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Thermodynamics of alternating spin chains with competing nearest-
and next-nearest-neighbor interactions: Ising model
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The thermodynamical properties of an alternating spin (S,s) one-dimensional (1D) Ising model with

competing nearest- and next-nearest-neighbor interactions are exactly calculated using a transfer-matrix
technique. In contrast to the case S=s = —', previously investigated by Harada, the alternation of
different spins (S&s) along the chain is found to give rise to two-peaked static structure factors, signal-

ing the coexistence of different short-range-order configurations. The relevance of our calculations with

regard to recent experimental data by Gatteschi et al. in quasi-1D molecular magnetic materials,
R (hfac)3 NITEt (R=Gd, Tb, Dy, Ho, Er, . . .), is discussed; hfac is hexaAuoro-acetylacetonate and
NlTEt is 2-Ethyl-4, 4,5,5-tetramethy1-4, 5-dihydro-1H-imidazoly1-1-oxy1-3-oxide.

I. INTRODUCTION

One-dimensional (1D) magnetic models have attracted
much interest in recent years, both because they are
much easier to treat theoretically than the three-
dimensional (3D) ones, and because of the discovery of
several quasi-1D magnetic materials. ' Most of them are
formed by transition-metal ions of the 3d series, and their
properties can generally be interpreted in terms of a
nearest-neighbor (NN) exchange interaction, whose sign
determines the type of short-range order: e.g. , ferrimag-
netic in CsNiF3, antiferromagnetic in (CH3)4NMnC13
(TMMC), ferrimagnetic in CuMn(S2C202)z 7.5 H20. '

At the present time, more complicated 1D magnetic
systems are being synthetized in organic as well as inor-
ganic solid-state chemistry. Recently, Gatteschi and co-
workers obtained and investigated a class of quasi-1D
molecular-based magnetic materials, R (hfac) 3N ITEt
(R =Gd, Tb, Dy, Ho, Er, . . . ), whose magnetic proper-
ties are determined by rare-earth ions with spin S and ni-
tronyl nitroxide organic radicals with spin s =

—,', and
which turn out to be the first example of alternating-spin
magnetic chains with dominant next-nearest-neighbor
(NNN) interactions. [hfac is hexaAuoro-acetylacetonate
and N1TEt is 2-Ethyl-4, 4,5,5-tetram ethyl-4, 5-dihydro-
1H-imidazolyl- l-oxyl-3-oxide. ]

All these materials appear to be good quasi-1D mag-
netic systems, owing to the long distance (-10 A) be-
tween magnetic ions belonging to different chains. Also,
measurements of the angular dependence of the electron
paramagnetic resonance (EPR) linewidth68 in a single
crystal of the prototype system Gd(hfac)3NITEt gave a
clear indication that the ratio of the inter-to-intrachain
exchange constants is smaller than 10

Low-temperature susceptibility measurements in the
analogous chain compounds Y(hfac)3NITEt (Ref. 9) and
Eu(hfac)3NITEt (Ref. 7) (where the Gd + is replaced, re-
spectively, by diamagnetic Y + and by Eu +, which has a

nonmagnetic ground state) suggested that the s =
—,
' or-

ganic radicals interact via an antiferromagnetic Heisen-
berg exchange.

In general, the R(hfac)3NITEt (R =Gd, Tb, Dy,
Ho, Er, . . . ) magnetic chains present an overall antiferro-
magnetic behavior in the paramagnetic phase, i.e., the
isothermal susceptibility g has a maximum at a finite tem-
perature. Preliminary attempts to interpret such ex-
perimental data in terms of models with intrachain in-
teraction limited to nearest neighbors and possibly inter-
chain coupling led to unrealistic (too high) values of the
intra- and interchain exchange fitting parameters. In-
stead, a rough model of two interpenetrating ID lattices,
one formed by the organic radicals and one by the rare-
earth ions, with antiferromagnetic isotropic coupling
within each lattice but not between different lattices, gave
much more reasonable results in the case of
Gd(hfac)3NITEt, thus providing strong support for the
model of an alternating-spin magnetic chain with NNN
antiferromagnetic interactions dominating over the NN
ferromagnetic one. Owing to such spin frustration
effects, more complex spin structures are allowed in addi-
tion to the simple ferromagnetic and antiferromagnetic
ones: e.g., a "two-spin-up-two-spin-down, " a helical, or
even a degenerate and disordered ground state, depend-
ing on the spin symmetry and the ratio between the com-
peting exchange interactions.

