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Static critical behavior of three-dimensional classical Heisenberg models:
A high-resolution Monte Carlo study
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Using both recently developed cluster-algorithm and histogram methods, we have carried out a high-
resolution Monte Carlo study of static critical properties of classical ferromagnetic Heisenberg models.
Extensive Monte Carlo simulations were performed at several temperatures in the critical region, using
an improved cluster-updating scheme, on L X L X L simple-cubic and body-centered-cubic systems with
L 40. Thermodynamic quantities as a function of temperature in the vicinity of the critical point were
obtained by an optimized multiple-histogram method, and the critical temperature and static critical ex-
ponents were extracted using finite-size scaling. Our best estimates for the inverse critical temperatures
are 0.693035(37) for the simple-cubic system and 0.486798(12) for the body-centered-cubic system. Es-
timated static critical exponents for both systems agree with each other within their respective error
bars, and the mean estimates v=0. 7048(30) and y=1.3873(85) are also in excellent agreement with
field-theoretic predictions 0.705(3) and 1 ~ 386(4).

I. INTRODUCTION

Three-dimensional classical ferromagnetic Heisenberg
spin systems with simple-cubic (sc), body-centered-cubic
(bcc), and face-centered-cubic (fcc) structures are tradi-
tional models for the study of critical phenomena. ' Al-
though a great deal of effort has been devoted over the
years to investigating critical behavior in these models
through a variety of approaches, discrepancies still exist
between results obtained with different methods. Using
high-temperature series expansions, Ritchie and Fisher
calculated the inverse critical temperature and static crit-
ical exponents for all three systems. Their results for the
bcc and fcc systems were confirmed by a later extended
recalculation. However, their estimate for the inverse
critical temperature of the sc system, 0.6916(2), was con-
tradicted by the extended recalculation, which yielded
0.6924(2) and 0.6925(l) based on the Pade approximant
and ratio methods, respectively. Nightingale and Blote
performed a transfer-matrix Monte Carlo study and
found the inverse critical temperature for the sc system to
be 0.6922(2) and 0.6925(3) from fitting to data with
different smallest system sizes, which supported the ex-
tended recalculation. They did not have results for the
bcc system but their estimates for the fcc system were
larger than those from high-temperature series expan-
sions. Estimated static critical exponents for the three
systems by high-temperature series expansions, transfer-
matrix Monte Carlo techniques, and field theory also
differ from each other.

Computer simulations using Monte Carlo methods
provide an independent way to study critical phenomena.
One must, however, deal with finite systems and use
finite-size scaling ' to predict properties of the infinite
system. Consequently, not only must a large number of
effectively independent measurements be made in the vi-
cinity of the critical point to ensure good statistics, but
the system sizes must also be chosen large enough that

corrections to finite-size scaling are not large compared
to the other statistical and systematic errors. ' It may
therefore be very difficult to simultaneously satisfy these
requirements within limited computer resources because
of the many simulations needed to determine the loca-
tions and magnitudes of the extrema of thermodynamic
quantities accurately for finite-size scaling and because of
critical slowing down. Due to these difficulties, early
Monte Carlo simulations were not able to produce accu-
rate results. '" However, recent developments in simula-
tional techniques and data-analysis methods, together
with improvement in computer performance, have made
it possible to carry out high-resolution Monte Carlo stud-

The histogram method has provided a highly efficient
technique to extract accurate information over the entire
scaling region from a small number of simulations. ' '
Peczak et al. performed long Monte Carlo simulations
for the sc system at temperatures just above the critical
value and used an optimized multiple-histogram method
to analyze their data. They predicted the inverse critical
temperature to be 0.6929(1), which is higher than previ-
ous estimates, and obtained various static critical ex-
ponents which are in agreement with field theoretic pre-
dictions. However, their precision was limited by rela-
tively small system sizes (6 &L ~ 24) and by critical slow-
ing down in the Metropolis algorithm they used.

