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The critical behavior of magnetotransport in a percolating medium in the presence of a magnetic
Beld H of arbitrary strength is discussed. A discrete network model is used to solve the problem
exactly for a three-dimensional Sierpinski-gasket fractal, and to perform a direct Monte Carlo simu-
lation of a percolating medium. A very eKcient algorithm is used to calculate transport properties
in the vicinity of the percolation threshold, We find that there is strong magnetoresistance near
the percolation threshold. We also find a diRerent scaling behavior of the eAective Ohmic resistiv-
ity p(')(p, H) and Hall coefficient RH (p, H) as functions of the concentration p and magnetic field
H. This scaling is due to the appearance of a field-dependent length —the magnetic correlation
length (~. In a percolating metal-insulator mixture, the resistivity ratio with and without a field
p~') (p, H)/p~') (p, 0) is predicted to saturate as p —+ p, at a value that is proportional to H

I. INTRODUCTION

In spite of the considerable eKort devoted by theorists
during the last 15 years to the study of percolating sys-
tems, relatively little work has been done on electrical
conduction in the presence of a magnetic field, and al-
most all of that was restricted to weak magnetic fields. ~

On the other hand, it is well known that the investigation
of transport properties in metals and semiconductors in
the presence of a strong magnetic field is an important
tool for understanding the microscopic structure of such
materials (see, e.g. , Ref. 10). It is reasonable to expect
that transport in the presence of a strong magnetic field
will play a similar role in the case of percolating sys-
tems. In this paper we consider the transport properties
of three-dimensional (3D), percolating composite media,
consisting of metal and dielectric particles, in the pres-
ence of a strong magnetic field.

In the case of 2D composite media, the duality
transformation has been used to obtain some exact
results. It was proven that the ohmic resistance
does not depend on the magnetic field and that the
Hall coefBcient is a constant for any concentration p of
the conducting component above the percolation thresh-
old p, . The theoretical investigation of 3D percolat-
ing composites in a strong magnetic field has been re-
stricted to some heuristic arguments, applications of
the effective medium theory (EMT), is i7 and a real-
space renormalization-group transformation that was a
precursor to the study reported here. Prom EMT it
follows that, in the case of metals with a closed Fermi sur-
face, both the transverse and the longitudinal magneto-

resistance are linear in the magnetic field for strong fields,
whereas the Hall coeKcient is only weakly dependent on
that field. The slope of the (linear) magnetoresistance
tends to zero when the volume fraction of metal p ap-
proaches the percolation threshold p, . Thus the diagonal
terms of the resistivity tensor become independent of the
magnetic field at the percolation threshold.

This last result of EMT is in obvious contradiction with
results for the magnetoresistance of the simple configura-
tions of 3D percolation channels shown in Fig. 1. Suppose
that the conducting component has no intrinsic magne-
toresistance, i.e. , its ohmic resistivity p does not depend
on the magnetic field. Then the thin, singly connected
channel in Fig. 1(a) has no rnagnetoresistance. The sit-

FIG. l. (a) Singly connected percolation channel with re-
sistance R. (b) The same channel but with an extra loop
attached at one point. The resistance between the points a
and b now depends on the magnetic field component in the
plane of the loop and is much greater than R.
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uation is quite different in the case of the channel with a
transverse loop [Fig. 1(b)]: In the absence of a magnetic
field, the loop has almost no effect upon the resistance
R'(0) between the end points a, 6, so that R'(0) = R.
But when a strong magnetic field is present, the Hall
resistivity p~ can be much larger than the ohmic resis-
tivity, p~/p = H )) l. A unit current flowing in the
channel ab then induces a large Hall emf in the loop cd.
This produces a large ohmic current H in the loop, and
that, in turn, induces an even larger Hall voltage H2
in the ab channel. Thus a large magnetoresistance, which
is quadratic in H, results from going to second order in
the Hall effect, and we get R'(H)/R'(0) H2. From
this example we conclude that some of the percolation
channels have their resistance changed substantially in a
strong magnetic field. The importance of these configu-
rations is hard to judge quantitatively, but their existence
leads us to treat with suspicion the EMT prediction that
there is no magnetoresistance at p, . Another reason for
questioning the results of EMT, even far away from the
percolation threshold p„ is the fact, entirely ignored by
EMT, that the scale of the (electric) field and current dis-
tortions increases by a factor H && 1 in a strong magnetic
field 19,2G

In this paper we report on a detailed study of the ef-

fective magnetoresistivity p~'~ and Hall coefFicient R~ in
percolating composites. We use a simple, exactly solv-
able regular fractal model, based on the 3D Sierpinski
gasket, as well as some direct Monte Carlo (MC) simu-
lations, to show that a different type of scaling behavior
appears in the system in a strong magnetic field. This
scaling is a consequence of the presence of an additional
characteristic length, the magnetic correlation length (~,
which depends on the magnetic field H. In contrast with
the predictions of EMT, we find that there is a strong
magnetoresistance near the percolation threshold, which
saturates as the field tends to infinity.