The Gd + ion has a S7&2 ground state: therefore, any
exchange interaction should be essentially isotropic and a
Heisenberg model is expected to describe the system.
When Gd is substituted by other rare-earth atoms (Tb,
Dy, Ho, Er, etc.), anisotropy effects associated with the
unquenched orbital angular momenta can give rise to pla-
nar or Ising-like behavior.

Such an experimental situation led us to study a mag-
netic model of spins (S,s) alternating along a linear lattice
with competing nearest- and next-nearest-neighbor ex-
change couplings.
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In the case of spins equal on all sites, the 1D Ising
(with S =s =

—,'), ' ', planar, ' ' and Heisenberg'
models with competing NN and NNN exchange cou-
plings were thoroughly investigated by several authors.
In particular, the partition function and the two-spin
correlation functions were exactly calculated in the
framework of the transfer-matrix technique' ' and
different types of temperature dependence and of short-
range order were found, depending on the ratio between
the NN and NNN couplings.

It is t)ie purpose of the present paper to perform a
similar transfer-matrix study in the case of an alternating
spin (S,s) 1D Ising model, as a starting point in the task
of interpreting the experimental data for the thermo-
dynamic properties of the new class of R(hfac)3NITEt
molecular magnetic chains.

Owing to the presence of the NNN interaction, one is
led to diagonalize an M XM nonsymmetric real matrix,
with M=(2s+1)(2S+1). The results are obtained in a
numerical form; analytical expressions are given in the
limiting cases T~O and T~ ~. When the spins along
the chain have the same magnitude, S =s =

—,', the results

by Harada' are correctly recovered.
The most peculiar effect of the alternation of different

spins (S&s) along the chain is displayed by the static
structure factor S(q), a property which can be measured
by a diffuse neutron-scattering experiment: at low tem-
peratures, it presents turbo peaks (with different heights),
signaling the coexistence of different short-range-order
configurations in the system.

The layout of the paper is as follows: Section II is de-
voted to the transfer-matrix method applied to the
alternating-spin (S,s) Ising chain with competing NN
and NNN exchange interactions. The results for the
various thermodynamic properties (magnetic susceptibili-
ty, specific heat, static structure factor, correlation
length, etc. ) are presented and discussed in Sec. III. In
Sec. IV we comment on our results in connection with
the experimental data in the R(hfac)&NITEt quasi-1D
magnetic materials. Finally, we draw the conclusions in
Sec. V.

II. TRANSFER-MATRIX METHOD

n=1 n =1
N/2 N/2

rr g S2nS2n+2 grPBH g $2„
n=1 n=1

We assume the NN exchange to be ferromagnetic
(JR„)0) and the NNN ones to be antiferromagnetic

Let us start with the Hamiltonian of an Ising chain
with N spins (X is taken to be an even number, without
lack of generality when the thermodynamic limit X—+ ~
is taken), X/2 of which have spin S and occupy the odd
sites of a linear lattice, while the other 1V/2 spins have
s =

—,
' and occupy the even sites:

N/2

JRr g (S2„1S2„+$2„52„+1)
n=1
N/2 N/2

JRR g 2n —1S2n+1 gRPB~ g 2n —1

(J„R (O,J„„(0). An external magnetic field is applied
along the z direction; g„,gz denote the gyromagnetic fac-
tors of the s and S spins, respectively. As usual, we take
the lattice spacing a =1 and assume periodic boundary
conditions: SN+i =Si sN+2 =

In the case S =s =
—,', the ground state of an Ising chain

with both NN and NNN exchange couplings in an exter-
nal field was thoroughly studied by Morita and Horigu-
chi." For J& ——J«) 0 and J2 =—Jz& =J„&0they proved
that in zero field two different long-range spin orderings
are possible at T =0, depending on the ratio 6o=

l J2l/J, :

for 60& —,
' one has ferromagnetism; for 60= —,

' the ground
state is degenerate and disordered; for 60) —,

' a periodic
configuration with two "up" spins followed by two
"down" spins is energetically favored. For reasons of
brevity, hereafter we shall call this state the "antiferro-
magnetic" one.

