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Phase diagrams and magnetization curves of a diluted spin-1 transverse Ising model in a random field

on honeycomb, square, and simple-cubic lattices, respectively, are investigated by the use of an effective-

field theory with correlations. The tricritical point is found in the system, in contrast to the correspond-

ing spin-2 Ising counterpart. The behavior of the tricritica1 point is also examined as a function of ap-

plied transverse field. The possible reentrant phenomena displayed by the system due to the competition
effects that occur for appropriate ranges of the random and transverse fields are investigated.

I. INTRODUCTION

The two-state transverse Ising model, ' was originally
introduced as a valuable model for hydrogen-bounded
ferroelectrics such as the KH2PO4 type. Since then, it
has successfully been used to study a number of problems
of phase transitions associated to order-disorder phenom-
ena in several other systems, for example, cooperative
Jahn-Teller (such as D VO4 and TbVO&) and some real
magnetic materials for which the crystal-field ground
state is a singlet. The wider applicability of the model
has extensively been reviewed in the literature. ' The
model is described by a two-state Ising Hamiltonian with
a term representing a field transverse to the Ising spins,
namely,

&=—
—,
' g J,,o';o,' —Qg o, ,

where o'; and 0.; are components of a spin- —,
' operator at

site i, J; is an exchange interaction, Q represents a trans-
verse field, and the sums extend over all the points of a
lattice.

The thermodynamical properties of the model Hamil-
tonian Eq. (1) have been exactly obtained only for the
one-dimensional lattice. In order to study higher di-
mensional lattices some sort of approximation has to be
done, and the problem of finding a solution has generated
a number of different approximations schemes. '

However, all these approaches consider only the model
Hamiltonian described by Eq. (1) [namely the spin- —,

'

two-state Ising model (TIM)] and most of them have been
restricted to the analysis of particular regimes, either at
low- or at high-temperature regions.

On the other hand, the random-field Ising model
(RFIM) has received a great amount of interest' ' in
the last few years because it helps to simulate many in-
teresting but complicated problems. A dilute uniaxial
two-sublattice antiferromagnet in a uniform magnetic
field fits this model in that random local fields couple
linearly to the antiferromagnetic order parameter. ' It
can also be used to describe such processes as the phase

&=—
—,
' g J,,o', o,' —0 g o.",

—g H, o', .

Here, H, is a random external field, which is assumed to
be randomly distributed according to the bimodal in-
dependent probability distribution function P(H; ) as

P(H;) =
—,'[5(H, —Ho)+5(H, +Ho)] . (3)

Depending on the improvements that can be made in the
mean-field approximation, the phase diagrams show
second-order transition lines, tricritical points, and reen-
trant phase transitions which may be caused by the com-
petition effects that occur for appropriate ranges of the

separation of a two-component Quid mixture in porous
material or gelatin and the solution of hydrogen in metal-
lic alloys. ' Theoretically, the RFIM has been widely in-
vestigated by the use of vari. ous techniques, including the
mean-field-approximation effective-field theories, ' ' re-
normalization calculations, ' and Monte Carlo simula-
tion. ' It has been suggested by Aharony that the
second-order region in the phase diagram may be
separated from the first-order region by a tricritical point,
provided that the symmetric distribution function of the
random field has a minimum at zero field. In the Bethe-
Peierls approximation, the tricritical point has been
found for both z =3 and z =6, where z is the coordination
number, while by using an effective-field theory, Borges
and Silva ' have discussed that the tricritical point does
not exist, when z is lower than z=6. Moreover, in the
two-dimensional case (z=3 and z=4), the phase dia-
grams exhibit reentrant phenomena, i.e., two-phase tran-
sitions, for the appropriate range of the random field. In
consequence of the dramatic effects appearing in the
RFIM, there has been an increasing interest in studying
other systems in the presence of random fields, such as
the Heisenberg model, the transverse Ising model,
the amorphous Ising ferromagnet, and the Blume-Capel
method. '

The spin- —,
' transverse Ising model in random field has

received some attention in recent years. ' ' The
Hamiltonian of the system is, in addition to Eq. (1),
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transverse and random fields.
However, the spin-1 transverse Ising model in the pres-

ence of a random field is another and more complex and
interesting problem. In this paper we investigate the
phase diagrams and the magnetization curves of a diluted
S=1 TIM with random field, on the basis of a general-
ized Callen relation derived by Sa Barreto, Fittipaldi, and
Zeks, and very recently introduced into the spin-1 Ising
models.