Cluster algorithms have proven to be extremely
effective in reducing critical slowing down. ' ' They are
nonlocal updating techniques in which a single cluster or
many clusters of spins are constructed and updated
simultaneously. Dimitrovic et al. ' employed this
method to study the sc system of size L, up to 96 at tem-
peratures below the critical value. %'ith a two-step fitting
they obtained the inverse critical temperature to be
0.6930(2). Unfortunately the number of measurements
they performed seems too small considering the relatively
large systems in their study.
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Monte Carlo estimates for the inverse critical tempera-
ture of the sc system are consistently larger than results
from high-temperature series expansions and transfer-
matrix Monte Carlo techniques. Although the-inverse
critical temperature is not a universal parameter, the ac-
curacy of its value strongly affects the accuracy in
current Monte Carlo estimates for static critical ex-
ponents. Recently, efforts have been made to use both
the cluster algorithm and the histogram method in
Monte Carlo studies. ' ' In this paper we present re-
sults of a high-resolution Monte Carlo study of static
critical properties of the sc and bcc classical Heisenberg
models; the results are based on a mass of data which was
generated over a temperature range covering the critical
region for system sizes up to L =40 with an improved
cluster-updating scheme and which was then analyzed
with an optimized multiple-histogram method. The mod-
els, simulation techniques, and data-analysis methods are
described in Sec. II. Results and discussions are present-
ed in Sec. III and a summary is given in Sec. IV.

II. BACKGROUND

A. Models

The classical Heisenberg models we are interested in
are isotropic ferromagnetic spin systems on either sc or
bcc lattices. The Harniltonian for such systems is given
by

&=—JgS;SJ,
(ij)

where J is the ferromagnetic coupling constant and the
spin S;=(S;,Sf,S,') is of 0(3) symmetry and unit length
in the spin space. We consider L XL XL systems with
nearest-neighbor interactions and periodic boundary con-
ditions, so that the sum in Eq. (1) runs over all nearest-
neighbor pairs of lattice sites. Note that a bcc lattice
consists of two identical interpenetrating sc lattices and
thus has twice as many spins as does a sc lattice with the
same linear dimension.

The basic thermodynamic quantities of interest are the
total energy E = —Jg&;J&S; S. and the magnetization
m =I- [(g;S; ) +(g;Sf) +(g; S ) ]' . For simplici-
ty we will set the ferromagnetic coupling constant J and
the Boltzmann constant equal to 1.

B. Simulation

It has been demonstrated that Wolff's single-cluster al-
gorithm together with his embedding technique are very
efFective in reducing critical slowing down for 0(n) fer-
romagnetic spin models. ' ' ' In the original cluster al-
gorithm proposed by Swendsen and Wang for the Potts
model, a configuration of activated bonds is constructed
from the spin configuration and clusters of spins are
formed based on the bond configuration. To update the
spin configuration, each cluster is assigned randomly a
new spin value and the same value is given to all spins in
the same cluster. Rather than building and Aipping many
clusters of spins, Wolff suggested growing only a single

cluster from a randomly chosen site and Gipping the en-
tire cluster of spins. This single-cluster algorithm is very
successful when applied to the Ising model. ' For spin
systems with continuous symmetry, Wolff further
developed an embedding technique to introduce Ising
variables into 0(n) models. ' One starts by choosing a
direction in the spin space at random and breaking up
each spin variable into two components with one perpen-
dicular and the other either parallel or antiparallel to the
randomly chosen direction. An Ising model is then con-
structed by assigning +1 to spins of parallel components
and —1 to spins of antiparallel components. The cou-
plings between nearest-neighbor Ising spins are deter-
mined by the products of these parallel and antiparallel
components and are therefore random in magnitude but
are all ferromagnetic so no frustration or competing in-
teractions are present. Such a random-bond Ising model
can be efficiently simulated with the single-cluster algo-
rithm and the original 0 (n) model can be corresponding-
ly updated by changing the sign of parallel or antiparallel
components of spins in the same cluster.

We introduce here another scheme based on the same
embedding idea' ' ' for the cluster updating of the
0 (n) model. It consists of four steps:

(i) Choose a randomly oriented n-dimensional orthogo-
nal coordinate system, find all new components of spins
in the randomly chosen coordinate system, and generate
independent random-bond Ising models for each axis
direction;

(ii) For each resultant random-bond Ising model,
choose a lattice site randomly and build a single cluster
with a bond-activating probability

1 —exp( —2KS;"S".) if S;"S )0
pk

0 otherwise (2)

where S; is the kth component of S; in the new coordi-
nate system and k =1,2, . . . , n. K =1/T is the inverse
temperature with the coupling constant J and the
Boltzrnann constant being 1;

(iii) Flip all single clusters of embedded Ising variables
and update the 0 ( n ) spin configuration;

(iv) Repeat (ii) and (iii) several times before returning to
(i).