In the case S&s and JRRWJ„„, we shall not give a
rigorous proof for the ground state in the general case.
Limiting ourselves to Jz„)0, J&~ & 0, J„„&0, and H =0,
we compare the energies of the ferromagnetic spin
configuration and of the "antiferromagnetic" one:

6~ +6„E' '= —J SslV 1—0 Rr 2

6~ +6„
Eo —JR„SslV

(2)

where we have defined

JRR IS'
6~=, 6„=

JgrSs
'

JRr Ss

Thus, the ferromagnetic long-range order is energetically
favored for 6~+6, &1, while the "antiferromagnetic"
one is preferred for 6& +6,) 1.

At finite temperatures, the 1D Ising model cannot sup-
port long-range order. ' However, a strong short-range
order is present even in the paramagnetic phase and its
nature is revealed by the position of the peak in the static
structure factor S(q) which is experimentally accessible
via a diffuse neutron-scattering experiment. This quanti-
ty, along with other thermodynamic properties, can be
exactly calculated using the transfer-matrix method.

In the case S =s =
—,
' and J~z =J„„,it is possible, via a

dual transformation, to map the 1D Ising model with NN
and NNN interactions into an equivalent (i.e., with the
same partition function Z) 1D model with only NN cou-
pling: for 0 =0, analytic results were obtained for both
Z and the pair-correlation functions. ' ' '

In the case of an alternating-spin (S,s) chain with
different NNN couplings between even and odd sites
(JRR W J„„),this mapping is no more possible, but, owing
to the finite range of the interactions, one can still give an
exact transfer-matrix formulation of the thermodynamics
of such a 1D model, even though the results can generally
be given only in a numerical form.

The canonical partition function Z can be written as
(P= 1/kB T):
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Z&=TrIe ~
] =g g . g g T(s;,s2, S3,s4) . T(SN ),$&,S),sz), (4)

gZ SZ
1 2 N —1 N

where S'= —S, —S+ 1, . . . , S —1,S and we assume s =
—,', so that s'=+ —,'. The kernel T is defined by:

T(S;,$;;S;,$4) =exp[ —,'PJ«(S($;+2$;S;+S;$4)]exp[PJ«S;S; ]exp g~—p~H(s;+S; )
2

X exp [I3J«s 2s 4 ]exp g„p—sH ( s 2 +s 4 )
2

(5)

A similar four-point, real, nonsymmetric kernel was ob-
tained previously by Carazza, Rastelli, and Tassi' ' in
their study of the classical 1D planar model with compet-
ing interactions. The fact that the kernel is nonsym-
metric, i.e., T(s;, $2;S 3, $4)W T(S 3, $4, S;, $2), leads one
to solve two integral equations, in order to find the left
(y) and right (P) eigenfunctions

g g y~(S(, sz )T(S»$2,S3ys4) —A~y~(S3y$4),
gZ SZ

1 2

g g T(s'(, $2', S3,$4 )g (S3,s4 ) =XIgm (S;,$2 ),
3 4

while the left and right eigenvalues A, are identical. The
remarkable point is that, owing to the nonsymmetry of
the real kernel (5), the spectrum of its eigenvalues may in-
clude pairs of complex conjugate values and also the
eigenfunctions can be complex. However, even in the
nonsymmetric case, if all the eigenvalues are nondegen-
erate, the following orthonormality and completeness re-
lations can be shown to hold:

F~ = —k~ T lnZ& = ——k~ T lnko

BF 1V 1g= 11m
H o QH2 2

'2-
Bk,p

BH H=o

(12)

and the heat capacity C

TBF Nk 2T
2 k BT

12
T ~~o

Ao . aT .

T 0

A p
(13)

The spin-correlation functions require the knowledge
of both eigenvalues and eigenfunctions. For the magneti-
zation on the odd and even sites, respectively, one has

Hence, by numerical derivation one can obtain y, the iso-
thermal susceptibility in zero field:

1(S),s 2 )g (S),s 2 ) =5)
gZ SZ

1 2

g q (S),$2)g (S;., s2 )=5, , 52 2 .
(7)

(s; ) =y y q,(s;,s', )q,(s;,$, )s;,
gZ SZ

1 2

($2 ) =g X 0 0(S(,$2 )40(S1,$2 )$2
QZ SZ

1 2

(14)

From Eqs. (7) one deduces the following expansion for
the kernel in terms of eigenvalues and eigenfunctions:

T(S;,$2;S3y$4)=g A, g (S'»s2)((0 (S3y$4)

Inserting Eq. (8) in the expression (4) for the partition
function and making use of the orthonormality and com-
pleteness relations (7), one obtains