The rest of the paper is organized as follows. In Sec.
II we describe a lumped circuit element that is a dis-
crete model for an isotropic conductor in the presence
of an arbitrarily strong magnetic field. This model al-
lows us to apply a number of standard approaches for
studying the critical behavior near a percolation thresh-

old, all based upon discrete network models (see, e.g. ,

Ref. 21). In Sec. III we consider the 3D Sierpinski gasket
as a model for the backbone of the percolating cluster
(see Ref. 22), with one of the above-mentioned circuit
elements placed at each vertex. The bulk effective resis-
tivity tensor p~'~ for this system is calculated exactly as
function of the linear size L and the strength of the mag-
netic field H. Even though this fractal is accurately self-
similar, it is shown that the current distribution is quite
different when L (( (~ and when L )) (~, where (~
is an appropriately defined magnetic correlation length.
This crossover leads to scaling behavior of the resistivity
as function of L/(~. In Sec. IV we present the results
of Monte Carlo simulations of random networks made
of the above-mentioned circuit elements. An efFicient
algorithm is used to calculate the resistivity tensor for
such networks in the vicinity of the percolation thresh-

old. The ohmic and Hall resistivities again exhibit new
scaling behavior in the presence of a strong magnetic
field. This behavior is consistent with what was found
for the Sierpinski-gasket model. Section V is a summary
and some conclusions. In the Appendix we provide some
technical details of the Sierpinski-gasket calculations and
discuss the effects of different types of boundary condi-
tions on the results of the numerical simulations.

II. DISCRETE CIRCUIT ELEMENT FOR
MODELING MAGNETOTRANSPORT

The continuum material we wish to represent has a
resistivity tensor p with elements given by

p —pa
p= p~ p 0 ')

0 0 pJ

1
R,, —= —(p6,, + p~Y,~),2 (2)

where the antisymmetric matrix Y is given by

Y=

0 —1 0 1
1 0 —1 0
0 1 0 —1

—1 0 1 0
0 0 0 0
o o o o

0 0)
0 0
0 0
0 0
0 0
o 0)

and where p and p~ are the same as in (1). When H = 0,

where the ohmic resistivity p is independent of the mag-
netic field H and the Hall resistivity p~ is proportional
H. This represents an isotropic, free-electron metal with
a magnetic field in the z direction, and no intrinsic mag-
netoresistance. Using dimensionless units for H, we can
write H = p~/p = ~l, r, where the I armor frequency is
given by wl. = e'6/mc. Here 'R is the magnetic field in
conventional units and 7. is the conductivity relaxation
time.

In spite of the rather specific assumptions made here,
our main results are valid for any material in which the
ohmic resistivity p saturates and the Hall resistivity p~
is proportional to H when H ~ oo. That is the case in
metal-insulator composites where the conducting com-
ponent is an uncompensated metal with a closed Fermi
surface or a semiconductor.

Finding a discrete circuit element (DCE) to represent p
is a nontrivial problem, as can be seen from the fact that
at least one seemingly obvious model turned out to lead
to random networks that were in a different universality
class of critical properties from that of real, percolating,
continuum composites. Our DCE has six external ter-
minals (legs), one along each ray of the coordinate axes
[see Fig. 2(a)], at which potentials V, are applied and elec-
tric currents I~ flow. The relations between the currents
and the potentials in such a DCE are characterized by a
6 x 6 resistance matrix B,
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Vise Vz~& V~z four-terminal DCE which is described by a 4x4 resistivity
matrix that is the upper left part of R of (2). A uniform
square network of these elements is a good model for
magnetotransport in a 2D metal. That a random square
network of such elements provides a good model for a 2D
random, metal-insulator composite is ensured by the fact
that there exists an exact duality transformation for this
system (see Ref. 18).

V118 Vz13 313 III. EXACT SOLUTION FOR
MAGNETOTRANSPORT IN A 3D

SIERPINSKI-GASKET MODEL

FIG. 2. (a) The basic discrete circuit element (DCE) which
mimics the magnetotransport properties of a real continuum
material. The numbering of the terminals or legs corresponds
to the rows and columns of the resistance matrix R of (2).
(b) Portion of a simple cubic network of the basic DCE's.
Hatched circles denote the presence of a DCE, while empty
circles denote its absence. External potentials V, ,~, A, are ap-
plied to the terminals at the top and bottom layers.

pH vanishes, and this DCE is equivalent to six identi-
cal ohmic resistors connected at one point [see Fig. 2(a)].
When H g 0, pH does not vanish, and this DCE then has
an antisymmetric part. Therefore a current flowing along
the x axis induces a voltage along the y axis, and vice
versa. This model is equivalent to the one used earlier
by Straley in connection with the low-field Hall effect,
but is represented in a different way. In our representa-
tion of this model, the potentials at the six terminals are
required to add up to zero. As a result of this, the po-
tential scales of different DCE's are shifted with respect
to each other. This causes no difhculty since Kirchhoff's
equations can be written entirely in terms of potential
differences on each DCE. In this model, a component of
the local electric field is represented by the voltage differ-
ence between a pair of terminals on the same DCE, and
a component of the local current density is represented
by the current fIowing through one of the inter-DCE con-
nection points.

A uniform conducting medium is represented by plac-
ing these DCE's at all the sites of a simple cubic lattice
and connecting together each pair of adjacent terminals
from neighboring DCE's at the center of the appropriate
network bond [see Fig. 2(b)]. If uniform boundary condi-
tions are applied to the voltages at the external terminals
of such a network, the resulting current distribution (or
current density) will also be uniform, and the resistivity
matrix which describes the relation between them will be
simply p of (1). A 3D random, metal-insulator compos-
ite with a metallic volume fraction p will be represented
by a similar. network in which the individual DCE's are
chosen at random to be either metallic (with probability
p), or insulating (with probability 1 —p).