Detailed balance is satisfied and ergodicity is
guaranteed in this multiple embedding, multiple single-
cluster-updating scheme. Note that in this scheme, if in-
dividual measurements are made after each single-cluster
Aipping and are combined properly, the total number of
measurements can easily be increased by one or two or-
ders of magnitude at a small expense of computer time,
even though the number of independent measurements is
not increased. Applications of the scheme showed that
it dramatically reduces critical slowing down and has an
improved efficiency over the original Wolff algorithm.
Results of further exploration of this improved scheme
will be reported in a later publication.

The Heisenberg model is a special case of the general
0 (n) model for n =3. With the improved cluster-

updating scheme we performed multiple Monte Carlo
simulations on sc and bcc classical Heisenberg systems
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with 20 ~ L ~ 40 over a temperature range spanning the
critical region. All simulations were done using the Uni-
versity of Georgia high-performance, hierarchical facility
consisting of an IBM ES/9000 vector supercomputer
linked to a cluster of IBM RISC/6000 workstations.

It has been noticed in Monte Carlo simulations of the
two-dimensional Ising model using cluster algorithms
that certain random number generators can lead to sys-
tematic errors which greatly exceed the statistical errors,
due to subtle correlations in the pseudorandom number
sequences. In our simulations, random numbers were
produced by a subtract-with-carry generator and no
systematic deviations were found between results ob-
tained with a hybrid Metropolis and overrelaxation algo-
rithm, Wolff's single-cluster algorithm, and our im-
proved cluster-updating scheme, using both this random
number generator and others. We believe that the
embedding technique creates a random-bond Ising model
with enough randomness in the bond-activating probabil-
ities to destroy the effects of the correlations which pro-
duced errors in the simple Ising model.

All simulations were carried out at temperatures close
to the previous best estimates for T, . For sc systems,
simulations were carried out with L =20, 24, and 32 at
three temperatures corresponding to K =0.6929, 0.6930,
and 0.6931 and with L =28, 36, and 40 at K =0.69306.
For bcc systems, simulations were performed with
L =20, 24, 28, and 32 at K =0.4870 and with L =36 and
40 at K =0.48685. Simulations were also carried out for
each system at two different temperatures, one above and
one below T„close to the peak positions of the specific-
heat and finite-lattice susceptibility. In each simulation,
1X10 measurements were made after enough single-
cluster updatings (1X10 to 7X10 ) were carried out for
equilibration. The interval of measurement was decided
by step (iv) of the improved cluster-updating scheme, in
which steps (ii) and (iii) were repeated twice in our simu-
lations. At least two simulations were performed with
different random number seeds for every system size at
each temperature. The total number of measurements
obtained for a given temperature was estimated to be at
least 5X10 times the measured integrated energy auto-
correlation time. Values of the total energy and magneti-
zation from each measurement were stored as a data list
for histogram analysis.

C. Histogram analysis

The histogram method has been applied with great
success to the study of critical phenomena. ' In a
multiple-histogram approach ' the energy density of
states is estimated by combining histograms from simula-
tions performed at several temperatures and minimizing
the estimated error in the density of states for each ener-
gy value. The energy probability distribution at other
temperatures then follows from the optimized estimate
for the energy density of states:

g H, (E)
W(E) =

g %exp( KE f,)—— .

P(E,K)= W(E)exp( K—E f)—, (4)

Q~Q(E)P(E, K)

g~P(E, K)
(6)

where Q (E) denotes the microcanonical average obtained
directly from simulations:

X,Q ~E, , E
Q(E) =

Et, E
(7)

We used the optimized multiple-histogram method to
determine the temperature dependence of a number of
thermodynamic quantities according to Eqs. (6) and (7).

Because the energy spectrum of a Heisenberg spin sys-
tem is continuous, the data list obtained from a simula-
tion is basically a histogram with one entry per energy
value. In order to use the histogram method efficiently,
we divided the energy range E +0 evenly into 30000,
100000, and 300000 bins and reconstructed histograms.
In early testing, results from the three binnings as well as
the data list agreed with each other within statistical er-
rors. Therefore, although 30000 bins would have been
sufficient, we chose to use 100000 bins throughout our
studies just to be cautions.

