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Migdal-Kadanoff study of the random-field Ising model
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The random-field Ising model is studied within a Migdal-Kadanoff renormalization-group scheme.
For dimension d =3 the recursion relations and the zero-temperature fixed point are studied numerical-

ly. There is a continuous phase transition with magnetization exponent P=0.02. The magnetization as
a function of temperature displays an abrupt crossover from pure Ising to random-field behavior. Ana-

lytic results are obtained within a d =2+ c expansion.

I. INTRODUCTION

Considerable progress has been made in understanding
the random-field Ising model (RFIM). ' It is now
known that the low-temperature phase in three dimen-
sions is ferromagnetic ' and that the critical properties
are controlled by a zero-temperature fixed point with
modified scaling behavior. However, the critical
behavior is still not fully understood. Since equilibration
is very slow ' and samples are macroscopically inhomo-
geneous, ' experimental results' ' are difficult to inter-
pret. Monte Carlo simulations also suffer from equilibra-
tion problems. However, zero-temperature properties
have been studied numerically using an exact polynomial
time algorithm for finding ground states. '

The Migdal-Kadanoff renormalization group (MKRG)
has been applied to a variety of disordered systems. '

Though mathematically simple, the method has proved
to be quite successful in predicting qualitative features of
critical phenomena. In the present paper we apply the
MKRG to the RFIM using both numerical and analytic
techniques. In applying the MKRG to disordered sys-
tems, it is necessary to follow the distribution of cou-
plings and fields under renormalization. In our numeri-
cal work a Monte Carlo sample is used to represent this
distribution. ' ' A similar study was recently carried
out by McKay and Berker. They found a "hybrid-
order" transition with no latent heat but a discontinuous
magnetization. Boechat and Continentino [23] also ob-
tain a hybrid-order transition using a transmissivity ap-
proximation. By contrast, we find a continuous transi-
tion with a very small value of P, in agreement with Ref.
13. We believe the difference between our work and Refs.
22 and 23 lies in a more accurate representation of the
distribution.

The numerical work is supplemented by an analysis of
the MKRG near the lower critical dimension. We show
that the transition is necessarily continuous above two di-
mensions and obtain a 2+v. expansion for the zero-
temperature fixed point and associated exponents. The
presence of exponentially rare islands of frozen-in spins
plays a central role in this analysis. Within the MKRG
approach these islands are represented by a finite weight
at zero coupling in the distribution of couplings.

Recent experiments on the liquid-vapor transition in

aerogel reveal a coexistence curve similar to the pure Is-
ing model but slow dynamics suggestive of random-field
effects. Because the aerogel creates a random network
which attracts the Quid, the RFIM should be an ap-
propriate model for this system. Here we determine the
coexistence curve for the RFIM and find an abrupt cross-
over from pure Ising behavior to RFIM behavior essen-
tially at T, . This abrupt crossover may explain why the
RFIM value of P was not observed in the experiments.
An alternative explanation was given by Maritan et al. ,
who proposed that the RFIM with an asymmetric distri-
bution of random fields would lie in a different universali-
ty class from the symmetric RFIM. Our calculations do
not support this idea; we find that asymmetric distribu-
tions How to the same zero-temperature fixed point as
symmetric distributions.

II. THE MODEL AND RECURSION RELATION

The RFIM is defined by the Hamiltonian

PH= g E; S;S—+ gH;S, ,
(ij ) i

(2.1)

where (ij ) indicates a sum over nearest-neighbor pairs
and H; is chosen from a probability distribution

P(H ) =po(H h, )+ (1—p )5(—H+ hb ), (2.2)

where p =—„h,= hb =h /T, and K,. =k /T unless other-
wise stated.

The MKRG approximation is equivalent to an exact
solution on a hierarchical structure. In the present paper
we use the necklace hierarchical structure. Each bond
(ij ) carries a coupling constant KJ and two fields (H, ,H/)
at its ends. For a scale factor b and dimension d, the
renormalization-group transformation consists of adding
b" ' couplings and b" ' fields at each of the two ends of
the parallel bonds and then decimating the resulting b
bonds and b —1 fields in series by eliminating the internal
degrees of freedom. The procedure is illustrated in Fig. 1

for b =2, d =3. For b =2, the fields and couplings enjoy
the recursion relations
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III. NUMERICAL RESULTS FAR d =3

K,.