The 2D version of this model, for the case where H is
perpendicular to the sample plane, is easily seen to be a

Ail
rL

FIG. 3. Three initial stages or generations of the 3D Sier-
pinski-gasket fractal. By iterating this construction procedure
it is possible to make a fractal of arbitrarily large linear size
L.

We are interested in the bulk effective conductivity ten-
sor of a percolating composite. In the case of a metal-
insulator composite, it is the backbone of the percolating
cluster that determines the transport properties. When
a magnetic field is applied to the system, the contribution
of different parts of the backbone to the total resistivity
changes. For example, when H = 0, closed loops at-
tached to the backbone at a single site do not carry any
current and hence make no contribution to the transport.
In contrast, when H is nonzero and large, they can have
a huge eKect on the transport (see Fig. 1). Therefore it
is not clear that a model of the backbone that repro-
duces well the transport properties at H = 0 will also
work well for nonzero H. With this proviso in mind, we
nevertheless use the well-known Sierpinski-gasket model
for the backbone, originally proposed for a system with
no magnetic field. z2 The first three stages of iteration of
the 3D Sierpinski gasket are shown in Fig. 3. In order to
study magnetotransport, we place a four-terminal DCE,
like the ones used to simulate a 2D conductor in the pre-
vious section, at each vertex of the gasket. Because of
the way the different DCE's are connected together, the
entire structure is three dimensional and the best way to
think of each DCE is as if it were a tetrahedron. This
model was first introduced in Ref. 23. There we implicitly
and erroneously assumed that the longitudinal and the
transverse ohmic resistances are equal in all iterations.
Therefore the results for the scaling behavior found in
Ref. 23 are quantitatively wrong. Nevertheless they are
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1
R,, = —Rp(b, ~ + HpY~), (4)

where the antisymmetric matrix Y is given by

similar to what we find here, and the qualitative conclu-
sions are the same.

A tetrahedron with four terminals at its vertices, which
characterizes the overall topology of the 3D gasket, is the
minimal discrete object which can represent a continuum,
3D conducting medium in the presence of a magnetic field
of arbitrary direction. The crucial fact which makes this
possible is that we can simulate a current vector of arbi-
trary magnitude and direction, as well as an electric field
of arbitrary magnitude and direction, by assigning ap-
propriate values to the currents and voltages at the four
terminals. For example, a current I flowing in a perpen-
dicular direction into the page in Fig. 4 is represented by
taking Ii = Iiii = I/2, Iii = Iiv = I/2. —Similarly, a
field E pointing in the same direction is represented by
taking Vi = Viii = E/2, Vii = Viv = —&/2.

A magnetic field of arbitrary magnitude and direction
can be included in this description by considering its ef-
fect on the relationship between the electric field and
current vectors of the DCE. The resistance matrix B of
a single DCE obtained in this way can also be obtained
from (2) by eliminating the last two rows and columns.
In this way we get

( 0 —1 0 1)
1 0 —1 0
0 1 0 —1

( —1 0 1 0)
(5)

Figure 4 shows the details of how four DCE's are con-
nected up to create the first generation fractal, which
also has four external terminals, in the case where H is
perpendicular to the plane of the drawing. We start with
DCE's which represent a free-electron metal and have the
same resistance along the magnetic field and perpendic-
ular to it. In the presence of a magnetic field this is
no longer true for the gasket. For this reason the first
generation fractal must be described by a matrix that is
different in form from R of (4). The new matrix R de-
pends upon three parameters Ri ——pRs, Rs, and H [see
(Al) in the Appendix], where Rs is the resistance along
the magnetic field, Ri is the resistance perpendicular to
it, and HRs is the Hall resistance.

In the next stage, four of these first generation gas-
kets are connected together in the same way to make
the second generation fractal, etc. The nth gener-
ation fractal thus has a linear size L = 2" and a
resistance matrix of form (Al) with the parameters
Ri(Rp, Hp, L) = p(Hp, L)Rs(Rp, Hp, L), Rs(Rp, Hp, L),
and H(Rp, Hp, L). The transformation from the n
to the n + 1 generation fractal, which is an exact
renormalization-group transformation, is found by solv-
ing Kirchhoff's equations (see the Appendix for details).
This yields

Rs(n+1) = Rs

h'( ) +1](&( )h'( ) + 2) + H'("))
[p(n) + 2]([p(n) + 1]~ + H2(n) ) (7)

V(~)l&(~) + 2] + H'(&)

IV

J(-1i+ Blg

FIG. 4. Detailed scheme for the coupling of four
four-terminal DCE's to create the first generation 3D Sier-
pinski gasket. In order to set up Kirchhoff's equations for the
case where external current Bows only into the external ter-
minals I and III, three independent currents are introduced:
i&, i2, and the loop current i, which is nonzero only when
H g 0. The direction of H is perpendicular to the page.

which can be iterated as many times as necessary to reach
the final size L = 2". The initial values for the param-
eters are determined by the form of the original DCE
resistance matrix. In the particular case of (4) those are
R3 (0) = R& (0) = Rp, 7(0) = 1 and H(0) = Hp.