For all system sizes, histograms obtained from simula-
tions overlap sufficiently on both sides of the critical
point so that the statistical uncertainty in the wings of
the histograms ' near the critical point may be
suppressed by using the optimized multiple-histogram
method. Therefore the locations and magnitudes of the
extrema of thermodynamic quantities can be determined
accurately to extract the critical temperature and static
critical exponents from their finite-size scaling behavior.

where E is the total energy of the system and f is the re-
duced free energy at the inverse temperature
K, exp(f)=gz W'(E)exp( KE—). X; is the total number
of entries in the ith histogram H;(E). The reduced free
energy f, at K; can be determined self-consistently, up to
an additive constant, from the normalization conditions
of P(E,K; ):

g H&(E)
exp(f, )= g exp( K,E—) .

z ~ X,exp KE—
Knowing the energy probability distribution, one can cal-
culate the thermodynamic average of any function of the
energy easily.

To deal with thermodynamic quantities other than the
energy, one can choose to work with multidimensional

histo grams and multidimensional probability distribu-
tions. The feasibility of this approach, however, is limit-
ed by the available computer memory. A more practical
approach is to work with the energy probability distribu-
tion and microcanonical averages of the quantities of in-
terest. In this latter way, the canonical average of a
thermodynamic quantity, say Q, can be calculated as a
function of inverse temperature K:
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D. Finite-size scaling V =(1/v)lnL +V (tL. '
) (23)

According to the finite-size scaling theory, ' for a
sufficiently large system at a temperature T close enough
to the infinite-lattice critical point T„ the reduced free-
energy density can be divided into a singular part f, plus
a nonsingular background f„,:

f (t,H;L)= f, (t,H;L)+ f„,(t,L), (8)

f„,(t;L)=f„,(t; ~) . (9)

The singular part is described phenomenologically by a
universal scaling form

f, (t,H;L)=L Y(atL', bHL ')+ (10)

where t =(T, —T)/T, is the reduced temperature and H
is the external ordering field. The nonsingular part is as-
sumed size independent under periodic boundary condi-
tions:

g=L &(m —&m &)'&/T, (24)

D
2

Drc =
3

a&(m —&m &)'&

aT
a&(m —&m &)'&

aT
~((( —( ))') —3&( —( ))')')

BT

(25)

(26)

(27)

for j=1,2, . . . , 6. At the critical temperature T, (t =0)
the V should be constants independent of the system
size L.

Information about the critical exponent v and the criti-
cal temperature T, is also contained in the scaling
behavior of the extrema of thermodynamical quantities.
According to Eqs. (11) and (12), locations of the extrema
of the following quantities

where a and b are metric factors making the scaling func-
tion Y universal, d is the dimension of the system (equal
to 3 in our case), and v and b, are static critical ex-
ponents. Scaling forms for various thermodynamic quan-
tities can be obtained from appropriate derivatives of the
free-energy density. Some of them, such as those for the
magnetization, susceptibility, and specific heat in zero
field, are

((m —(m ))')
(m ) ((m —(m ) )')

3((m —(m))')' —((m —(m)) )
3( 2)2

vary asymptotically as

(28)

(29)

m =L t"u(tL "-),
L y /v~( tL 1/v

)

c=c„(t)+L "C(tL' ),
(12)

(13)

b =p5=p+y,
2 —ct=dv=2P+y . (15)

Derivatives and logarithmic derivatives of the magneti-
zation are important thermodynamic quantities for
studying critical phenomena. ' We define here some relat-
ed quantities useful in determining the critical tempera-
ture T, and the critical exponent v, in our own notations,
as follows:

where a, p, y, and 5 are also static critical exponents and
satisfy the scaling and hyperscaling relations

T, (L)=T,+a L (30)

III. RESULTS

A. Determinations of v and T,

where a, is a quantity-dependent constant.
Equations (11)—(13), (23), and (30), together with the

scaling and hyperscaling relations, provide efFective ways
to estimate the critical temperature and static critical ex-
ponents. It should be noted, however, that these equa-
tions are valid only in the asymptotic regime. If L is not
large enough or T is too far from T„corrections to scal-
ing and/or finite-size scaling may be needed due to ir-
relevant scaling fields or nonlinearities in the scaling vari-
ables. '

V, =4[m'] —3[m ],
V2=2[m ]

—[m ],
V, =3[m ]—2[m ],
V4:—(4[m] —[m ])/3,
V, =(3[m]—[m ])/2,
V6 =2[m] —[m ],

where

B(m ")
BT

From Eq. (11) it is easy to show that

(16)

(17)

(18)

(19)

(21)

(22)

