
PHYSICAL REVIEW B VOLUME 48, NUMBER 5 1 AUGUST 1993-I

Second-order Raman spectra of diamond from ab initio phonon calculations
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The second-order Raman spectra of diamond and silicon have been calculated using ab initio
phonons and phenomenological polarizability coefBcients. The sharp peak in the spectrum of dia-
mond near the two-phonon cuto8'is explained by a maximum in the vibrational density of states; this
maximum originates from the uppermost phonon branch whose frequencies are calculated to have a
minimum at the Brillouin-zone center. This frequency minimum as well as the sharp Raman peak
are unique to diamond and do not occur for the other group-IV semiconductors. In our calculation
based on harmonic ab initio lattice dynamics neither two-phonon bound states nor polarizability
matrix element effects are needed to explain the peak, and we feel that the longstanding controversy
about its origin has been resolved.

I. INTRODUCTION

One of the most interesting features in the two-phonon
Raman spectrum of diamond is the sharp peak near the
high-frequency cutoff, first noted by Krishnan in 1946.
Later Raman-scattering experiments have confirmed that
this sharp peak occurs at 2669 cm (or 2667 cm )
at room temperature, approximately 3 cm (2 cm )
higher than twice the &equency of the first-order Raman
line. For a short review, see Ref. 4.

First suggestions of attributing the sharp peak to two
successive first-order Raman scatterings by Loudon with
subsequent calculations by Dolling and Cowley ' have
been shown to be unlikely by the investigations of Solin
and Ramdas.

Cohen, Ruvalds, and co-workers explained the line
by the existence of a two-phonon bound state that only
would occur in the case of positive fourth-order force
constants in diamond. However, Vanderbilt, Louie, and
Cohen have shown by means of local-density functional
frozen phonon calculations that the fourth-order coupling
constants are negative. This suggests that two-phonon
bound states cannot form in diamond.

An alternative explanation was the conjecture by
Musgrave and Pople, and then again by Uchinokura,
Sekine, and Matsuura, who suggested that the maxi-
mum frequency occurs away from the I point with the
I' point being a Auted saddle point. The most detailed
investigation on this proposal (overbending with a saddle
point) has been carried through by Tubino and Birman, ~

who found that the phonon dispersion of diamond does

not have its maximum at I', but rather somewhere along
the [100] direction of the uppermost (LO) branch. A
Raman peak originating from the saddle-point van Hove
singularity at I' should then occur at exactly twice the
Raman frequency uo. Also, they suggested that anhar-
monic corrections would account for its slight frequency
shift. Recently Wang, Chan, and Ho proposed an over-
bending of the LO branch, with the LO branch in their
model having its minimum frequency at I'. Thus, in their
model the peak in the two phonon density of states is
above 2~0.

Go, Bilz, and Cardona explained the peak by an
anomaly in the bond polarizability of diamond. So they
were able to produce a peak in their spectra, although
they did not have a visible overbending in their phonon
dispersion.

Thus, in view of the different theories on the sharp
peak, there seems to be the need for a final explanation.
In this paper we will show that it is naturally explained
by the occurrence of a minimum of the LO frequencies
at the Brillouin-zone center. Furthermore, we will report
on the Raman spectrum of silicon in order to discuss
the differences between the diamond spectrum and. the
spectra of the "normal" group-IV semiconductors.

The structure of the paper is the following: At the be-
ginning we summarize the common theory of two-phonon
Raman scattering (Sec. II); then, we discuss the ab ini-
tio lattice dynamics on which the calculation of the Ra-
man spectra is based (Sec. III) and our model for the
second-order polarizability (Sec. IV). Finally, we show
our results (Sec. V), discuss them (Sec. VI), and give a
summary (Sec. VII).
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II. THEORY OF TWO-PHONON RAMAN
SCATTERING

