it was
observed that D/ J 10

The relative spectral weight of the lowest-energy exci-
tation in S"(k, w) as a function of the lattice size N is
shown in Fig. 2(a). As % ~ oo, the weights of the lowest
excitation peaks converge to finite values (approximately
94% for k = ~). The convergence is very rapid in the
vicinity of A: = vr, which suggests a single-mode picture
in this region. On the other hand, for low-momentum
transfers (k & 0.3n) higher-lying modes appear in the
spectrum, signaling the presence of multimagnon inter-
actions. However, the energy gap and relative peak in-
tensity of the lowest excitation seem to remain finite in
the bulk limit, even for small momentum transfer.

In Fig. 2(b), the dynamical out-of-plane structure fac-
tor of the N = 18 chain is shown for different momenta
at D = 0.18J. The b functions have been approximated
by I orentzians with a finite width e = 0.1J. The inte-

II. SPIN-1 ABC

Now let us analyze the results for the spin-1 chain.
Previous studies have shown ' ' that the ground state
of the spin-1 AHC has zero momentum and that its spin
excitation spectrum is asymmetric about k = m/2. A
finite (and positive) uniaxial anisotropy splits the other-
wise threefold-degenerate lowest excitation into a higher-
energy S = 0 state, which we will denote as the singlet,
and a lower-lying IS'I = 1 doublet. In our study we will
concentrate on the dynamical structure factor along the z
axis which measures weights and positions of excitations
in the S = 0 subspace. The splitting of the spectrum
in the vicinity of A: = vr due to in-plane anisotropy has
been neglected.
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FIG. 1. Dispersion curve for a spin-1 ABC. The solid line
is a fit to experimental data for NENP (Ref. 10). The sym-
bols denote results from exact diagonalizations of 16-site and
18-site chains for anisotropies D = 0.0 and D = 0.18J, re-
spectively.
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grated spectral intensity decreases rapidly as k ~ 0, in
agreement with experiments. As shown in the G.gure, for
k & 0.3' higher-lying modes become visible, indicating
the onset of a multimagnon continuum. Also, we have
observed that the total spectral weight of S"(vr, a) also
decreases as a Bnite single-ion anisotropy D is switched
on. This indicates that the spins prefer to lie in the
xy plane for positive D. Correspondingly we would ex-
pect an increase in the spectral weights of S (vr, w) and
S» (vr, (u).

In Fig. 2(c), we show the first few coefficients of the
continued fraction expansion for S"(m, w) in the X = 14
and N = 18 chains. We observed that a truncation of the
expansion beyond the erst 14 coeKcients is possible
without any noticeable change in the dynamical spec-
trum. It can be seen from Eq. (6) that the a 's carry
units of energy while the 6 's are dimensionless. The
a 's are thus expected to grow proportional to the sys-

tern volume X, while the b 's should converge to a finite
value as the bulk limit is approached. Both features, the
scaling of a 's with the lattice size and the convergence
of the 6 's, are observed in Fig. 2(c). This provides ev-
idence that the bulk limit has been already reached at
%=18.

We have observed that the dominant low-energy pole
is isolated, and the gap to higher-lying excitations ap-
pears to persist in the bulk limit (a careful finite-size
study is necessary to verify the presence of a second gap
in the spectrum). Isolated poles in the spectral func-
tions of holes in two-dimensional antiferromagnets are
common. In that case, the creation of a hole causes a
distortion of the background spin ground state. When
the system relaxes to the new ground state, the hole still
exists, but it has changed the mean values of the spins
in its neighborhood, and has thus become a dressed hole
quasiparticle. It may occur that a similar picture holds
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FIG. 2. (a) Volume dependence of the spectral weight of the lowest-lying excitation Pi (in '%%uo) in spin-1 AHC's with up to
18 sites. Squares, k = vr; octagons, k = vr/2. N is the number of sites. In the limit N —+ oo the spectral weights converge to
finite values. (b) Out-of-plane dynamical structure factor of the N = 18 spin-1 AHC with single-ion anisotropy D = 0.18J for
different values of the momentum transfer. Solid line, k = vr; dashed line, A: = 2s'/3; dotted line, k = vr/3; inset, k = vr/9. The
b functions have been given a finite width e = 0.1J. The inset shows that for low-momentum transfers (k & 0.3vr) higher-lying
modes are not negligible. (c) Lowest-order coefficients in the continued-fraction expansion for S'*(vr, u). Octagons denote
N = 18, while squares correspond to N = 14 spin-1 AHC.
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for the spin-1 chain; namely, we flip a spin at a given site
creating a local triplet state, and this state may relax at
large times to a (still local) state not much different from
the previous one; i.e., only its spin neighbors are altered.
We are currently investigating this possibility.