H

FIG. 1. Iterative construction of the necklace hierarchical
structure. For the structure on the left, the top and bottom
spins are subject to four fields, while the middle spin is subject
to eight fields.

a+b —c —d

H = a —b+c —d
(2.3a)

a —b —c+dH'- =
4

with

a =in[exp(H, +Hz+H3+K]+Kz)
+exp(H] +Hz H3 —K] ——Kz )),

b =in[exp( H, Hz+H—,——K, —Kz)

+exp( H, Hz ——H3+—K, +Kz) J,
c =in[exp(H] Hz+H3+—K, —Kz )

+exp(H, Hz H3 —K—, +K—z)),
d =in[exp( H, +Hz+H—3

—K, +Kz)

(2.3b)

H, +Hz H3 —K] —Kz J, —

b ~max[ H, Hz+H3 K—, K—z, — —

H] Hz H3+K—] +Kz J, ——

e ~max [H] Hz+H3+K] —K—z,
H, Hz H3 —K, +Kz ), — —

d ~max[ H]+Hz+H3 K]—+Kz, —

H, +Hz H3+K] —Kz) —. —

(2.3c)

+exp( H, +Hz+H—3
—K, —Kz)J .

E i and Kz are the two resulting couplings obtained by
adding 2" ' couplings on parallel bonds. H&, H2, and
H3 are the resulting fields acting on each of the three
spins in the unit cell. Hi, H2 are each the sum of 2"
fields, while H3 is the sum of 2" fields.

If the variance of H becomes large, the sums of ex-
ponentials in Eq. (2.3b) may be replaced by the exponen-
tial with the largest argument. The resulting zero-
temperature recursion relations are obtained by making
the following substitutions in Eq. (2.3a):

a ~max [H]+Hz +H3 +K] +Kz

The distribution of couplings and fields is represented
by a Monte Carlo sample of X triplets [(K, , H", , H )J,.ini-

tially chosen according to Eq. (2.2). The distribution is
renormalized by mapping [(K;~,H;, H ) J into X renor-
malized triplets [(K,' ,H, ',.M~' )) w. here each renormalized
triplet is obtained, using Eq. (2.3), from eight triplets
chosen randomly from [ (K~,H;, H )J . . We used
%=80000 except in the calculation of the magnetization
curve where N=20000. Note that under renormaliza-
tion correlations develop among the couplings and fields.

The initial distribution with p= —,
' and h, =h& is an

even function of H, and this symmetry is preserved under
the exact renormalization-group transformation. Howev-
er, since the distribution is represented by a finite sample,
fiuctuations cause ~(H)~ to grow and ultimately run
away to large values. The breaking of inversion symme-
try is avoided without modifying the correlations between
K and H by reversing the signs of both fields in 50%%uo of
the renormalized triplets. This procedure is only used
when the initial distribution is symmetric.

At the critical point both the average coupling (K)
and the standard deviation of the field, crH= (H )'~,
How to infinity, confirming the notion that the critical
behavior of the RFIM is controlled by a zero-
temperature fixed point. In the high-temperature phase
oH/(K) ~ oo, whereas in the low-temperature phase
o H /(K ) ~0. The phase boundary is obtained by
searching for values of h and k such that under renormal-
ization the ratio approaches a plateau. The fixed-point
ratio is found to be oH/(K) =1.005. In practice, this
value is held for three or four iterations before finite-size
fluctuations cause this ratio to run away toward zero or
infinity. To study the zero-temperature fixed distribution
which controls the critical point, we use the recursion re-
lations starting from the initial phase boundary. After
ten iterations both (K ) and o H reach a value of roughly
20, at which point we switch from the exact recursion re-
lations to the zero-temperature recursion relations.

The zero-temperature recursion relations are invariant
under an arbitrary scale factor. We take advantage of
this and rescale K and H by a factor X after each renor-
malization, where A, is chosen to keep o.H fixed at unity.
At the zero-temperature fixed point, the distribution res-
caled by k is invariant under renormalization.