By using the analysis discussed in the previous section,
we can simultaneously estimate both v and T, by scan-
ning over the critical region and looking for a quantity-
independent slope. Figure 1 gives an example of such an
e6'ort and Fig. 2 presents scanning results for the sc sys-
tem. In Fig. 1 the estimated error bars for individual
points are smaller than the sizes of the points. The error
bar shown in Fig. 2 is twice the averaged error estimate
for slopes from linear fits to points in Fig. 1. From
both figures we estimate that 1/v= 1.4212(46) and
K, =0.693 04(4). Correspondingly, we have
v=0. 7036(23) and T, =1.44292(8) for the sc system.
In the same way we obtain v =0.7059( 37 ) and
T, =2.0542(2) for the bcc system. It is worth pointing
out that the estimated values of v for both systems agree
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FIG. 1. Size dependence of V, at K =0.69 304 with

j =1,2, . . . , 6 for the sc system. Straight lines are linear fits to
the data and have the same slope (1.4212).

FIG. 3. Size dependence of the locations of the extrema in
dift'erent thermodynamic quantities with v=0. 7036 for the sc
system.

with each other within their error bars, indicating, as ex-
pected, that the two systems belong to the same univer-
sality class.

Another way to estimate v and T, is to look into the
scaling behavior of the locations T, (L) of the extrema in
thermodynamic quantities. Because of the limited num-
ber of different system sizes, rather than performing a
nonlinear fit with Eq. (30) to get v and T„we use the pre-
viously estimated value for v to extract T, from T, (L) by
a linear fit, as shown in Fig. 3 for the sc system. In the
figure the estimated error bars for individual points are
smaller than the sizes of the points. Note that Eq. (29)
defines a reduced fourth-order cumulant which is
different from the simple Binder parameter and has a
minimum very close to T, . From the average of the
intercepts we obtain T, = 1.442 929(77) or K,
=0.693035(37). These values agree very well with pre-
vious estimates from Figs. 1 and 2. With the new esti-
mate for T, the critical exponent v is recalculated in the
same way as illustrated in Fig. 1 and we find that
1/v=1. 4216(46), or v=0. 7034(23). Results for v and
T, obtained in the two different approaches are self-

consistent. For the bcc system we obtain T,
=2.054241(52) or K, =0.486798(12) from Fig. 4.

In using Eqs. (23) and (30) to determine v and T, we
have assumed that the asymptotic regime is reached and
the corrections to finite-size scaling can be neglected.
This assumption is supported in part by early results '
that indicated, within the errors of the data, the asymp-
totic finite-size scaling regime was already reached by
L =10 or L =12. In Fig. 5 a scaling plot is drawn in ac-
cordance with Eq. (30) for the sc system. Because there
are no systematic errors visible in the figure, this approxi-
mation seems reasonable, at least within our resolution
limit.

It has been shown' that the magnitudes of the extrema
of some thermodynamic quantities, such as the derivative
of the simple Binder parameter and logarithmic deriva-
tives of (m"), can also be used to determine the critical
exponent v without any consideration of T, . Unfor-
tunately we find that locations of these extrema are quite
far from T, so that corrections to scaling for these quan-
tities are presumably quite significant. The value of v es-
timated in this way is consistent with our previous esti-

1.435 0 0 69290

2.07

1.430 0.69295
2.06

1.425

1.420

1.4 l5

0.69300
+ 0.69302

0.69304
o 0 69306
v 0.69308

0.693 10

V„ V V V, V, V

2.05

2.04
0.000 0.005 0.010 0.015

L
—1/v

FICi. 2. Quantity dependence of scanning results for the sc
system as explained in the text. The horizontal line is drawn at
1/v = 1.4212.

FIG. 4. Size dependence of the locations of the extrema in
difterent thermodynamic quantities with v=0. 7059 for the bcc
system. When not shown, the estimated error bars are smaller
than the symbols.
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l.2

0.6
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0.3
~ sc

0.0
U

U,
0.2

—0.6
2

3

l6 20 24 28 32 36 40
L

0. 1

10 20 30 40 50

FIG. 5. Scaling behavior of the locations of the extrema in

different thermodynamic quantities with T, = 1.442 929 and
v=0. 7036 for the sc system.

FIG. 7. Log-log plot of size dependences of the magnetiza-
tion for the sc system at T, = 1.442 929 and for the bcc system at
T, =2.054241.

mates but has a much larger error bar.
Combining results obtained using two different ap-

proaches, we find our best estimates for the critical ex-
ponent v and the critical point are v=0. 7036(23) and
K, =0.693035(37) for the sc system and v=0. 7059(37)
and K, =0.486 798(12) for the bcc system.