It is easy to show that the values H = 0,
1 constitute a stable fixed point of the transforma-
tion. For [Hp[ (( 1 the transverse ohmic resistivity
p~ = 2apLRi (Rp, Hp, L) is equal (up to terms pro-
portional to Hp) to the longitudinal ohmic resistivity

p~~
= 2apLRs(Rp, Hp, L), where ap is the size of a sin-

gle DCE. These values, as well as the Hall coeKcient
RH = 2apLRi (Rp, Hp, L)H(Rp, Hp, L)/Hp, have the fol-
lowing scaling behavior as functions of L:

pi(Rp, Hp, L) =
pii (Rp, Hp, L) = 2RpapL',

= 1.585, (9)
ln3
ln2
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R~(Ro, Ho, L) = 2RoaoL~, 1.00

ln(3/2)
ln2 (10)

0.50—
H

+ + + + + + + + + + + + + + + +

The value of t is the same as that found in Ref. 22 for
the zero field case, but the value of g is new, and may
be compared to the value found in simulations, namely,
g 0.42.7

From (6)—(8) it is clear that the values H = oo, p = v 2
also constitute a fixed point of the transformation. For
Hp

~

)) 1, the transverse and longitudinal ohmic resistiv-
ities and the Hall coefficient have the following scaling
behavior:

—0.50-

b x Ho=q

0 HG=12

H, =64

HO=256

p~(Rp, Hp, L) oc pjj(Rp, Hp, L) oc apRpL'

= 1.772, (11)ln2

—1.00 11111$11111111111111 I I I I I I & I I j 11111111
—10.00 -500 0 00 50Q 1QOQ

tn [L/&,

pz(Ro Ho, L)/pjj(Rol Ho, L) = ~2,

RH(Rp, Hp, L) oc apRpL~, gH = l.

(12)

(13)

I IG. 5. log-log plot of the normalized ohmic resistivity

p~(L, Hp)/[Hp' 'H p(L, O)j vs L/(H for the 3D Sier-
pinski-gasket model. The values of L go up to 32768, while
the values of Ho, measured in units of the Hall to ohmic re-
sistivity ratio p~/p, go up to 256.

These results may be compared with those of Ref. 18,
namely tH —2.669, gH = 0.927, which were obtained for
a percolating network model from an approximate real-
space renormalization-group transformation.

Suppose we start with Hp )) 1. From (7) and (8) it
follows that in this case H(n+1) = ~ H(n). Since H
keeps decreasing with each iteration of the gasket, i.e. ,

H(Ro, Ho, I) = HpL" ~&+&/ ":—HoL

therefore even if we start with Hp )) 1, we always eventu-
ally cross over to the weak-field regime H (( 1, in which
the behavior is dominated by the Hp = 0 fixed point.
This occurs when L = Hp, which defines a (mag-
netic) field-dependent length (H, which for this model is
equal «Hp ) &H:

& &
1296 This magnetic cor-

relation length has a finite value as long as the field is
finite. For Hp ) 2, the dependence of p~(Rp, Hp, L)/Hp
on L and Hp is very well described by a scaling function
of the single variable L/(H see Fig. 5. —

%'e would like to point out that the characteristic
length (~ is related only to the distribution of the macro-
scopic currents in the system. It is therefore not directly
comparable to any of the physical microscopic lengths
such as cyclotron radius or mean free path. In particu-
lar, even though in a free-electron metal the parameter
Hp is essentially equal to the ratio of mean free path to
cyclotron radius and (H = apHo~, the basic length scale
ap is not related to any microscopic length scale. It is
in fact determined simply by the size of the DCE in the
case of the network models, and by the actual sizes of the
metallic grains in a real metal-nonmetal composite.

The detailed local current distribution in the 3D gas-
ket is obtained as a by-product of the exact solution of

Kirchhoff's equations: On a scale L « (0 it is found that
ii/i2 1/Hpz, while on a scale L )) (H it is found that
ii/i2 = O(1) (see Fig. 4 for the definition of the local cur-
rents ii, iq, i ). In the latter case the local currents are
the same as when Hp ——0. The loop current i attains
its maximum value when L = (H.

The critical exponents t, g obtained from the 3D Sier-
pinski gasket for the weak- (magnetic) field regime may
be compared with values obtained for these exponents
in percolating network models (see Refs. 21 and 7, and
references therein). The values are similar but difFerent,
which confirms the generally accepted belief that the gas-
ket is not a good quantitative model for the percolating
backbone but leads to a reasonable qualitative picture.
In the next section we will see that in the strong field
regime, the discrepancies are much greater. Nevertheless
the scaling properties of the high-field magnetotransport
obtained for the Sierpinski gasket still hold true for a real
percolating system.

IV. MONTE CARLO SIMULATION OF
PERCOLATING NETWORKS IN A STRONG

MAGNETIC FIELD

There exist essentially two difFerent approaches to solv-
ing a 3D random-resistor network near the percolation
threshold in order to evaluate the macroscopic transport
properties, namely, relaxation methods~ and trans-
fer matrix methods. 2s 7 Both of these have one or more
drawbacks in the context of our problem. The relaxation
methods are very inefIicient at coping with the strong,
far-reaching distortions of the current and voltage dis-
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tributions caused by a strong magnetic field, since these
phenomena drastically slow down the rate of relaxation.
In the transfer matrix method there is no question of
relaxation, but one is tied down to a restricted set of
boundary conditions which create severe problems in the
interpretation of the results (see the Appendix for a dis-
cussion of this). We therefore used an extension of the
method of Refs. 27 and 28.