%'e used the following procedure to obtain the fixed
distribution. Starting from the phase boundary, we ob-
served that the average coupling approaches the value
0.995 under the rescaling described above. If the mean
value of the couplings deviates from 0.995 under renor-
malization, then a constant times the deviation is sub-
tracted from each coupling of the ensemble; i.e., the dis-
tribution of the couplings is shifted in the opposite direc-
tion. The constant we choose here is 0.8. The shifts at
each state are of order 10 with roughly half in each
direction. The fixed distributions of couplings and fields
are shown in Figs. 2 and 3, respectively. Figure 4
displays the joint distribution of fields and couplings.
Each point represents a value of (H, +H )/2 and K," in a
Monte Carlo sample representing the fixed distribution.
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FIG. 2. Fixed distribution for the couplings. The component
of the distribution at E =0 with weight po =0.015 is not shown.

FIG. 3. Fixed distribution for random fields.

Note that small couplings are correlated with large fields
and vice versa, reAecting the competition between fields
and couplings. Figure 4 also shows that the fixed distri-
bution of the couplings has a nonvanishing component at
K=O. This component has a weight po=0. 015. The
%=0 component of the distribution plays a central role
in the analysis of Sec. IV.

Having the zero-temperature fixed distribution in
hand, we are ready to extract the critical exponents. At a
zero-temperature fixed point, there are three independent
exponents. Following Bray and Moore, we refer to
these as x, y, and v. The exponent y describes how the
width of the distribution grows under renormalization.
Using the method described above to hold the distribu-
tion near the fixed point, we evaluate the rescaling factor
A, many times and then take the mean A, :

ln( t„+,/t„)
ln(b)

(3.3)

The value for 1/v is 0.45+0.4.
The values of x, y, and v depend on an accurate repre-

sentation of the fixed distribution. To check the accuracy
of the results, we used the procedure described above to
find the fixed distribution except that o H /(E ) was held
at 0.95 rather than the best value 1.005. Now crHI(K )

pling by a small amount 60=10 . The two copies of the
distribution are then transformed simultaneously accord-
ing to the procedure described above so that the original
distribution of the couplings and fields is held near the
fixed point while the shifted copy Aows away. The
difference t„between the values of o H/IC obtained from
the two copies is recorded at each successive iteration n.
The correlation-length exponent is defined from the Aow
away from the fixed distribution:

ink,

ln(b)
(3.1)

The value of y is 1.49+0.01. Note y ~d/2, which is the
upper bound obtained by Berker and McKay.

The exponent x describes the rescaling of an
infinitesimal symmetry-breaking field under renormaliza-
tion and can be calculated from the definition

ln( dH'/dH )
ln(b)

(3.2)
O
O

where H' is the mean value of the renormalized fields at
the two ends of the bond. The average is evaluated at the
zero-temperature fixed point, and the derivative is taken
with respect to a shift in all fields on the right-hand side
of Eq. (2.3c). The value of x is 2.990+0.001, which is less
than d ensuring that the magnetization is continuous at
the critical temperature.

To compute the correlation-length exponent v, we use
a method similar to that of Ref. 21. After obtaining an
ensemble which represents the fixed distribution, we
make a second copy of the ensemble and shift each cou-

t

—0.4 0.0 0.8
K

'I . 2 1.6

FIG. 4. Fixed distribution of K and H = (H; +H, ) /2
displayed as an ensemble of 5000 points.
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always deviates toward smaller values under renormaliza-
tion and the value of x is shifted to 2.993. When the
value of oH/(E ) was held at 1.05, the deviations were
always toward larger values and the value of x becomes
2.985, and so the correct value of x lies in this range. The
exponent y is insensitive to changes of this size.

The critical indices a and P are obtained from the ex-
ponent relations '

a=2 —(d —y)v, P=(d —x)v . (3.4)

The results for a, P, and v are listed in Table I. The
MKRG value of the specific-heat exponent is much less
than the values obtained by other methods. ' ' MKRG
for the pure Ising model also yields a very negative value
a= —1.19, in contrast to the accepted value a=O. 11 for
Euclidean lattices. Nevertheless, our results suggest
that the value of n for the RFIM is less than that for the
corresponding pure system. The very small value of P is
consistent with the numerical study of Ref. 13 and
theoretical expectations.