Raman scattering of light by lattice vibrations of a
crystal depends on the modulation of the electronic sus-
ceptibility x by phonons (see, e.g. , Ref. 5 or 18). Thus
it is possible to separate the temporally fluctuating part
8~ from the homogeneous ~, :

where

I-p, s(~) = —).P p(qjj') P,*g(qadi')'
q2.

xh[~(q j) + (u(q j') —~]

represents the second-order Raman tensor at zero tem-
perature.

x=x. +~x.
The fluctuating part of the susceptibility may be ex-
panded in a power series in terms of the phonon
coordinates:

~&-p = P-p+) .P-p(») A(oj)

+ —) P p(q jj') A(q j) A( —q j') + (2)

~&-p = P-p+). P.p(-)" (-)

where the A(q j) are the sum of the phonon creation
and destruction operators. The one-phonon contribution
arises from the long-wavelength optic mode of vibration
in the diamond structure. The coefFicients of the two-
phonon term, P p (q jj'), depend both on the wave vector
q and the branch indices j and j'. Alternatively, by p
can be expressed as a power series in terms of phonon dis-
placements, tc( „),where („)indicates the rth sublattice
in the lth unit cell,

III. Ab initio LATTICE DYNAMICS

The eigenvectors and eigenvalues that are necessary to
evaluate Eq. (5) have been calculated using the local-
density-approximation (LDA) plane-wave pseudopoten-
tial method of Baroni and co-workers. ' An explicit
description of the application of the method to diamond
can be found in Ref. 21. The exchange-correlation energy
has been taken from Ref. 22; the norm-conserving pseu-
dopotentials have been constructed using the method of
von Barth and Car. The plane-wave basis has a cutofF
energy of 16 Ry for silicon and 55 Ry for diamond. By
using this plane-wave basis set the phonon dispersion has
converged to within a relative deviation of less than 1%.
For the summation in reciprocal space we have used ten
Chadi-Cohen points.

Natural diamond consists of the two isotopes C
(98.9'%%uo) and C (1.1'%%uo) Besides the experimental Ra-
man spectra for natural diamond ( C) there are re-
cent ones for a nearly pure (96%) C diamond. There-
fore, we calculated the Raman spectra for both of them.
Within the virtual-crystal approximation the force con-
stants of diamond C and C are the same; thus, the
frequencies are related by

The displacements u('„) can be expressed in terms of
A(q j), (u, s(q j) M12

~i2(q j)
13

(8)

~('„) = ) . m(r~q j) e*~'n(-) A(q j),
2(u(q j)NM„

(4)

where m(K~q j) represents the eigenvectors of the nor-
mal modes and cu(q j) their frequencies, while the vectors
R („) indicate the atom sites. One gets for the second-
order Raman polarizabilities from Eq. (2)

(5)

The scattering cross section depends upon the polar-
izations of the light and upon the crystal orientation. If
the polarization of the electric vector of the incident light
is de6ned by e' and that of the scattered light by ef the
cross section is

e' ep e' e& I p~g(u),
C, Cf (2KB" -P,b

Therefore, the frequencies for C have been reduced by
a factor of approximately 0.96 in comparison to those of
12C

The resulting phonon dispersion curves for diamond
C and silicon show two main differences: First, the

flatness of the TA branches near the Brillouin zone
boundaries that is characteristic of ZnS-structure semi-
conductors does not appear in the dispersion of diamond
contrary to silicon; second, in diamond there is a strong
overbending in the LO branch with a minimum at the
Brillouin-zone center (Figs. 1 and 2). Because our main
interest was focused on the sharp peak in the second-
order Raman spectrum of diamond which will be shown
to have its origin in the overbending (vide infra), we ex-
amined in particular this latter feature. The analysis of
the force constants shows that an overbending of the LO
branch in the phonon dispersion can be obtained only for
significantly large values of the force constants between
second neighbors.