The outline of this work is as follows. In Sec. II, we
present the formalism and discuss the effective-field
theory with correlations for a diluted spin-1 TIM. In
Sec. III we study the phase diagrams and tricritical
points for lattices with z =3, 4, and 6. The numerical re-
sults and discussions are presented in Sec. IV. In Sec. V
we discuss the magnetization curves. Finally, in Sec. VI
we comment on the results.

II. FORMALISM

We consider a site diluted spin-1 transverse Ising mod-
el with a random field, described by the Hamiltonian

&=—g J;~Ssjg;g —. AQS; g;
—gH;S g;, (4)

—Pgf

(
~

)
(nr} ne

n —p&„
trI„Ie

which can be considered as an approximate generalized
Callen" -Suzuki identity. Equation (5) is a reasonable
approximation and has formed the starting point of many
theoretical calculations on transverse Ising system
and will again be adopted here.

By taking into account Eq. (5), the longitudinal and
transverse site magnetizations for our diluted spin-1
transverse Ising system with a random field are given by

e, 2 sinh(PE; )I'= S'
E,. )+2cosh(EE;)) '

2 sinh(PE, )

E; 1+2 cosh(EE; ) ) '

(6)

(7)

with nearest-neighbor interaction J; between spins at
sites i and j, S;", S =+1, and 0 are spin-1 operators, and

g; is a site occupancy number which takes values 1 or 0
depending on whether the site is occupied or not. Q and
H, are the transverse and random field, respectively, the
latter being governed by the distribution probability func-
tion given by Eq. (3).

The total Hamiltonian is split into two parts,
&=&„+&'. Here &„ includes all the parts of & asso-
ciated with the lattice site n, and &' represents the rest of
Hamiltonian and does not depend on site n for spin
operators. Furthermore, we assume that [&„,&']
=PI„,&]%0. By following Sa. Barreto, Fittipaldi, and
Zeks, after a straightforward calculation we obtain that
the average value of a spin operator 0„ is given by

m =(e ' )F(x+H;)~„

m,. =(e ' )G( x+H;)~„

(10)

where V=BIBx is a differential operator and functions
I'(x) and G(x) are defined by

x 2sinh[P(Q +x )' ]
(Q +x )' I+2cosh[P(Q +x )' ]

Q 2 sinh[P(A +x )' ]
x )' I+2cosh[P(II2+x )'~ ]

If one now uses the Van der Waerder identities for spin-1
operators, the expectation value ( exp(6;V) ) reduce to

(e ' ) =(n ((S,*) cosh(2, ,$S,(s)
J

+Sjs(oh(2cg;g)(s)+( —(S*) ]) . ((4)

The main purpose of this work is to obtain from the
above equations the phase diagrams and the behavior of
the longitudinal and transverse rnagnetizations as func-
tions of the parameters T, Q, and H. However, it is clear
that if we try to treat exactly all the spin-spin correlations
which appear through the expansion of the above equa-
tions, the problem becomes mathematically untractable.
Therefore, some approximations are needed. Here, we
restrict ourselves to the simplest approximation in which
all high-order spin correlations on the right-hand side of
(14) are neglected. It is clear that within this approxima-
tion the strict criticality of the system is lost, and its real
dimensionality is only partially incorporated through the
coordination number of the lattice. Nevertheless, as has
been already discussed in several works on spin-1 Ising
systems, ' such a framework is quite superior to the or-
dinary mean-field approximation (MFA), and provides in
particular a vanishing critical temperature for one-
dirnensional systems. This is so because in this type of
treatment, relations such as s; =0, 1 as well as s; =s; and
s; =s;, are taken exactly into account, while in the usual
MFA all the self- and multispin correlations are neglect-
ed. Based on this approximation, one now decouples the
thermal multiple correlation functions occurring on the
right-hand side of Eq. (14) according to