The first step is to set up a 3D, simple cubic, inde-
pendent random site lattice, and identify the percolation
cluster. Each site of this cluster is occupied by an iden-
tical, six-terminal DCE of the type described in Sec. II,
which is characterized by a 6 x 6 conductance matrix
G = R . Due to the fractal nature of the percolation
cluster many internal terminals (i.e. , terminals not at the
top or bottom layer of the sample) are unconnected and
thus no current can flow into them. At this stage, all such
terminals are eliminated, and the matrices ( of the rel-
evant DCE's are appropriately transformed into smaller
matrices. Next, we eliminate all dangling DCE's, namely
those that have only one (connected) terminal. These
two steps are iterated until every remaining internal DCE
(i.e. , one that does not have a terminal in the top or bot-
tom layer) has at least two (connected) terminals. At this
stage, connected pairs of DCE's are combined to form sin-
gle DCE's (see Fig. 6). Sometimes the combined DCE has
an increased number of terminals, and its conductance
matrix then has a correspondingly increased number of
rows and columns. This procedure is repeated so as to
gradually reduce the total number of DCE's, at the ex-
pense of an increased number of terrrunals for individual
DCE's. We do not attempt to combine two DCE's if the
resultant DCE has more than 50 terminals. If the original
network was sufBeiently close to the percolation thresh-
old, then the percolation cluster is suKeiently ramified so
that the number of terminals per DCE does not increase
too quickly. We are finally left with a number of mul-
titerminal DCE's that are interconnected, and for which
KirchhoÃ's equations must be solved by brute force at all
the internal terminals. Most of the remaining terminals
are however at the top or bottom layers, so that the total

V, Vs V~ V,

number of equations that must be solved simultaneously
is rather modest. For example, in all the networks we
simulated at p, that were smaller than 25 x 25 x 25 this
procedure led to only a single resultant DCE, and thus
all efFective parameters were obtained immediately. For
larger systems, the number of equations that remain to
be solved at the end of the procedure increases approxi-
mately as L, where L is the linear size. This behavior is
in agreement with the fractal dimension of the 3D perco-
lation backbone which is known to be close to 2. Thus
for a random network of size 100 x 100 x 100 the typi-
cal number of these equations does not exceed about 40.
These equations were solved by Gauss-Jordan elimina-
tion, taking a few seconds on a Sun Sparcl workstation.
Most of the computing time is spent on the reduction
of the original network to this Bnal system of equations.
Since the number of DCE's is reduced by one at each
step of the reduction process, the total number of opera-
tions A' is proportional to the size of the backbone L"f .
One can compare this estimate with JV oc L7 for the
transfer matrix method and JV oc I for the relaxation
method. Moreover, the appearance of strong Hall fields
makes the relaxation method very unstable: we were un-
able to make it converge when Ho & 20. Therefore the
method described above is not only very efIicient, but
seems to be the only known numerical method able to
solve such problems. A detailed analysis of this method
will be presented elsewhere. 2s

In order to obtain results for the macroscopic magneto-
transport, we must apply appropriate boundary condi-
tions to the L x L x L network. This is done by prescrib-
ing

Vb«(i, 1, k) = iEosin8+ Vo,

Viop (i, L, k) = iEc sin 8 + LEO cos 8 + Vp,

at the terminals on the bottom and top layers, respec-
tively. Here Vo is an arbitrary constant. This is equiva-
lent to applying an average electric Beld of magnitude Eo
in the x, y plane, at an angle 0 with respect to the y axis.
The total current in the y direction is calculated, and
used to express the current density j„ in that direction.
As function of Ec, 8 it has the following form:

j„=AEO cos 8+ BEO sin8. (i6)

Vs V a Vs

Vs=Via

V, V,

I IG. 6, Illustration of the coupling procedure of two con-
nected DCE's, in which two six-terminal DCE's, connected at
one of their terminals, are replaced by a single DCE with 10
terminals. At the percolation threshold, the fraction of ter-
minals that are connected is so small that the actual number
of terminals per DCE that one has to cope with when this
procedure is iterated is never very large. In that case, when
the system has only four external terminals, the coupling pro-
cedure can be iterated to its conclusion, at which point we are
left with a single, four-terminal DCE.

The coefficients A, B are determined for each realiza-
tion of the network and then averaged over the difFerent
realizations. At the angle 8~~„, for which the averaged
current density (j„) is maximal, the electric field compo-
nents Eocos8 ~„, Eosin8 are taken to be the ohmic
and the Hall fields, respectively. The bulk effective ohmic
and Hall resistivities p~'~, pH are therefore given by

Since the linear size L of the networks we simulated was
never greater than 63, boundary or surface effects need to
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be discussed. At p„ the percolating cluster includes loops
and blobs on all scales, including the smallest ones.
Therefore a boundary with a prescribed, uniformly vary-
ing set of potentials as described above will short out
or otherwise drastically alter any of those loops that it
happens to cut through (see Fig. 7). In the Appendix
we show that this can change the measured magneto-
transport coefficients considerably and thus easily ob-
scure the bulk behavior of the system at the small sizes
that were simulated. In order to avoid this pitfall, we
applied the above-mentioned boundary conditions only
to one pair of terminals at the top layer and one pair
of terminals at the bottom layer of the network, always
choosing the pair of terminals with the largest chemical
distance between its members. The other surface ter-
minals were left unconnected, with zero current flowing
to them. Our system is therefore really a large four-
terminal device, similar to the elementary DCE but with
fewer terminals.