Because of the flatness of the TA branches in silicon,
its density of states is well structured in the acoustic
region, whereas the density of states of diamond shows
only some weak structures in this region (Fig. 3). Fur-
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erties. Taking into account nearest-neighbor interac-
tion and infinitesimal translational symmetry one is left
with eight different coefficients. Using Voigt's notation
and considering the neighbors at R (z) = (0, 0, 0) and
K (02) = (1, 1, 1) a/4, we get

P12 P11 P12

P12 P12 P11

P41 P42 P42

P42 P41 P42

42 42 41

Pi4 Pis Pg, i
P15 P14 P15

P15 P15 P14 . (9)
P44 P45 P45

P45 P44 P45

P45 P45 P44

V. RESULTS

Of the three representations of the Raman spectrum in
the Oh point-group symmetry, the I'1 spectrum is ex-
pressed in terms of the parameters P +

——P11 + 2P12r+
and P + ——P14+ 2P15, the I'12 spectrum by the parame-

ters P + ——P11 —P12 and P + ——P14 —P15, and the I'25

spectrum by the parameters P41, P42, P44, and P45.

Overtones and
Combinations

"sharp peak"
20(I')
2I (X)
2TO(X)
2TA(X)
L(X)+TA(X)
L(X)+TO(X)
TO(X)+TA(X)
202(W) = 2Ag(W)
20'(W)
2Ag(W)
02(W) + O&(W)
A2(W) + Ag(W)
O, (W) + A&(W)
2LO(L)
2TO(L)
2LA(L)
2TA(L)
LO(L)+TO(L)
LA(L)+TA(L)

Active in

r+,
r+,
r+,
r+

r+,
+r.5
+

r+
r+,
r+,

+
+

r+,r'
r+,
r+,
r+,

+
+

+ +r„,r„
+ +r„,r„
+ +r„,r„
+ +r„,r„
+ +r„,r„

+ +r„,r„
+ +r„,r„
+ +r„,r„

r25
+
25
+ +r„,r„
+r~5
+ +r„,r„
+r~5
+ +r„,r„

r~s
+r.5

Theory
(cm ')

2671
2646
2453
2186
1596
2024
2319
1891
2035
2375
1864
2205
1949
2119
2548
2459
2147
1117
2503
1632

Experiment
(cm ')
2670
2667
2370
2138'
1614'
1992'
2254
1864
1gg8b
2358'
1817
2177b
1907
2178
2504
2422
2011
1126
2458
1569'

Ref. 2.
Ref. 3.

'Not experimentally found but calculated from Ref. 3.

TABLE II. Critical-point analysis of the second-order Ra-
man spectra of diamond C.

The results for the second-order Raman spectra for
diamond C, C, and silicon are shown together with
experimental curves ' ' in Figs. 4—6. Best agreement
of the theoretical spectra with the experimental ones was
obtained with the parameters given in Table I.

In order to take into account linewidth and resolu-
tion effects, we have folded the calculated spectra with a
Gaussian of the linewidth Lu = 15.4 cm . In Table II
and Table III we compare the experimental combination
and overtone frequencies with our calculated values.

As shown in Table II and Fig. 4, for diamond C we
found especially in comparison to previous work '

very good agreement between calculation and experiment
(peak positions deviate by generally less than 2%). From
Fig. 4 it can also be seen that within our harmonic ap-
proximation the sharp peak at the frequency cutoff in all
the three representations is well reproduced as it should
from symmetry considerations. ' In fact, because of
the low intensity of the I zz and I'2s spectra (the rel-
ative intensities between the spectra of the three rep-

Rel. Parameters

12 12
P4i /P44
P42/P44
P45 /P44

Diamond C Diamond C
—0.700

0.497
—0.054

0.129
0.195

—0.704

Silicon
—0.138
—0.401

0.658
0.267

—0.214

TABLE I. Parameter relations giving the best agreement
of the theoretical spectra with the experimental ones. We
only report the parameters relative to each other because of
the arbitrary units in all the experimental spectra.

resentations have been taken from Ref. 3), the experi
mental peak is not as clear as in the calculation because
of noise. The calculated frequency of the sharp peak

is slightly higher than twice the Raman frequency,
—2wo ——25 cm (see Table II). Because of the de-

viation of approximately 2% in our calculation, we could
not reproduce the quantitative shift of 2 cm; neverthe-
less, we can identify this sharp peak to be the projected
sharp peak of the one-phonon density of states. Also
the other peaks of the calculated spectrum are in good
agreement with experiment in all three representations.