B. Determinations of other critical exponents

With v and T, determined accurately we can now ex-
tract the critical exponent y from the scaling properties
of the susceptibility in two ways. From Eq. (12) it is clear
that the peak value of the finite-lattice susceptibility
given by Eq. (24) and the magnitude of the true suscepti-
bility at T, (given by the same equation with (m ) =0)
are both proportional to L ~ asymptotically. Plotted in
Fig. 6 are their scaling behaviors and linear fits for the sc
system. Estimated error bars for individual points are
again smaller than the sizes of the points. The slope of
the bottom straight line is 1.9775(20) from the linear fit.
The slope for the top one is 1.9725(50), where the error
bar includes the uncertainty in the slope resulting from
the uncertainty in our estimate for T, . Within their
respective error bars, the slopes of the two straight lines

are in agreement, as expected, thus supporting our esti-
mates for v and T, . The ratio of exponents y/v obtained
from the average of the slopes is 1.9750(35); therefore,
y=1.3896(70) for the sc system. For the bcc system we
obtain y = 1.385(10).

A11 the other critical exponents can be calculated by
using the estimates for v and y and the scaling and
hyperscaling relations, such as Eqs. (14) and (15). For ex-
ample, we find that P and a are 0.3606(24) and
—0. 1108(69) for the sc system and 0.3664(54) and
—0.118(11)for the bcc system.

According to Eq. (11), at the critical point, the magne-
tization varies asymptotically as L ~ . Figure 7 is a
log-log plot of size dependence of the magnetization at T,
for both systems. From the figure we can estimate P/v
directly. We then have P=0.3616(31) for the sc system
and 0.3669(32) for the bcc system. Again the error bars
include the inhuence of the uncertainty in our estimate
for T, . These direct results confirm the previous values
calculated by scaling and hyperscaling relations.

In our simulations we have measured the specific heat c
from the fluctuations of the total energy as
c =((E ) —(E) )/(T L ). In principle, the critical ex-

10'
3.2

bcc

10' 3.0

0 1

1 0o
10 20 30 40 50

2.6
0.53 0.56 0.5c) 0.62 0.65

FIG. 6. Log-log plot of size dependence of the finite-lattice
susceptibility at T, (L ) and the true susceptibility at
T, = 1.442 929 for the sc system.

L '

FIG. 8. Size dependences of the specific heat for the sc sys-
tern with a/v= —0. 158 at T, =1.442929 and for the bcc sys-
tern with a/v= —0. 167 at T, =2.054241.
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TABLE I. A comparison of results with different methods for the sc classical Heisenberg model. The superscript indicates that
values are calculated using scaling and hyperscaling relations [Eqs. (14) and (15)].

Ref. 2
0.6916(2)

Series expansions

Ref. 3
0.6925(1)

Ref. 34
0.6929(1)

Transfer-matrix
Monte Carlo

Ref. 5
0.6925(3)

Ref. 7
0.6929{1)

Ref. 15
0.6930(2)

Ref. 18
0.6930(1)

Monte Carlo

This study
0.693 035{37)

ca[

0.705(10)
1.375(15) 1.395(5)

0.712(10)
1.40(1)

0.716(40) 0.706(9)
1.390(23)
0.364(7)

—0. 118(18)

0.73(4)

0.36(2)

0.704(6)

0.362(4)

—0.112(18)

0.7036(23)
1.3896(70)
0.3616(31)
0.3606(24)

—0.1108(69)

C. Discussion

Our results for the sc system are given in Table I. Also
listed in the table are some existing Monte Carlo results,
including the one obtained recently by Holm and Janke'
using Wolff's single-cluster algorithm, as well as estimates
obtained from other methods. As one can see from the
table, our estimate for the inverse critical temperature is
consistent but slightly larger than existing Monte Carlo
results. The estimated error bar, however, is smaller. On
the other hand, our estimate for K, is certainly larger
than results obtained from other methods such as high-
temperature series expansions [IC, ranging from 0.6916(2)

0.78
series expansions Wolff

multiple c lust e r '5

0.74

transfer matrix
Monte Carlo' ~P//

0.70

series
expansions~

0.66
0.69 1 0.692

series
expansions~

Wol ff
single cluster"

field theory'