All the simulations reported here were done using net-
works at p = p, —0.3116 (see Ref. 21). We averaged the
results over 1000 realizations for each of the system sizes
L = 2, 4, 6, 9, 13, 19,28, 42, 63 and for each of the dimen-
sionless magnetic field values H = 0.5, 1, 2, 4, ..., 32768.
The effective ohmic resistivity p(') (L, H), obtained in this
way from Eq. (17), is shown in Figs. 8 and 9. For H = 0,
the ohmic resistivity results

I t I I I I
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104

1000

100

10

10
L

FIG. 8. Results from Monte Carlo (MC) simulations for the
bulk effective ohmic resistivity p~'i(L, H) at the percolation
threshold p, = 0.3116 as function of the system size L for
difFerent values of H—:p~/p from H = 0.5 up to H = 32768.
The full curves were obtained by fitting a natural cubic spline
to points with the same H. For a fixed size L, p

' (L, H)
saturates as H ~ oo.

p('&(L, O) L', t = 2.2+0.l,
are in good agreement with known results (see Ref. 30
and references therein). For intermediate values of H,
namely 1 (( ~H~ (( L, the behavior of the ohmic resis-
tivity p(')(L, H) is in qualitative agreement with EMT:
The difFerence p(')(L, H) —p('&(L, o) is proportional to
H and tends to zero with increasing L. The situation is
quite different in the case of strong magnetic field, i.e. ,
when H )) L. As H tends to infinity, the efFective ohmic
resistivity p(')(L, H) saturates but depends strongly on
the system size L:
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FIG. 7. (a) A schematic representation of the surface layers
with enhanced conductivity. The effective conductivity of the
surface layers remains unchanged when the concentration p
approaches p . (b) An example of a surface DCE with two of
its terminals shorted by the boundary. When an electric field
is applied in the z direction, j is mainly determined by such
surface DCE's.

FIG. 9. Scaling behavior of the efI'ective ohmic resistiv-
ity p' (L, H) = H'"""f(L/(a), where (H = H is the
magnetic correlation length, v~ 0.46, and t~vH 3.1.
Dashed lines correspond to the asymptotic behavior at strong
fields p~' (I, H) L', tub 6.7 and at weak fields

p
'~ (L, H) L', t 2.2. The crossover occurs when

L/gH = 1.
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10= I f I I I I I I I I I I I I I large system at p g p,

(24)
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V. SUMMARY AND DISCUSSION
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FIG. 12. Scaling behavior of the effective Hall coefBcient
RH (L, H) = H H" f(L/g~), where (H = H"H is the
magnetic correlation length, vH 0.46, and gHvH —2.1.
The dashed lines correspond to the asymptotic behavior at
strong fields R~ (L, H) L~~, gH —4.5 and at weak

fields R~l(I, H) ~ L~, g 0.8. The crossover occurs when
L/(H = l.

the value g —0.42 found in Ref. 7. We believe that
the method used to calculate the low-field Hall resistiv-
ity in that reference is the most accurate one, since it
is based on a simulation of random-resistor networks at
H = 0 and does not depend on evaluating the small dif-
ference between the behavior at H = 0 and at a small but
nonzero H. In the work of Straley (Ref. 9) an approach
similar to ours was used but with different boundary con-
ditions and it was then found that g = 0. The size of the
systems considered in Ref. 9 was rather small L & 20,
and the final result for g was obtained as the difference
between two large exponents for ohmic and Hall conduc-
tivities. Conflicting results for g were also obtained in
another calculation. We believe that it will be neces-
sary to increase the system size and the number of re-
alizations and also to carefully consider the effect of the
boundary conditions in order to resolve these discrepan-
cies and determine the accurate value of g .

At intermediate values of H, RH depends on H, but(~)

when H tends to infinity, it again becomes independent of
H. It then increases as AH L&, where the strong-field
critical exponent gH is estimated to be gH ——4.5 + 1.0.
The Hall coefficient is a scaling function of I/(H in the
same region of L and H as was the ohmic resistivity (see
Fig. 12):

We have carried out an elaborate theoretical and nu-
merical study of magnetotransport in percolating com-
posites. We proposed a discrete model (i.e. , a discrete cir-
cuit element or DCE) for magnetotransport and showed
that, when used in an appropriate network model, it has
the ability to reproduce faithfully some important prop-
erties of a continuum percolating medium. In order to
study the effective ohmic resistivity and Hall coefBcient
of such a system in the presence of a magnetic field we
solved exactly a 3D Sierpinski-gasket fractal network of
such elements and also simulated random networks of
such elements. The simulations employed a new and very
efBcient algorithm which should also be useful for other
problems. Our main result is the qualitative observation
that, in contrast with previous results obtained from ef-
fective medium theory (EMT) but in agreement with our
own earlier and preliminary study, there is a large mag-
netoresistance in the vicinity of the percolation thresh-
old. In the strong-field limit the ohmic resistivity and
Hall coeKcient do not depend on the value of the mag-
netic field but their critical behavior near the percola-
tion threshold is characterized by new critical exponents
t~ and g~, respectively. We obtained values for these
new exponents, but those values need to be calculated
more accurately in future work. We introduced a new
physical parameter, the magnetic correlation length (H,
which depends on the value of the dimensionless magnetic
field H = ul. r as H ii, with the (new) critical exponent
vH = 0.45+0.10. Both the ohmic resistivity and the Hall
coefficient are scaling functions of the ratio („/(H, where

(„ is the percolation correlation length, and those func-
tions are determined from the simulations. It is shown
that the behavior of the ohmic resistivity in the pres-
ence of a strong magnetic field depends on details of the
structure of the percolation cluster. Consequently, we
expect that experimental studies of magnetotransport in
a composite medium can shed light on details of the in-
ternal microstructure. Although we have assumed in this
paper that the conducting component was free-electron
metal-like in that it had zero magnetoresistance, we be-
lieve that the behavior we found will continue to hold
for all composites where the conducting component has
its ohmic resistivity saturated in a strong magnetic field,
and where the Hall resistivity remains proportional to the
magnetic field at such field strengths. This encompasses
the case of metals and uncompensated semiconductors
with a closed Fermi surface. Presumably, our methods
can be extended to calculate the magnetotransport also
in composites with other types of components, including
superconducting materials.