We also can confirm the existence of the two peaks at
1890 cm and 2046 cm which had been found exper-
imentally in Ref. 3 and had not been definitely identified
because of the very low intensity of the peaks and be-
cause of the absence of calculations in this region so far.
In the acoustic region (u ( 1600 cm i) we have found
nearly zero intensity in agreement with experiment.

There are recent experimental Raman spectra for dia-
mond C over the whole two-phonon frequency range.
The experimental curve together with the result of our
calculation is shown in Fig. 5. The positions as well as the
intensities of the maxima of the experimental curve and
especially the sharp peak again can be reproduced very
well by our calculation. The data confirm the fact that
the scattered intensity is negligible in the low frequency
region. Furthermore, the parameter ratios P +/P + of

C and C are the same (see Table I).
In order to show that the origin of the sharp peak at

the high-frequency cutoff is not an effect of the matrix
elements we also fitted the second-order Raman spectrum
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in its three representations for silicon. The results of the
calculations are shown in Fig. 6.

A comparison of combination and. overtone frequen-
cies is reported in Table III. Again we find good agree-
ment between calculation and experiment for all repre-
sentations. The positions of the calculated peaks agree
with the experimental values within generally less than
2%. Especially the I'~ spectrum exhibits particularly
strong structures in hg

' the acoustic frequency region u to
450 cm . ThThese are eKects of the fatness of the TA

up 0

ranch; see the dispersion relation in Ref. 20 and the
ensity of states in Fig. 3. As expected from the phonon
ispersion and the high-frequency density of states (see

Fig. 1) there is no sharp peak at the high-frequency cut-
0

VI. DISCUSSION
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First, the relative intensities of the ODOS d I +an i spectra
difFer significantly so that it is hard to tell only from the
ODOS which peaks will appear in the I'i spectrum and
which ones will not see e.
the low-frequency region of the I'i spectra of diamond,

ig. 5). Second, in addition to the peaks that are ex-
pected from the ODOS new onenew ones appear in t e Raman

the F+z spectrum of silicon, Fig. 6). Therefore, the ODOS
must be looked u onp rather as a low-order approxima-
tion of the I'+ Rae i Raman spectrum than as something that
could reliably represent the features of the spectrum.

The Raman spectra for the tw d' d
wellwe l as for silicon could be reproduced in better agree-
ment with experiment than in previous work without in-
voking ad hoc assumptions as done in Ref. 16 and with-
out the fortuitous model results of Ref. 13 as have been

us we e ieve thatiscussed in subsequent work. Th
t ere is now a final explanation for th he s arp pea in the
second-order Raman spectrum of diamond.

Second-order Raman spectra are projected two-phonon
e matrix e ementsensities of states, weighted with th t '

p(qjj') P*&(qjj') They can be . well evaluated in
nearest-neighbor approximation as the latter reproduces
experimental spectra very well Ch he . anging t e fitting
parameters i.e., the second derivatives of th 1e po ariz-
a i i y with respect to the displacements results in in-
tensity changes of the various peaks of the two-phonon

ensity of states, but does not create new k Thew pea s. ere-
ore e appearance of the "anomalous" peak in the

second-order Raman spectrum of diamond is caused by
nothing else but its "anomalou " d tous ensi y o states.
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VII. SUMMARY

In this paper we have shown results for the second-
order Raman spectra of diamond C and C and for
silicon using ab initio force constants calculated by the
method of Baroni and co-workers ' and phenomeno-
logical matrix elements in the nearest-neighbor approx-
imation. The spectra of diamond and silicon are dif-
ferent in two respects: Contrary to silicon diamond ex-
hibits negligible scattering &om acoustical-phonon com-
binations, but has a prominent peak at slightly more than
twice the Rarnan frequency.