We computed the magnetization versus temperature
for various values of the random field. If the free energy
is differentiated with respect to the external field, a rela-
tion is obtained between the original magnetization and
the renorrnalized magnetization. This leads to an
infinite-product expression for the spontaneous magneti-
zation

(3.5)

where the superscript n indicates that the average is car-
ried out with respect to the distribution of fields and cou-
plings at the nth iteration of the RG. The mean value of
the couplings Bows to infinity under renormalization in
the ferromagnetic phase, and so we switch to the zero-
temperature recursion relations when the fields and cou-
plings become large.

Figure 5 shows the magnetization for several values of
h compared with the pure Ising model. The magnetiza-
tion curves of the RFIM are quite close to that of the
pure system except very near the critical temperature.
Roughly speaking, the RFIM magnetization curve fol-
lows the pure Ising curve until T„at which point it falls
precipitously to zero. In practice, it would be di%cult to
obtain the exponent P by fitting the magnetization curve
and the evidence for RFIM behavior lies in the trunca-
tion of the pure Ising curve. As the strength of the ran-
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FIG. 5. Magnetization curve for four values of h (0.00024,
0.00048, 0.00084, and 0.0013) compared with the pure Ising
curve. T, is the critical temperature of the pure Ising model.

dom field becomes small, the size of the "discontinuity"
becomes small. We suspect that this effect explains why
the power-law fits to the coexistence curves in Ref. 24
yield the pure Ising value of P. It should be noted in this
context that the random field may be very weak in aero-
gel and that the majority of the suppression of T, in this

system may be due to large-scale structure in the field,
whose effects will be discussed elsewhere.

In a recent paper, Maritan et al. studied an asym-
metric RFIM within mean-field theory. Their results
suggest that the asymmetric RFIM may be in a difFerent
universality class from the symmetric RFIM. We exam-
ined the asymmetric case by letting p&0. 5 and h, Whb in

Eq. (2.2). For all values of p and h, which we tested, we
found that the RG Bow at the critical point is always to-
ward the same symmetric, zero-temperature fixed point.
We believe that the distinction between the symmetric
and asymmetric RFIM is an artifact of mean-field theory.

IV. ANALYTIC ARGUMENTS AND EXACT RESULTS
NEAR THE LOWER CRITICAL DIMENSION

The zero-temperature recursion relations [Eqs. (2.3a)
and (2.3c)j can be written in the following simpler form:

(4.1a)

TABLE I. Critical exponents obtained here for the random-
field Ising model in d =3 and d =2+a in the Migdal-Kadano6'
approximation compared to values obtained in other studies.

if gi+g2 & /H3/ & /Ki —K2/,
K' =min I IC „K'2 I if

~ K, —K~ ~

&
~ H3 ~,

arid

(4.1b)

(4.1c)

d=3
d =3'
d —2+6,
d =2+6,

'Reference 13.
Reference 6.

2.25
1.0
2/c
1/c.

—1.37
& 0.5

1 —2/E

2
——1/c

0.02
0.05
0
0

H'= —,
' IH, +H2+(K, +K2)sgn(H3 ) )

if IH, ~
&&, +&, ,

H'= ,'(Hi+H2+H3) if &i+&—2& lH3I,

(4.1d)

(4.1e)

where H'=
—,'(H, '+HJ'). From these recursion relations
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and several plausible assumptions, we obtain analytic re-
sults for the RFIM on necklace hierarchical structures in
d =2+v. dimensions. The most important assumption is
that pp, the fraction of bonds with %=0 at the fixed
point, approaches zero faster than any power of c as
d ~2. We will give some justification for this later.

Let us suppose that po =0; then, Eq. (4.1a) shows that
the inequality K, +K& & H3 always holds and Eq. (4.1e)
governs the Aow of H. The exponent y is obtained from
the rescaling of the fixed distribution under renormaliza-
tion. Since then H' is the sum of b" random fields, we
have b~=cr~/o~ =d" or

y =d/2=1+e/2 . (4.2)

The exponents x and v are obtained from the two lead-
ing eigenvalues of the RG transformation. If pp=O,
then, with probability 1, dH'/dH=b, dIC'/dK=b"
and dH'/dK=0. Thus shifts in the H and K directions
are eigenfunctions of the recursions relations with eigen-
values b" and b" ', respectively. The Row in the H
direction yields x:

x =d =2+6 (4.3)

The correlation-length exponent v is defined in terms of
the How in the K direction due to the recursion relations
composed with the rescaling by b". Thus

—C'v —C/c+p-e -e (4.7)

with C and C' constants of order unity. Thus we expect
that the corrections to Eqs. (4.2), (4.3), and (4.4b) are of
order e '. These arguments help to explain why pp
and P are so small, even for d=3. It would be useful,
however, to have a stronger argument that pp is exponen-
tially small near d =2.