g( ) (I, H) = /AH"H f(L/(H) (23)
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APPENDIX

First we present some details of the exact solution of
the 3D Sierpinski gasket with one four-terminal DCE at

each vertex. When four such DCE's are interconnected
as shown in Fig. 4, one obtains the first generation frac-
tal which is also a four-terminal device. Its analysis is
most easily accomplished by using the form of (4) for the
resistance matrix A. But for the first generation fractal,
as well as for subsequent generation fractals, the resis-
tance along the magnetic field is difFerent from that in
the transverse direction. It is easy to verify that such an
anisotropic DCE is described by a resistance matrix of
the following form:

f 1+p
0

1 —7

0
1+7

0
1 —7

1 —p 0
0 1 —p

1+p 0
0 I+p)

( 0 —1 0 1)
1 0 —1 0
0 1 0 —1

O 1 O)
(A1)

Suppose that a current i Bows in the y direction go-
ing into terminal 3 of a DCE characterized by (Al) and
leaving it by terminal 1 (see Fig. 4). The current vec-
tor, which describes the currents Bowing out of the four
terminals, then has the form i = (i, o, i, o). A—pplying
R of (Al) to this vector we get for the potential vec-
tor V = (Rspi, RsHi, Rspi, Rs—Hi)—, which describes
the potentials at the same four terminals. Now suppose
that a current i Bows in the 2: direction going into termi-
nal 4 and out of terminal 2. The current vector is then
i = (O, i, o, i), a—nd the corresponding potential vector
is V = (—RsHi, Rspi, RsHi, —Rspi). Finally, suppose
that a current i flows through a DCE in the direction
of the magnetic field. The current vector then has the
form i = 2(i, —i, i, —i), and the corresponding poten-
tial vector is V' = z(Rsi, —Rsi, Rsi, —Rsi). Thus the
matrix (Al) describes a DCE with a longitudinal resis-
tance 2R3 that is different from the transverse resistance
2By ——2pB3. If we assign the linear size ao to a sin-
gle DCE, it is easy to recognize that the matrix (Al)
describes a material with the resistivity tensor:

(„, —,„o1
p= ' pH pll 0 =2apRs H 7 0 . (A2)

0 0 p~

We now calculate the parameters of a four-terminal de-
vice composed of the four DCE's with resistance matrix
(Al), as shown in Fig. 4. In order to calculate the new
transverse resistance B~ suppose that a current iq + 2iq
enters terminal III (see Fig. 4) and exits from terminal
I. In principle there are four independent loops in the
circuit and therefore four independent currents and four
Kirchhoff equations for the loop emf's. Due to symme-
try, this number is reduced to three independent currents
and three independent equations. The choice of currents
is rather arbitrary. One convenient scheme is to consider
all internal currents as composed of the currents iq, i2,
and i as shown in Fig. 4. The potential at each terminal
of the basic DCE's A, B,t, and D can be expressed in
terms of these currents. For example, the potentials at
the terminals of A are given by

Vj = Rs [pig + (1 + p) i2 + Hi ],
V2 = Rs[—pi —i2 + H(iq + i2)],
Vs —Rs[—pi& + (1 —p)i2 —Hi ],
V4 —Rs [pi —i g H (i $ + 'E 2) ] .

In order to write Kirchhoff's equations we only need to
know the voltage difFerences between different terminals
of the same DCE. Those differences are independent of
the particular gauge or offset, which in (Al) is chosen
so as to make the sum of potentials at all terminals of a
single DCE vanish. In this way we obtain

4p2y + 4pi2 + 4Hi = Up/Rs,

2pig + 4(p+ 1)i2 = Up/Rs,

2(p+ 1)i~ —Hip = 0,

(A3)

(A4)

(A5)

Eq. (A3) was obtained by equating the external voltage
Uo the sum of the voltage V~ ]3 between terminals 1 and
3 of A and the voltage V~&3 between terminals 1 and
3 of C. Equation (A4) was obtained by equating Up to
the sum of V~$g Vgg]3 and Vo23 ~ Equation (A5) was
obtained by equating to zero the sum of V~42, V~ q4, and
VD 2i

From the solution of these equations one can also cal-
culate the Hall voltage drop Vo between the external ter-
minals II and IV. The new effective parameters R& and0' are given by

(~+ 1)h(~+2)+ H']
(p+ 1)'+H' (A6)

p(p +) 2+ 'H

(~+ 1)h(~+ 1)+H'] (A7)

To determine the effective longitudinal resistance it is
necessary to calculate the voltage drop Uo between, for
example, terminals I and II when currents 2 Bow into
terminals II, IV and out of terminals I, III. It is possible
to verify that in this case there are no currents flowing
from A to C or from B to D. We thus obtain Uo ——

iRs(2+p), and consequently the following expression for
the new longitudinal resistance:
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R =R '+'.3= 3
2 ( 8)

The relations (A6)—(A8) immediately lead to the exact
renormalization-group transformation (6)—(8).