This peak, which is also found in the two-phonon den-
sity of states, results &om a corresponding peak in the
one-phonon density of states, which in turn is produced
by LO phonons with frequencies higher than the Raman
frequency. In fact, the LO branch has a minimum at
the Brillouin-zone center, resulting in a peak higher than
twice the Raman frequency; a saddle point would result
in a peak at twice the Raman frequency and a maximum
in no peak at all. Our LO frequency minimum is in con-
trast to previous model calculations which either result
in a saddle point or, in most cases, in a maximum.
In Ref. 27 a minimum or a saddle point was artificially
generated in order to demonstrate the above-described
efFects on the two-phonon Raman spectrum.

TABLE III. Critical-point analysis of the second-order Ra-
man spectra of silicon.

Overtones and
Combinations

2O(r)
2L(X)
2TO(X)
2TA(X)
I (X)+TA(X)
L(X)+TO(X)
TO(X)+TA(X)
202(W) = 2A2(W)
2Or (W)
2Ar (W)
Og(W) + Or(W)
Ag(W) + Ar(W)
Or(W) + Ar(W)
2LO(L)
2TO(L)
2LA(L)
2TA(L)
LO(I )+TO(L)
LA(L)+TA(L)

Active in
+ + +r, , r„,r„
+ + +r, , r„,r„
+ + +r, , r„,r„
+ + +r, , r„,r„
+r25
+r25
+r12
+ + +r, , r„,r„
+ + +r, , r„,r„
+ + +r, , r„,r„
+ +r„,r„
+ +r„,r„
+ + +r, , r„,r„
+ +r25
+ + +r, , r„,r„
+ +r, , r„
+ + +r, , r„,r„
+ +r„,r„
+ +r„,r„

Theory
(cm ')

1034
828
932
290
559
880
611
715
945
409
830
562
677
838
988
755
220
912
488

Experiment
(cm ')
1038
825
923
299
562'
874'
611'
743
948
434
845'
588'
691'
841
983
760
226
912'
493'

Ref. 29.
bRef. 12.
'Not experimentally found but calculated from experimental
data.

Infrared data from Ref. 35.
Neutron data from Ref. 36.
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FIG. 6. (a) Two-phonon and overtone density of states of
silicon. (b) Second-order Raman spectrum of silicon. The
solid lines represent calculated spectra; the dashed lines are
experimental ones from Ref. 29.

The Raman spectra are essentially combination and
overtone two-phonon densities of states weighted by po-
larizability coeKcients. Restriction to nearest neighbors
results in eight coeKcients, two for each the I'& and the
ryg spectrum and four for the I'25 spectrum. These
can only be determined relative to each other because
of the arbitrary units in all the experimental spectra.
The parameter relations for diamond are equal for the
I'+z spectra of the two isotopes C and C which im-
plies a reliable calculation. Furthermore, the significant
differences between the parameter sets of diamond and
silicon show that the parameter ratios are di8'erent for
various elements of the same crystal class. Inclusion of
the second-neighbor parameters alters only the relative
peak intensities, but does not change the qualitative ap-
pearance. Thus the peak at slightly more than twice the
Raman frequency in the diamond Raman spectrum can
be traced back to be a consequence of the anomalous
phonon dispersion in that material.

There is no need to invoke matrix-element eQ'ects or
two-phonon bound states. The long-standing controversy
seems to be resolved.

A confirmation and maybe an improvement of this cal-
culation which has employed phenomenological polariz-
ability coeKcients would be the use of ab initio polar-
izabilities. This will be taken up when first-principles
coefBcients are available. Otherwise, the Raman spectra
of the group-IV elemental semiconductors now seem to
be well understood.
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