Although pp is small, it is nonvanishing for d )2 as
long as the distribution for ~H

~

has no sharp upper cutoff
since there is a nonvanishing probability that
~H3~ &Ki+Kz. The fact that po&0 implies that the
leading behavior of x can be cast as a strict inequality.
From the definition Eq. (3.2) and the recursion relations
Eqs. (4.1d) and (4.1e), we have

distribution for K is more complicated since it is con-
trolled by both Eqs. (4. lb) and (4.1c). Since values of K
far from the mean can only be generated by the recursion
relations from values of H equally far from the mean, we
surmise that the tail of the K distribution decays at least
as fast as a Gaussian of width o.z. The dominant mecha-
nism for generating weight in the distribution at K =0 re-
quires that the sum of b" fields is less than the sum of b"
couplings. The probability for this is controlled by the
tails of the distribution, so that

1/v+y =d —1

or, from Eq. (4.2),

v=2/E .

(4.4a)

(4.4b)

b"=(1—po)b —pob

and so

(4.8a)

(4.8b)

These results are exact for the MKRG if pp=0. We
have seen that pp is very small in d =3. We also exam-
ined pp for the necklace with three parallel bonds
(d=2. 58) and found pa=10 . This observation lends
weight to the hypothesis that pp~O decays faster than
any power of c. Here we give a self-consistent argument—C/8that pp goes to zero like e ' as d —+2. Suppose that pp
is small and that o ic/or~ approaches a finite constant as
d ~2. Under these assumptions, H3 ~

&K, +K& is a rare
event and approximate recursion relations for (K ) and
cr~ can be obtained from Eqs. (4.1b), (4.1c), and (4.1e):

and

(K)'=b '((K) —Acr~)

6 d/2
H H ~

(4.5a)

(4.5b)

The fixed point is thus at U*=2A /c. This result differs
from Ref. 6 where v

*—1/&c, . Note that the result
v=2/e follows in the usual way from Eq. (4.6).

If pp is small, the fixed distribution for H is nearly a
Gaussian of width o.H since the recursion relations
reduce to sums of independent random variables. The

where 3 is a constant which depends on the ratio of
o x. /cr~. Both (K ) and o ~ diverge, but the zero-
temperature fixed point can be located from the recursion
relations for the ratio v = (K ) /o. ~..

(4.6)

which ensures that the magnetization is continuous at the
RFIM transition. Previous approximate studies of the
RFIM on hierarchical structures ' have yielded results
which violate inequality (4.8b).

Renormalized bonds at length scale L with E =0
represent islands of spins of size L that are decoupled
from the macroscopic phase and controlled by the local
random field. At the critical point, such islands appear
with a density pp at each length scale. The complement
of the set of islands or the macroscopic phase is thus a
random fractal with a Hausdorf dimension
df =d + ln( 1 —p 0 ) /lnb.

The RFIM on hierarchical structures near the lower
critical dimension behaves in most ways like the RFIM
on Euclidean lattices. Table I compares our 2+v results
to the estimates obtained by Bray and Moore. The 2+v,
expansions of x and y are the same as that found in Refs.
6, 8, and 9. There is disagreement in the literature con-
cerning the correct c expansion for v with Ref. 6 giving
v=1/E and Refs. 8 and 9 giving v=3/2e. The distinc-
tion between these answers can be traced to different as-
sumptions about the energy of a domain wall in two di-
mensions. On the hierarchical structures studied here,
the surface energy of a domain wall scales trivially as
L" ', implying the relation 1/v+y =d —1, while Refs.
6, 8, and 9 assume nontrivial, though differing, scaling for
the surface energy. The behavior of the domain-wall en-
ergy is probably the most important difFerence between
the RFIM on hierarchical structures and on Euclidean
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lattices and leads to estimates for v and a within the
Migdal-Kadanoff approximation which are probably not
very good. In other regards, however, the Migdal-
Kadanoff approach yields a surprisingly accurate and il-
lurninating picture of the random-field Ising model.
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