III. SPIN-1/2 AHC

0.5

0.0 4

The spin-1/2 chain has been studied
extensively, ' '~ and there are approximate analyti-
cal expressions available for some dynamical observables.
The onset of the excitation spectrum of a spin-1/2 AHC
is given by the des Cloiseaux-Pearson dispersion

FIG. 3. Dispersion curve of a spin-1/2 AHC. The solid line

is the dispersion relation proposed by des Cloiseaux and Pear-
son [Eq. (8)] (Ref. 15). The symbols denote results from exact
diagonalizations of 24-site and 26-site chains, respectively.

I
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which is gapless at A: = 7t and 0. Comparing our data in
Fig. 3 for the lowest excitations of a N = 26 chain with
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FIG. 4. (a) Volume dependence of the spectral weight PI (in %%uo) of the lowest-lying excitations in spin-1/2 AHC s with up

to 26 sites. Squares, k = 7r; octagons, k = vr/2 Nis the numbe. r of sites. In the bulk limit these weights seem to vanish.

(b) Out-of-plane dynamical structure factor for a N = 26 spin-1/2 AHC (solid line) at k = 7r. The b functions have been

given a finite width e = 0.1J. The dashed line is a fit to an approximate analytical expression Eq. (10) by Miiller et al. (Ref.
1). The inset shows the same dynamical spectrum with broadened peaks (e = 0.5J). (c) Lowest-order coe%cients in the
continued-fraction expansion for S* (7r, IJ). Octagons denote N = 26, while squares correspond to N = 20 spin-1/2 AHC.
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~P = ~J~ sin(k/2)~.

Based on the selection rules and their exact dispersion
curves Muller et al. have proposed the following approxi-
mate expression for the out-of-plane dynamical structure
factor:

S'*(k, u)) = A
8( — „)0( „" — ),

2
k

(10)

where A is a constant and 8(x) is a cutoff step function.
The upper cutoff at wk was introduced to guarantee that
the usual sum rules are satisfied. It may be interpreted as
the maximum energy of a spinon pair. However, higher-
order scattering processes result in small contributions
above this boundary which are observed in exact diag-
onalizations of finite clusters. Thus, Eq. (9) should not
be interpreted as a rigorous sharp upper bound for the
spectrum.

To compare these predictions with numerical results,
the intensities of the lowest-lying peaks in S"(k, w) are
shown for difFerent momentum transfers in Fig. 4(a). In
contrast to the spin-1 chain the spectral weights of these
peaks seem to vanish in the bulk limit. This clearly indi-
cates that now we are dealing with a spinon pair contin-
uum as opposed to a single-mode spectrum as in the spin-
1 case. As expected, finite-size effects play a more impor-
tant role in the gapless half-odd-integer AHC's than in
a massive theory, as can be seen in our plot of S"(m, w)
[Fig. 4(b)]. Although the smaller Hilbert space of spin-
1/2 chains allows us to easily diagonalize systems of 26
sites, the results still show finite-size effects. Actually,
we expect that the peaks observed in the spectrum will

Eq. (8) we find good agreement. The small gap at k = vr

is due to the finite size of our chain and vanishes in the
bulk limit. In contrast to the massive spin-1 AHC, the
spectrum is now symmetrical about k = vr/2.

Above this lower boundary [Eq. (8)], there is a contin-
uum of excitations which is believed to be made out of
pairs of spinons with momenta between 0 and k/2. The
upper boundary of this continuum is given by

merge into a continuum increasing the size of the lat-
tice. A combination of several boundary conditions may
alleviate this problem. Nevertheless, there is good qual-
itative agreement between Eq. (10) and the numerical
results. The inset of Fig. 4(b) shows S"(m, u) where the
occurring poles have been approximated by Lorentzians
with a large width e = 0.5J. The artificially broadened
dynamical spectrum has the 1/tu behavior proposed by
Miiller, and this is roughly the result we expect in the
bulk limit when more poles converge into a continuous
spectrum.

In Fig. 4(c), the first 11 coefficients in the continued-
fraction expansion for S"(7r, cu) are shown for the W = 20
and N = 26 chains. In contrast to the spin-1 case the
6 's have not converged, indicating that the bulk limit
has not been reached as expected. Note that for easy
comparison of the convergence in Fig. 2(c) and Fig. 4(c)
we have chosen cluster sizes which render similar ratios,
i.e., 14/18 20/26.

In summary, the dynamical behavior of spin-1/2 and
spin-1 AHC's has been studied using numerical tech-
niques. Our data suggest that a single-mode approxi-
mation is adequate above k = 0.37t for the massive spin-
1 AHC in agreement with recent experiments by Ma et
al. From the dynamical structure factor and the scal-
ing of spectral weights with cluster size in the spin-1/2
AHC, we infer the existence of a spin-wave continuum,
in contrast to the spin-1 AHC case.

We recently became aware of work by O. Golinelli, T.
Jolicoeur, and R. Lacaze, and by M. Takahashi with
results for the spin-1 chain similar to ours.
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