Z —y (g )N/2

where the sum is over the (2s + 1)(2S+ 1) eigenvalues of
the transfer integral equations (6). The fact that possible
complex eigenvalues must always occur in complex con-
jugate pairs guarantees that the partition function is real.
If all the eigenvalues are nondegenerate and the largest
(in modulus) one, A,0, is real, in the thermodynamic limit
the partition function is simply given by

XQ
dQm dmQ (15)

(S($2+2n ) =g d0~d~0 = ($2S3+2& )
m 0

where

di '=g g'p&(s;, $2)tP (S),sz)S(

Of course in zero field these quantities vanish owing to
the absence of long-range order in 1D.'

As for the two-spin-correlation functions, owing to the
alternation of the (S,s) spins along the chain, one has to
distinguish between odd-odd (RR), even-even (rr), and
odd-even (Rr) pair correlations:

m (Z)(S S ) —y (dR) (dR)

m 0

n

lim Z =X~".
0&—+ oo

The free energy is

(10)
gZ SZ

1 2

dim X X 0'((S(,s2)1t~(s~i, sz )s2
+Z SZ

1 2

(16)
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The spatial Fourier transform of the two-spin-correlation function is

N N

y(q)= lim g g g, g [&o', o.'& —
& o';&&cr' &.]exp[iq(R —R;)],

k~T,
(17)

where o';=S,g, =g~ for odd i and o';=s, g,. =g„ for even i. Making use of the translational invariance and of the
periodic boundary conditions, in the thermodynamic limit one has

y(q)ks TS(q)=, =g' . —[&(S;)'&—&S; &']+ y [&S;S;,„&—&S; &']cos(2nq) .
Xp~ n=1

+g„—[&(sz) &
—&sz & ]+ g [&s2s2+2„&—&sz & ] cos(2nq) .

+2g~g„g [ & S is&+2„&—
& S i & & s2 & ] cos[(2n + 1 )q ]

n=0
(18)

The static structure factor 4'(q), which can be measured
by a diffuse neutron-scattering experiment, provides
direct information about (i) the kind of short-range order
present in the system at finite temperatures, through the
position of its maximum q,„; (ii) the extension of the re-
gion of correlated spins, through the half width at half
maximum. Expanding S(q) for small hq =q,„—q, one
can define the correlation length g as

+(q,„)
8 S(q)/Bq

~

yk~ T
[g„'F(s)+—g'F(S) ],

Xpz

w~ere

(20)

I

configurations, in the limit T~O the product yT presents
a ferromagnetic behavior, i.e., it diverges for 5~+5„&I,
while for 5+ +5„)1 it tends exponentially to 0, similar to
an antiferromagnet. In the opposite limit of T~ ~, the
isothermal susceptibility in zero field reaches the asymp-
totic value

It is worthwhile to note that this definition of g is the
same as the one by Harada, ' but differs from those given
in Refs. 10 and 12.

III. RESULTS AND DISCUSSION

F (S)= g (S')
2S+1

=
—,'S(S+1), integer S,

=,', [(2S+1) —1], half-integer S . (21)

In this section we present in graphical form the results
of our transfer-matrix calculations of the thermodynam-
ics of the alternating-spin (S,s) 1D Ising model with com-
peting NN and NNN interactions.

As for the quantity g, it is clear that for 5~ +6„&1 it de-
creases monotonically from + ~ to 0 with increasing
temperature, while for 5++5„)1 it passes through a
maximum, since g vanishes both for T~O and T~ ~.

A. Isothermal susceptibility

In Fig. 1 we show the numerical results for the iso-
thermal susceptibility in zero field of an Ising chain with
S =—'„s =

—,', calculated from Eq. (12). In this figure and
in all the other ones we put g~ =g, =2. The quantity
(yT)*=yks T/Np~ is reported versus reduced tempera-
ture T*—=kz T/Jz„Ss for difFerent values of the ratios be-
tween NNN and NN exchange couplings, 5~ and 5„[see
Eq. (3)]. As expected on the basis of the ground-state

I

B. Specific heat

We now present the results for the temperature depen-
dence of the specific heat in zero field, obtained by nu-
merical differentiation of the largest (in modulus) eigen-
value A,o with respect to temperature [Eq. (13)]. In the
case of spins equal on the odd and even sites (S =s =

—,')
and equal NNN couplings (J2 ——Jz~ =J„„),A,o is known'
in analytic form to be (Ji