F&~w Ul

this study

Metropolis'

0.693 0.694

FIG. 9. A comparison of high-resolution estimates for v and
I(, from different methods for the sc system.

ponent a can then be determined from the scaling
behavior of the specific heat at T, by a nonlinear least-
squares fit using Eq. (13) with t =0. However, because of
our limited number of data points, results from three-
parameter nonlinear fits are not well defined. Rather
than performing the nonlinear fit we chose to accept the
previously calculated e value and use a linear fit to deter-
mine the other two parameters c„(0)and C(0). This is
done in Fig. 8 and we estimate that c „(0), the specific
heat for the infinite lattice at T„ is 5.70(12) and C(0) is
—4. 89(11)k for the sc system. For the bcc system we get
5.54(14) and —4. 58(25), respectively. The negative
values of a and C (0) indicate that, around T„ the
behavior of the specific heat is cusplike rather than diver-
gent for both systems.

TABLE II. A comparison of results obtained with different
methods for the bcc classical Heisenberg model. The super-
script indicates that values are calculated using scaling and
hyperscaling relations [Eqs. (14) and (15)].

Series expansions
Ref. 2 Ref. 3

0.486 35(10) 0.4868(4)

Monte Carlo
This study

0.486 798(12)

0.700(S)
1.38(1) 1.393(5)

0.7059(37)
1.385(10)
0.3669(32)
0.3664(54)

—0.118(11)

to 0.6925(1)]2 3 and transfer-matrix Monte Carlo
[K, =0.6922(2), 0.6925(3)]. Within the error bars, our
combined estimates for v and K, agree with other listed
Monte Carlo and recent series expansion results but
reduce the range of uncertainty significantly. In Fig. 9
we present a comparison of high-resolution estimates for
v and K, from difFerent methods. The boxes represent
the quoted error bars in both v and K, assuming indepen-
dent errors. Also plotted in the figure is the prediction
for v by field theory which does not give an estimate for
K, .

Results for the bcc system are presented in Table II.
Our estimates for the inverse critical temperature and
critical exponents are consistent with the result from ex-
tended high-temperature series expansions, but have
smaller error bars. So far we have not found any other
high-quality Monte Carlo data about this system in the
literature.

Within their respective error bars, our estimates for the
critical exponents for both systems agree with each other
and are consistent with early Monte Carlo results for the
fcc system which have large errors. Table III lists field
theoretic predictions for those critical exponents, which
are independent of lattice structures, as well as results of
high-temperature series expansions averaged over the sc,
bcc, and fcc systems. Our estimates also agree with
these theoretical predictions and suggest that the "best
estimates" from series analysis are slightly too low. In-
cluded in the table are our final estimates for the critical
exponents, which are obtained by averaging results for
both sc and bcc systems. The agreement between our
final estimates and the field theoretic predictions is excel-
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TABLE III. Theoretical predictions and our final estimates
for static critical exponents of the three-dimensional classical
Heisenberg model.

Series expansions
Ref. 2

0.7025 o' oo5
375+o.02

Field theory
Ref. 6

0.705+0.0030
1.386+0.0040

0.3645+0.0025
—0. 115+0.009

Monte Carlo
This study

0.7048+0.0030
1.3873+0.0085
0.3639+0.0035

—0. 1144+0.0090

IV. CONCLUSIONS

lent and provides convincing numerical evidence for the
conjecture that both systems, and perhaps the fcc sys-
tem, belong to the same universality class.

any other method. In order to achieve this degree of pre-
cision we have employed a multiple-embedding, multiple
single-cluster algorithm to reduce critical slowing down
in updating spin configurations. Extensive Monte Carlo
simulations performed over a temperature range covering
the critical region have made it possible to acquire accu-
rate information on critical properties with an optimized
multiple-histogram method. Using the finite-size scaling
theory we estimate that the inverse critical temperature
is 0.693 035(37) for the simple-cubic system and
0.486 798(12) for the body-centered-cubic system. Our
estimates for the static critical exponents for both sys-
tems agree with each other and with field theoretic pre-
dictions. This result substantiates the conjecture that
both systems belong to the same universality class; our
final estimates for static critical exponents, which are
mean results of those for the two systems, are
v=0. 7048(30) and y =1.3873(85).

The static critical properties of classical ferromagnetic
Heisenberg models have been studied using large-scale
Monte Carlo computer simulations. We have obtained
precision equivalent to (or better) than that found with
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