e;= g J;~Sj.g;g&+H;g;,
J

E; =[II +6.]'
Here, ( . . ) indicates the canonical thermal average
and P= 1/k~ T. In the limit 0=0 with g; = 1, m;"=0 and
Eq. (6) reproduces the exact identity for the spin-1 Ising
model with an external field H;. Expanding the right-
hand side of Eqs. (6) and (7) as a formal series in the spin
variables and neglecting correlations of E;, the standard
mean-field-approximation results are recovered.

At this stage, in order to write Eqs. (6) and (7) in a
form which is particularly amenable to approximation,
let us introduce the differential operator technique as
follows:

with (s'(s')'. . .s') = (s') ((s')2). . .(s') (15)
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for jAkA . Al, thus enabling the average to be taken
inside the product sign. For a lattice having only
nearest-neighbor interaction J, . =J, with coordination
number z, Eq. (14) reduces to

(e ' &= g [((S') &cosh(Jg, g V)

+ ( &f & sinh( Jg; g, V )+ 1 —( (SJ ) & ] . (16)

It should be stressed that this equation is for a fixed
configuration of occupied sites so the thermal averages
are configurationally dependent. As discussed in Refs.
51 —53, the statistical accuracy of (15) corresponds to the
Zernike approximation of spin- —,

' Ising models, when
Q=O. O. In particular, for some special cases, such as
surface magnetism and the mixed-spin problem, we can
compare the results based on the decoupling approxima-
tion with those obtained from the exact calculation and
Monte Carlo simulation. These results indicate that
the decoupling approximation gives reasonable results.

The next step, as has been previously applied to disor-
dered systems in the literature, and references
therein, is to carry out the configurational averaging. To
make progress, the simplest approximation, as was used
for the thermal averaging, of neglecting the correlations
between quantities pertaining to different sites will be
made. That is (X,X~Xk &„=(X, &„(X &„(Xk &„, from
whence it follows that

F(x)=fP(H;)F(x+H;)dH;,

G(x)= fP(H, )G(x+H, )dH, ,

H(x)= fP(H; )H(x+H; )dH; .

(23)

III. PHASE DIAGRAM AND TRICRITICAL POINTS

In this section, let us study the transition temperature
(or the phase diagram} and the tricritical points of the
system. In the pure case with a finite transverse field the
S,' component of the system is disordered at high temper-
atures, but below a transition temperature T, it orders so
that m, &0 and the direction of the moment changes con-
tinuously, although there is an order with m„%0 at all
temperatures. In particular, for a strong random field, a
tricritical point may be expected in the phase diagram for
a bimodal distribution of P(H; ).

Here we are interested in studying the transition tern-
perature of the system. Expanding the right-hand side of
Eq. (10) and Eq. (21), we obtain

m, = Am, +Bm, + (24)

m =&m, &„and q=&q, &„,

where (. . . &„denotes the random-field average. Fur-
thermore, the functions F(x), G(x), and H(x) must be re-
placed by

m, =[pf(q„m„J,, , V)+1 —p]'F(x)l

m = [pf ( q„m„J, , V ) + 1 —p ]'G(x"}
l

f(q„m„J~,D)=q, cosh(J; V)

+m sinh( J,.~ V ) + 1 —q, ,

(17)

(19)

q =A +B'm +
with

2 =zp sinh(JV)[pq, cosh(JV)+1 —pq, ]' 'F(x)l„

z!8= '
p sinh (JV}

3!(z—3 )!

(25)

(26)

where we have performed the random average (. . . &„,
and p is the average site concentration defined by
p=&g, &„.