=—Jz„)

Ao=exp(2PJ2s )[cosh(PJis )+Qsinh (PJ, s )+exp( —4PJ2s )] (22)

and the corresponding specific heat C/Xk~ is plotted in
Fig. 2 versus T* for selected values of 5O=

~ J2 ~ /J, . '

Figure 3 reports the same quantity for an alternating-
spin chain with S=

—,', s =
—,'. For the sake of comparison

with the previous case, the values of the NNN couplings

were chosen such that 5 =5+ =6„.
Very similar results are obtained in the two cases. For

T~O, an exponential dependence, typical of the Ising
model, is found. With increasing temperature, a peak de-
velops in the heat capacity owing to the excitation of
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200 800

S=7/2 s= 1/2
T"=0.25

S=7/2 s= 1/2
o.os y„=a,=0.6

0.25. '
(x4)

0
0.00 0.50 1.00 0.00 0.50 1.00

q/vr q/rr

FIG. 5. Static structure factor E(q) of an alternating-spin
7 1(S=—,s = —) Ising chain, calculated from Eq. (18) at fixed

T*=0.25 for selected values of 5=6& =5„,as indicated by the
labels.

FIG. 6. Static structure factor S'(q) of an alternating-spin
(S= 2, s = 2) Ising chain, calculated from Eq. (18) for fixed

5z =6„=0.6 at selected values of T*. Full line: T =0.05;
dashed line: T*=0.1; dotted line: T*=0.25. Nota bene: the
latter two curves have been enhanced by a factor of 4.

most interesting feature is that, while in the case
S=s=—,', the static structure factor presents only one
peak, for SAs two peaks with different heights are clearly
visible, signaling the coexistence between difFerent short-
range order configurations.

It is worthwhile to note that two-peaked structure fac-
tors were found at low temperatures also by Carazza,
Rastelli, and Tassi' in their study of the planar spin
chain with competing interactions up to third neighbors.
In that case, coexistence of different kinds of short-range
order (ferro, antiferro, and helimagnetic) was found in the
neighborhood of the T =0 first-order transition lines.

In our case, the origin of the two-peaked structure fac-
tors is different, since they are observed also far from the
ferromagnetic-antiferromagnetic phase boundary
5++5„=1. Indeed, the two-peaked feature is a direct
consequence of the alternation of different (S&s) spins
along the chain, as one can easily infer from Eq. (18)
making the T~O+ limit. In fact, in the case of fer-
romagnetic short-range order (5++5„(1)one has for
the static structure factor (g =gz =g„),

value of 5=5+ =5„=0.6. At T =0 one would have a 5
peak centered at q =n/2 since 5++5„)1; with increas-
ing temperature a two-peaked structure develops, even
though the absolute maximum q,„ is unique.

The temperature dependence of the quantity q,„ is
shown in Fig. 7 for the alternating-spin (S=—'„s =—,') Is-
ing chain for selected values of 5=5a =5„. For
5++5„(1, a ferromagnetic ground state is favored

(q,„=0); with increasing temperature, a transition to a
phase with q,„&0can occur at a temperature TI which
decreases with 5++5„approaching 1 [see also discussion
after Eq. (27)]. For 5++5„&1, at T =0 one has a "two-
spin-up-two-spin-down" ground state with q,„=rr/2;
for finite T, q,„decreases.

In the limit T~ 00, it is possible to obtain an analytic
expression for q,„. In fact, expanding the partition
function and the two-spin-correlation functions to lowest
order in p~ J~z ~, p~ J„„~,pJz„, one obtains for the static
structure factor,

=(S +s ) . g cos(2nq) .
n =1 0.5 0

(25)+2Ss g cos[(2n +1)q]
n=0

It turns out that, while q =0 is an absolute maxirnurn
both for S =s and SAs, q=a. is an absolute minimum
for S=s and a relative maximum for SAs. A similar
crude approximation in the "antiferrornagnetic" ca
5

case
( ++5„)I) leads to find only one maximum at q =n/2
for both S =s and SAs. In order to account for a two-
peaked structure factor it would be necessary to take into
consideration the different temperature dependences of
the NNN two-spin-correlation functions, (S'S' ) and
( s zs &+2„),for SAs.