We now consider in more detail the effect of the thin
surface layers of percolating material that are adjacent to
the boundaries where the electric potential is prescribed.
Due to the electric shorting out of loops and blobs that
intersect those boundaries, the effective conductivity of
the adjacent layers is greatly enhanced compared to the
bulk value at strong magnetic fields [see Fig. 7(a)]. Clus-
ters (e.g. , loops) of small size and with closely spaced
multiple connections to the boundary are the most dras-
tically affected by this. Since the percolating cluster has
a self-similar structure, the number and shape of these
small clusters does not change when p ~ p, . Therefore
the effective thickness l of those layers is of the order of
the linear size of a unit cell of the network, i.e. , 1. By
a similar logic, the effective ohmic and Hall resistivities
of these layers p~, pH~ remain of the same order of mag-
nitude as those of the pure conducting component p, pH
even when p —+ p, . We now estimate the effect of those
(two) layers by considering the entire system to be made
of a thickness L of bulk material in series with a thick-
ness 2l of the "surface layer material" described above.
This leads to the following result for the y component of

the current density:

Eo sin 8 ((H))Eo cos 8

((P)) + ((PH')) ((P)) + ((PH')) '

where the quantities

(A9)

(A12)

(A14)

((P)) = Pi L + P" (A10)

"L—2I,

pl L+p
2S '"L —2S

(( H2)) PH t + PH
pLL+p() L '

are simply volume averages in this three-layer system.
Using the critical exponents t, g we can now estimate
these quantities for a system at the percolation threshold
and in a weak magnetic Geld. We thus get

2t
((P)) = Pi L + «', (A13)

((H)) = ' —+tL '+'PHi 2t

Pt L

From the values t —2.2 and g 0.4 we conclude that,
when L ~ oo, the resistivity ((p)) L', ((H)) ~ 1/L,
and the Hall coefficient RH = ((H))((p))/He L'
L .2. Thus the Hall coeKcient is mostly determined by
the surface layers and not by the bulk material.

' Permanent address.
I. Webman, J. Jortner, and M.H, Cohen, Phys. Rev. B 15,
1936 (1977).
B.I. Shklovskii, Zh. Eksp. Teor. Fiz. 72, 288 (1977) [Sov.
Phys. JETP 45, 152 (1977)].
J.P. Straley, J. Phys. C 13, 4335 (1980); 13, L773 (1980).
D.J. Bergman, Y. Kantor, D. Stroud, and I. Webman,
Phys. Rev. Lett. 50, 1512 (1983).
D.J. Bergman, in Annals of the Israel Physical Society,
edited by G. Deutscher, R. Zallen, and J. Adler (Hilger,
London, 1983), Vol. 5, pp. 297—321.
D.J. Bergman and D. Stroud, Phys. Rev. B 32, 6097
(1985).
D.J. Bergman, E. Duering, and M. Murat, J. Stat. Phys.
58, 1 (1990), and references cited therein.
A.S. Skal, J. Phys. C 20, 245 (1987).
J.P. Straley, Phys. Rev. B 38, 11639 (1988).
C. Kittel, Quantum Theory of Solids (Wiley, New York,
1963).
A.M. Dykhne, Zh. Eksp. Teor. Fiz. 59, 641 (1970) [Sov.
Phys. JETP 32, 348 (1971)].
K.S. Mendelson, J. Appl. Phys. 46, 4740 (1975).

's B.Ya. Balagurov, Zh. Eksp. Teor. Fiz. 82, 1333 (1982) [Sov.
Phys. JETP 55, 744 (1982)].
D. Stroud and D.J. Bergman, Phys. Rev. B 30, 447 (1984).
B.Ya. Balagurov, Fiz. Tverd. Tela 28, 3012 (1986) [Sov.
Phys. Solid State 28, 1694 (1986)).
D. Stroud, Phys. Rev. B 12, 3368 (1975).
D. Stroud and F.P. Pan, Phys. Rev. B 13, 1434 (1976).

A.K. Sarychev, D.J. Bergman, and Y.M. Strelniker, Euro-
phys. Lett. 21, 851 (1993).
H. Stachowiak, Physica 45, 481 (1970).
J.B. Sampsell and J.C. Garland, Phys. Rev. B 13, 583
(1976).
D. StauBer and A. Aharony, Introduction to Percolation
Theory, 2nd ed. (Taylor and Francis, Philadelphia, 1991).
Y. Gefen, A. Aharony, B.B. Mandelbrot, and S. Kirk-
patrick, Phys. Rev. Lett. 47, 1771 (1981).
D.J. Bergman and A.K. Sarychev, Physica A 191, 470
(1992).
I. Webman, J. Jortner, and M.H. Cohen, Phys. Rev. B 11,
2885 (1975).
G.G. Batrouni and A. Hansen, J. Stat. Phys. 52, 747
(1988).
B.Derrida and J. Vannimenus, J. Phys. A 15, L557 (1982);
H.J. Hermann, B. Derrida, and J. Vannimenus, Phys. Rev.
B 30, 4080 (1984).

"D.J. Frank and C.J. Lobb, Phys. Rev. B 37, 302 (1988).
A.P. Vinogradov and A.K. Sarychev, Zh. Eksp. Teor. Fiz,
85, 1144 (1983) [Sov. Phys. JETP 58, 665 (1983)].
A.K. Sarychev (unpublished).
A.K. Sarychev, A.P. Vrnogradov, and A.M. Karimov, J.
Phys. C 18, L105 (1985).
A.K. Sarychev, A.P. Vinogradov, and A.V. Goldenshtein,
J. Phys. C 20, L113 (1987).
S. Marianer and D.J. Bergman, Phys. Rev. B 39, 11900
(1989).