At this place, in order to evaluate the longitudinal, as
well as, transverse magnetizations, it is necessary to cal-
culate the parameter q,

' defined by

q'= &(S') & . (20)

By the use of the relation proposed by Sa Barreto, Fit-
tipaldi, and Zeks and Kaneyoshi, Sarmento, and Fit-
tipaldi, we can also obtain q,' in the same way as the
evaluation of m and m, Thus,

q =(e ' &H(x+H, )l (21)

where the function H(x) is defined by

Q +(0 +2x )cosh[P(Q +x )' ]
(0 +x )[1+2cosh[P(Q +x )'~ ]I

and

X[pq, cosh(JV)+1 —pq, ]' F(x)l

A ' = [pq, cosh( JV )+ 1 —pq, ]'H(x ) l

zfB'= '
p sinh (JV}

2!(z—2)!

X [pq, cosh(JV)+1 —pq, ]' H(x)l

(27)

(2g)

(29}

By substituting Eq. (25) into Eq. (24), one obtains in
general an equation for m, of the form

m, =am, +bm, + . (30)

The second-order phase transition line is then deter-
mined by a =1, i.e.,

zp sinh( JV ) [pq, cosh( JV )+ 1 —pq, ]' 'F(x)
l „=o=1,

For a random-field system, we must perform the ran-
dom average of K; according to the independent proba-
bility distribution function P(H; ) given by Eq. (3). Then
the above quantities m; (a=z or x) and q; are defined as

where q, is the solution of

q
0= [pq, cosh( JV ) + 1 pq, ]'H (x }

l
„—

(31}

(32)
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q
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2!(z—2)!

(36)

V)+1 pq,
~ ~. (24), the expressiou

' ' E . (34) into Eq.Substituting Eq.
Eq. (

(37)

30) is given by

V) —1]h(JV)[cosh(JV—b=( z —1)zp q, sin

X [pq, cosh(JV)+1 —pq, ]' F x

' h(JV)+

p v — ] P(x)IX [pq, cosh( JVV}+1—pq, (38)
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phase is a general characteristic of systems in which frus-
tration and disorder are present. There are higher and
lower Curie temperatures in RF systems for which
E„S„S,is believed to an example. ' Both, qualitative

1 —p
and quantitative accuracy of this question could be fur-
ther increased by using other methods that provide a
treatment beyond our effective-field framework. This is,
however, a difficult task due to the complexity of the
problem. The dilution plays some different role in the
sense that the more diluted the system is, the more
difficult it will be for some long-range order to be induced
by the temperature fluctuations. By increasing the dilu-
tion the percolation of the clusters favoring the ferromag-
netic order of the system becomes more difficult. In oth-
er words, these results indicate that the reentrant
phenomenon observed in the pure system is suppressed
when the dilution is performed.

Figure 3 shows the changes of T, with p, for Q =0 with
selected values of the random field, namely, (a) 0.0, (b)
0.80, (c) 1.05, (d) 1.10, and (e) 1.20. We investigate in de-
tail the phase diagram in the region 0.0&H/J&1. 20,
especially focusing on the situation with H /J ) 1.0.
Looking at Fig. 3, the critical lines exhibiting some
characteristic behaviors; the first is that the bulge (or the
reentrant phenomenon) gradually disappears with the in-
crease of H. The second is that for the values of H small-
er than unity, i.e., 0&H/J & 1.0, curve (a) presents the
well-known behavior of the pure case. By increasing H,
the T, curve presents a downward curvature and goes to
zero for a large value of p. On the other hand, this
behavior is drastically changed when the value H/J= 1.0
is reached, critical value above which the competition
effects are such that the reentrant phenomenon appears.

B. Square lattice (z =4)

For our diluted transverse Ising model with z=4, we
can obtain the expression of the coefficients and the pa-
rameter q, , as in Sec. III for z =3. Using these expres-
sions, the behaviors of T, as functions of Q and H for

30
kBTc

J

2.0-

Z= 4.0

p=l. o
a: H=OOJ
b: H= IOJ
c: H= l.5J

0.8
0.0 J
l.o J
l.5 J

I.O-

0.0
0.0 1.0 2.0

I

3.0 n/J

FIG. 4. Transverse field dependency of T, for a diluted S= 1

TIM with a random field on a square lattice (z=4). Solid
(p=1.0) and dashed (p=0. 8) lines are presented for selected
values of H, namely, (a) H =0.OJ, (b) H = 1.OJ, (c) H = 1.5J.