The evolution with temperature of the static structure
factor S(q) for an Ising chain with competing interac-
tions and S=—'„s=—,

' is reported in Fig. 6 for a fixed

0.4
O
E

CZ

0.00

FIG. 7. Temperature dependence of the absolute maximum

q,„of the static structure factor 4'(q) for an alternating-spin
chain with S = 2, s =

2 at selected values of 5—:6& =5„,as indi-

cated by the labels.
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2

S(q) —+ F(S)[1+2F (S)P
~ Jzz ~

cos2q

2

+ F s=-gr 1

2 2
1+2F s= —P J co=1

2
l rrlcos2q + 2gzgr F(S)F s= —PJs — g„cosg (26)

so that a maximaximum can be obtained eith f'
e ei er or sinq „=0or for

F(S) gr Jrr ~
( r~)g

gz
(27)

In the engeneral case S&s, from Eq. (27) one can d
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In the framework of spin models with a continuous
symmetry, like the planar and the Heisenberg ones, the
competition between NNN and NN exchange couplings
would lead to a helical ground state ' in this case, the
isothermal susceptibility g is expected to be constant at
T =0, so that yT would vanish linearly for T~O.
Indeed, such a feature has been experimentally observed
in the Gd(hfac)3NITEt chain in zero field, which does
not show any 3D transition temperature down to about 1

K. However, for a quantitative comparison, it would be
necessary to develop a transfer-matrix study for the
Heisenberg model with alternating spins (S,s) and com-
peting NN and NNN interactions.

In the other magnetic chains with anisotropic rare-
earth ions, which are expected to be better described by a
planar or Ising model, the low-temperature dependence
of the 1D isothermal susceptibility cannot be ascertained,
owing to the onset of the 3D phase transition at tempera-
tures ranging from 1.2 to 3.2 K. ' Single-crystal mea-
surements of the susceptibility ' in some of the aniso-
tropic chain systems show that the Ising model we have
investigated is never completely appropriate. However,
at not too low temperatures our transfer-matrix calcula-
tion of yT', Eq. (12), can be used to give a preliminary fit
of the exchange parameters. For example, in the case of
Ho(hfac)3NITEt, with effective S = 1 and gz =8.6 for the
metal ion, one is able to reproduce the maximum at 7 K
observed for y in a Geld of 200 Oe, using reasonable
values of the parameters (R =Ho, r =organic radical):
Jgg = 5.04 K, Jg —r =3.74 K, Jrr = 11.08 K.

Additional experimental work on single-crystal sam-
ples of rare-earth —organic-radical molecular magnets is
in progress in order to better characterize them, e.g. ,
measurements of the magnetic specific heat at low tem-
peratures.

Also, it would be very interesting to perform quasielas-
tic neutron-scattering experiments, in order to ascertain
in a direct way the nature of the short-range order via the
position of the maximum q,„ in the static structure fac-
tor S(q).

metric real matrix, with M = (2s + 1)(2S+ 1). Some
analytical results have been obtained for T~0 and
T~~. In the limiting case S =s =

—,', the results by
Harada' have been correctly recovered.

For S&s, some thermodynamical properties show
features very similar to the S =s =

—,
' case. Among them

we mention:

(1) a crossover from diverging (ferromagneticlike) to
vanishing (antiferromagneticlike) isothermal susceptibili-
ty in the limit T~O, upon variation of the ratio between
the competing NNN and NN exchange couplings;

(2) a sharp peak in the temperature dependence of the
speci6c heat, as a consequence of the excitation of
domain walls in the chain, for suitable values of the ex-
change parameters;

(3) a nonmonotonic temperature dependence of the
correlation length, for opportune values of the competing
NN and NNN exchange: indeed, one finds a vanishing
correlation length at a finite temperature TI, the
pseudo-Lifshitz point. ' '
%'e have found that the most striking effect of the alter-
nation of different spins (S&s ) along the chain is shown

by the static structure factor, which at low temperatures
can present two peaks (with different heights), signaling
the coexistence of different short-range-order
configurations in the system.

Finally, we have shown that our simple Ising model is
able to qualitatively explain the experimental feature of
an overall antiferromagnetic behavior of the isothermal
susceptibility observed in R(hfac)~NITEt (R =Gd,
Tb, Dy, Ho, Er, . . . ). In order to obtain a quantitative fit
of the competing NN and NNN exchange parameters, a
similar transfer-matrix study for the planar and Heisen-
berg models should be performed. Also, additional low-
temperature experimental results are necessary for a
better characterization of such quasi-1D molecular ma-
terials.
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