3.0-

selected values of p can be studied by solving Eqs. (32)
and (33) with the help of (36)—(38).

Figure 4 shows the phase diagram in the T-Q plane for
the system with a fix p (p= 1.O, full line and p =0.8,
dashed line) for selected values of the random field, name-

ly, (a) 0.0, (b) 1.0, and (c) 1.5, respectively. In order to
discuss the tricritical behavior, the spin- —, random-field

Ising model with a value of 0 (including 0=0), has been
investigated by Sarmento and Kaneyoshi, and there is
shown that the system does not exhibit the tricritical
behavior in the phase diagram, when the probability dis-
tribution function P(H;) is taken as a bimodal one and

1.5
kaTc

J

1.0

kBTc

J
2.0

I.O

2= 4.0 n = 0.0
a: p= I.O
b: p =0.8
c:p=0.6
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b': p=0.9
c': p =0.85
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0.0
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0.0
0.0 l.o 2.0 30 H J

FIG. 3. Phase diagrams of the e6'ective-field theory for the
diluted spin-1 random field with z =3 when the value of H is
changed as follows: (a) H =O.OJ; (b) H =0.80J; (c) H = 1.05J; (d)
H=1. 10J; (e) H=1.20J.

FIG. S. Phase diagram in the T,-H plane for S=1 random-
field Ising model. Solid lines [II=0 with (a) p = 1.0, (b) p =0.8,
(c) p =0.6, (d) p=0. 5], and dashed lines [0=2.5J with (a')

p =1.0, (b') p =0.9, (c') p =0.85] express the second-order tran-

sition lines. White circles denote the tricritical points.
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the coordination number is lower than z=6. Here, we
find that the conclusion for spin- —,

' system is not valid for
the spin-1 system. The second-order transition line and
the tricritical point in the spin-1 random-field Ising mod-
el with a finite value of 0 on square lattice (z =4) can be
evaluated when solving both the critical condition (a =1
and b (0), and the tricritical condition (a =1 and b =0)
numerically.

Figure 5 shows the phase diagram in the T-H plane for
the diluted spin-1 random-field Ising model with z =4. In
the figure, solid (0=0) and dashed ( Q =2. 5J) lines

FIG. 6. Transverse field dependency of T, for a S=1 TIM
with a random field, on simple cubic lattice [z =6 when p =1.0
with (a) H=O. OJ, (b) H=2 OJ, (c) .H=2. 5J] solid lines, and

p =0.8 [(a') H=O. OJ, (b') H=2. 0J, (c') H=2. 3J] dashed lines.

FIG. 8. Temperature dependency of sublattice magnetiza-
tions (m, solid and m„dotted lines), and the parameter q„ for
the pure TIM honeycomb lattice (z =3), when Q is taken as (a)
Q=O. SJ, (b) Q=1.0J, (c) Q=1.5J.

denote the second-order transition, and white circles ex-
press the tricritical points. The tricritical temperature
decreases monotonically with increasing Q, and is very
sensitive to the dilution changes.

C. Simple cubic (z =6)

In Fig. 6, the critical temperature is plotted as a func-
tion of Q, for fixed values of p (p =1.0, full line and

p =0.8, dashed line) and selected values of H, namely, (a)
0.0, (b) 2.0, and (c) 2.5. Figure 7 shows the phase dia-
gram in the T-H plane (z=6) for Q=O (full line) and
0=2.0J (dashed line) and selected values ofp. The white
circles in the end of the second-order transition lines
denote the tricritical points. The discussion here is simi-
lar to the square lattice case.

3.0
kITg

J

2.0

n = 0.0
p= l. o
p =0.8
p =0.5

a. = 2.0J
a': p=I.O
b': p =08

0 FI.
z b'

m

2= 3.0a'
rnZ

qZ

0.5-

l.o

0.0
0.0 I.O 2.0 3.0 0.0

0.0 0.5 I.O k8TgJ
FIG. 7. Phase diagrams in the T,-H plane for S=1 TIM

with a random field, on simple cubic lattice (z =6). Solid lines
[0=0 with (a) p =1.0, (b) p =0.8, (c) p =0.5], and dashed lines
[0=2.0J with (a') p = 1.0, (b') p =0.8] denote the second-order
transition lines. White circles express the tricritical points.

FIG. 9. Temperature dependency of m, (solid), and q, dashed
lines at a fixed pair of values (p =0.8 and Q=0.O), for the dilut-
ed spin-1 with a random field on honeycomb lattice (z =3) and
selected values of H: (a) H=O. OJ; (b) H=O. SJ; (c) H=1.05J.
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V. MAGNETIZATION CURVES

The typical behavior of the longitudinal (full lines) and
transverse (dotted lines) magnetizations, and quadrupolar
moments (dashed lines) as function of temperature for
z =3 is shown in Fig. 8 for H =0.0 and p = 1.0 for select-
ed values of 0, namely, (a) 0.5, (b) 1.0, and (c) 1.5, respec-
tively. Clearly the greater the transverse field, the small-
er is the longitudinal magnetization. At T= T„m,
reduces to zero and q, express the discontinuity for its
derivative which is similar to that known for the spin-1
isotropic Ising model studied in Ref. 53. The role of the
transverse field Q is essentially to inhibit the ordering of
m, components; in the ordered phase m„weakly depend
on temperature.

In Fig. 9, the behavior of m, and q, as a function of T
for a honeycomb lattice are shown for fixed pair values
(p =0.80 and 0=0.OJ) and several values of H, namely,
(a) 0.0, (b) 0.5, and (c) 1.05. As is predicted in the phase
diagram from Fig. 2, the reentrant phenomenon is ob-
served in the magnetization curve of m„namely curve (c)
with H = 1.05J. By increasing H from this value, a criti-
cal field will be reached where the reentrant phenomenon
will disappear with the ferromagnetic phase breakdown.
Apart from slight variations due to the thermal agitation
and competition effects, the discussion of the temperature
dependence of q„which holds here, is similar to that of
Fig. 8.

VI. CONCLUSIONS

field) dependency of total longitudinal and transverse
magnetizations for the system (with z =3) have been ex-
amined in Sec. V. In the present formulation the results
depend only on the coordination number z but not on the
dimensionality. However, the diluted Ising models nor-
mally simulate well the topologically disordered magnets,
such as amorphous magnets, in which many physical
quantities depend on the coordination number.

The present effective-Geld approach is based on a fur-
ther generalization of the Callen relation for the Ising
model in the presence of a transverse field. The obtained
results are quite remarkable considering that the approxi-
mation used within this simple efFective-field approach
neglects spin-spin correlations. Thus, as previous works
on other models have indicated, we find that the results
obtained herein can be given qualitative, and to a certain
extent, quantitative liability.

We have shown that the phase diagrams include the
tricritical point in the T-H plane below a critical trans-
verse field, in contrast to the corresponding spin- —,

' coun-
terpart. Thus, the tricritical behavior of the transverse
Ising model in random field depends on the magnitude of
spin. The behavior of tricritical point is also discussed as
a function of Q. The possibility of reentrant phenomena
as discussed in Figs. 2, 3, and 9 has been predicted, which
are due to the competition between the fluctuations in-
duced by the temperature, the exchange term, and the
random field. In Figs. 8 and 9 the magnetization curves
are also determined as a function of the parameters p, 0,
and H.

In this work we have investigated the phase diagrams
and magnetization curves of the diluted spin-1 transverse
Ising model in a random field with a bimodal distribution
on honeycomb, square, and cubic lattices by the use of an
effective-field framework. The temperature (or transverse
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